
WebAssembly,
Formal Methods, and
Secure Cryptography

Conrad Watt, John Renner, Natalie Popescu, Sunjay Cauligi, Deian Stefan

University of Cambridge; University of California, San Diego

Extended from slides by John Renner



The web has evolved



The web has evolved

http://www.cl.cam.ac.uk/ ∼ pes20/



The web has evolved

http://www.cl.cam.ac.uk/ ∼ pes20/ https://github.com/evanw/webgl-water



The web has evolved

http://www.cl.cam.ac.uk/ ∼ pes20/ https://github.com/evanw/webgl-water



The web has evolved

● We want richer web apps -
3D rendering, physics, 60 FPS.

● asm.js exists but is limited by 
being built on top of JavaScript.

● We’re at the limits of JavaScript - 
need a purpose-built language.



The web has evolved

● A web-friendly bytecode.

● Runs on any browser.

● “Near-native” performance.

● Targetted by LLVM.

● Formally specified!
Bringing the web up to speed with WebAssembly [Haas et al. 2017]



(module

  (func $add (param i32 i32) (result i32)

    (local.get 0)

    (local.get 1)

    (i32.add)

    (return))

  (export "add_ints" (func $add)))

What does WebAssembly look like?



(module

  (func $add (param i32 i32) (result i32)

    (local.get 0)

    (local.get 1)

    (i32.add)

    (return))

  (export "add_ints" (func $add)))

What does WebAssembly look like?



(module

  (func $add (param i32 i32) (result i32)

    (local.get 0)

    (local.get 1)

    (i32.add)

    (return))

  (export "add_ints" (func $add)))

What does WebAssembly look like?



(module

  (func $add (param i32 i32) (result i32)

    (local.get 0)

    (local.get 1)

    (i32.add)

    (return))

  (export "add_ints" (func $add)))

What does WebAssembly look like?



(module

  (func $add (param i32 i32) (result i32)

    (local.get 0)

    (local.get 1)

    (i32.add)

    (return))

  (export "add_ints" (func $add)))

What does WebAssembly look like?



WebAssembly execution, formally

F; e* F'; e'* 

t   ≜     i32         i64         f32         f64

e  ≜   t.const n    t.add    t.load    t.store

         local.get n         local.set n   ... 



Addition

(i32.const 4)
(i32.const 2)
(i32.const 1)
(i32.add)
(i32.add)

(i32.const 4)
(i32.const 3)
(i32.add)

(i32.const 7)



Load

F =  {
          . . .
          memory = mem
        }

F; F; (t.const v)
(i32.const k)
(t.load)

V  =  load(mem, k, t)

if and



Store

F; F'; .
(i32.const k)
(t.const v)
(t.store)

if and

F =  {
          . . .
          memory = mem
        }

F' =  {
           . . .
           memory =
             store(mem, k, v)
         }



Get local

F =  {
          . . .
          local[k] = ( v :: t )
        }

F; F; (t.const v)(local.get k)

if



Set local

F; F'; .(t.const v)
(local.set k)

if

F =  {
          . . .
          local[k] = ...
        }

and

F' =  {
           . . .
           local[k] = ( v :: t ) 
         }



Structured control flow

e  ≜ ...  block tf e* end

     loop tf e* end

     if tf e* else e* end

● WebAssembly has no 
“goto” operation

● Instead, directly encode 
control flow constructs

● Only structured control 
flow is allowed



Type system

tf   ≜    (t* → t*)

(i32.const 4)
Type:
([] → [i32])

All WebAssembly programs must be validated
(type checked) before execution.



Type system

tf   ≜    (t* → t*)

(i32.const 4)
(i32.add)
(i32.add)

Type:
([] → [i32])

Type:
([i32,i32,i32] → [i32])

All WebAssembly programs must be validated
(type checked) before execution.



Type system

tf   ≜    (t* → t*)

(i32.const 4)
(i32.add)
(i32.add)

(f64.const 2)
(i32.const 1)
(i32.add)

Type:
([] → [i32])

Type:
([i32,i32,i32] → [i32])

Ill-typed

All WebAssembly programs must be validated
(type checked) before execution.



Type soundness

● Preservation
○ If a program (F; e*) is validated with a type ([] → [t*]), any 

program obtained by reducing (F; e*) to (F'; e'*) can also be 
validated with type ([] → [t*]).

● Progress
○ For any validated program (F; e*) that has not terminated 

with a result, there exists (F'; e'*) such that (F; e*) reduces to 
(F'; e'*).

A Syntactic Approach to Type Soundness [Wright and Felleisen. 1994]



Mechanisation

● An unambiguous formal specification 
and correctness condition.

