Limitations of Affine CSP Algorithms

Moritz Lichter ¹, **Benedikt Pago** ² ICALP 2025, Aarhus

¹RWTH Aachen University

²University of Cambridge

Constraint Satisfaction Problems

- For a relational structure **B** (the *template*), CSP(**B**) is the decision problem asking if an instance **A** admits a *homomorphism* to **B**.
- **CSP dichotomy:** For every finite **B**, CSP(B) is either in P or NP-complete.
- No universal algorithm known that uniformly solves all CSPs in P.

Conjecture (Dalmau & Opršal, LICS 2024):

"Every tractable finite-domain CSP is solved by a combination of k-consistency and a system of linear equations over \mathbb{Z} ."

Prize: A bottle of whisky.

Our results

Theorem

There is a tractable (Maltsev) CSP template **B** such that:

- CSP(B) is not solved by \mathbb{Z} -affine k-consistency for any sublinear k.
- CSP(B) is not solved by almost all other affine (P)CSP algorithms: BLP+AIP (Brakensiek, Guruswami, Wrochna, Živný 2020), BA^k (Ciardo, Živný 2023), CLAP (Ciardo, Živný 2023).
- CSP(**B**) is solved by the **cohomological** k**-consistency** algorithm (Ó Conghaile 2022), for constant k.

The basic LP relaxation for CSP

Let **B** be a template, **A** an instance, $k \in \mathbb{N}$ a width parameter.

The width-k LP relaxation $L_{CSP}^{k,B}(A)$:

Variables: $\left\{x_{X,f} \mid X \in \binom{A}{\leq k}, f \in \operatorname{Hom}(\mathbf{A}[X], \mathbf{B})\right\}$.

Equations:

$$\sum_{f \in \operatorname{Hom}(\mathbf{A}[X],\mathbf{B})} x_{X,f} = 1 \qquad \qquad \text{for all } X \in \begin{pmatrix} A \\ \leq k \end{pmatrix}$$

$$\sum_{f \in \operatorname{