● Perfect for mechanisation!

● ∼11,000 lines of Isabelle/HOL 
definitions and proofs.



Mechanisation

● Found several errors in the
draft specification.

● With fixes, proof complete!

● Also included: verified interpreter
and type-checker



Mechanisation

Two categories of error were found.

● Trivial “syntactic” errors
○ typos
○ missing cases

● Deeper “semantic” errors
○ Edge-cases where formal rules

get stuck
○ Sound interop with JavaScript/host



Mechanisation

Two categories of error were found.

● Trivial “syntactic” errors
○ simply copying definitions down
○ don’t need a full prover

● Deeper “semantic” errors
○ Discovered during soundness 

proof
○ Hard to find by hand





Writing crypto code is hard



enc(m,prv1)

enc(m,prv2) 20ns

25ns

Timing discrepancies leak information about inputs

Functional correctness is not enough



Remote Timing Attacks are Practical [Brumley et al. 2003]

Remote Timing Attacks are Still Practical [Brumley et al. 2011]

Hey, You, Get Off of My Cloud [Ristenpart et al. 2009]

Lucky Thirteen [Farden et al. 2013]

Lucky Thirteen Strikes Back [Irazoqui et al. 2015]





JavaScript Runtime



code.js

JavaScript Runtime



code.js

10101001  11111111  10001101  10000100  
00000011  10101001  11001000  10001101
10001000  00000011  10101001  00000000  
10001101  10000110  00000011  10001101
10001010  00000011  10001101  10001011  

Fast machine code

JavaScript Runtime



10101001  11111111  10001101  10000100  
00000011  10101001  11001000  10001101
10001000  00000011  10101001  00000000  
10001101  10000110  00000011  10001101
10001010  00000011  10001101  10001011  

Fast machine code

JavaScript Runtime

Constant-time code



Signal



Existing JS Crypto Solutions

Platform Crypto (WebCrypto, node.js crypto)

Missing modern algorithms (Poly1305)

  Unreliable support

Native C Modules

Doesn’t work in browsers



So what can we do?



Statically Typed

Low-level

Portable



WebAssembly is not enough

Doesn’t stop you from writing leaky code

Runtime can still introduce vulnerabilities



Solution:
Make Secrecy Explicit



Secret Types

s32
s64

All other types are public: 
i32, i64, f32, f64

Turn vulnerabilities into type errors

Inform the runtime



Key Insights

Observe “best-practice” cryptography code

https://cryptocoding.net/index.php/Coding_rules

Restrictions are course-grained - simple type system!

https://cryptocoding.net/index.php/Coding_rules


Prevent Explicit Leaks

Prevent Implicit Leaks

Prevent Leaks via Timing



Direct leakage as type errors

(local $pub i32)

(local $sec s32)

(local.set $pub (get_local $sec))



Preventing explicit leaks

(local $pub i32)

(local $sec s32)

(local.set $pub (get_local $sec))

Error: type mismatch in set_local,
    expected i32 but got s32



What about memory?

(memory 1)



What about memory?

secret

(memory 1)

store

s



What about memory?

secret

(memory 1)

store

s

(i32.load) public



What about memory?

secret

(memory 1)

store

s

(i32.load) public



Secret opcodes
s32.load
s32.store
...

Secret Memory

(memory secret 1)



Secret Memory

(memory secret 1)

(memory 1)

s s s s s s s

p p p p p p p



Prevent Explicit Leaks

Prevent Implicit Leaks

Prevent Leaks via Timing



Preventing leaks via control flow

(if (local.get $sec)

(then 

    (local.get $pub ...))

(else

    (local.get $pub ...)))

Leaks:

   Indirect flow

   Timing (Conditional jump)



Preventing implicit leaks

(if (local.get $sec)

(then 

    (local.get $pub ...))

(else

    (local.get $pub ...)))

TypeError 
‘if’ requires i32
     found    s32



Prevent Explicit Leaks

Prevent Implicit Leaks

Prevent Leaks via Timing



Certain instructions are leaky

(s32.div 3 55)

20ns

2 cycles

(s32.div 1 2) 1 cycle

Some operations are constant-time:
add, xor, sub, mul, ... 

Others are not:
div, rem

Floating point arithmetic



Preventing cache timing attacks

(s32.load (get_local $sec))

All memory operations both mutate and leak cache state

Cache state must be independent of secrets

Disallow secrets as memory indices

or



Preventing cache timing attacks

(s32.load (get_local $sec))

All memory operations both mutate and leak cache state

Cache state must be independent of secrets

Disallow secrets as memory indices

or
TypeError 
‘s32.load’ requires i32
           found    s32



Too safe for our own good



secret



secretencrypt( )



secretencrypt( )→ public



secretencrypt( )→ public

i32.declassify :: s32 → i32



Limiting declassify to trusted code

New Function Type
(func untrusted ...) Can’t declassify

Can only call other untrusted functions

Most crypto code is untrusted



Untrusted functions can’t declassify

untrusted

trusted



(import "crypto_lib" “handle_secret"

   (func untrusted (param s32)))

Explicit import types assert trust

Typechecker ensures library can’t leak

Secure linking with untrusted



Verified in Isabelle

● Build on top of existing 
mechanisation

● ∼5,800 lines of 
alterations/insertions

● Non-interference,
constant-time



Non-Interference

A computation’s public outputs
are independent from secret inputs



Non-Interference

A computation’s public outputs
are independent from secret inputs

Pin Sin Pout Sout



Non-Interference

A computation’s public outputs
are independent from secret inputs

Pin Sin Pout Sout

Pin S’in



Non-Interference

A computation’s public outputs
are independent from secret inputs

Pin Sin Pout Sout

Pin S’in Pout S’out



Constant-Time

A program’s leakage
is independent from secret inputs



(i32.sub 1 3)

(s32.add 4 6)

(i32.store ...)

(call $foo)

(i32.xor 2 3)

Constant-Time

Pin Sin



(i32.sub 1 3)

(s32.add 7 2)

(i32.store ...)

(call $foo)

(i32.xor 2 3)

(i32.sub 1 3)

(s32.add 4 6)

(i32.store ...)

(call $foo)

(i32.xor 2 3)

Constant-Time

Pin Sin Pin S’in



(i32.sub 1 3)

(s32.add 7 2)

(i32.store ...)

(call $foo)

(i32.xor 2 3)

(i32.sub 1 3)

(s32.add 4 6)

(i32.store ...)

(call $foo)

(i32.xor 2 3)

Recall: No branching on secrets

Program traces only differ on secret values

Constant-Time

Pin Sin Pin S’in



(i32.sub 1 3)

(s32.add 7 2)

(i32.store ...)

(call $foo)

(i32.xor 2 3)

(i32.sub 1 3)

(s32.add 4 6)

(i32.store ...)

(call $foo)

(i32.xor 2 3)

Recall: No branching on secrets

Program traces only differ on secret values

Constant-Time

Pin Sin Pin S’in



Constant-time Proof

Pin Sin {o1, o2, ...}



Constant-time Proof

Pin Sin {o1, o2, ...}

Observations:

- Branch conditions

- Memory access patterns

- Non-CT operands



Constant-time Proof

Observations:

- Branch conditions

- Memory access patterns

- Non-CT operands

Pin Sin

Pin S’in

{o1, o2, ...}

{o1, o2, ...}



Does it work in practice?



Implementations

Reference Interpreter

Written in OCaml

Extended test suite

Verified typechecker

V8

Written in C++

Production-quality runtime

Empirically checked



Evaluation

TEA

SHA-256

Salsa20

TweetNaClPerformance & Security



Evaluation

TEA

SHA-256

Salsa20

TweetNaCl

X25519, Poly1305, XSalsa20

SHA-512, Ed25519

Performance & Security



Binary size overhead

0x6a i32.add

0x6a s32.add0xfb

~15% overhead in practice

0% overhead for vanilla Wasm code



Performance overhead

Runtime: < 1 %

Typechecking (Wasm): 14%

Typechecking (CT-Wasm): 20%

In practice: submillisecond validation of TweetNaCl



Statistical analysis with dudect

JavaScript Implementation of Salsa20

Dude, is my code constant time? [Reparaz et al. 2017]



Statistical analysis with dudect

JavaScript Implementation of Salsa20

Why?

● Algorithm encodes sequences 
of 32-bit numbers

● V8 boxes >31-bit numbers

● Not obvious!

Dude, is my code constant time? [Reparaz et al. 2017]



Statistical analysis with dudect

JavaScript: Salsa20 CT-Wasm: TweetNaCl secretbox

Dude, is my code constant time? [Reparaz et al. 2017]



But can I use CT-Wasm today?



ct2wasm
Convert typechecked CT-Wasm to standard Wasm

Guarantees of constant-time structure

Best effort safety from runtime

select transform

TweetNaCl



Going Forward

Verified Compilation

CT-Wasm as a crypto IR

Label Inference



Type system for secure crypto

Formally verified in Isabelle

Performant implementation in V8

Usable today through ct2wasm


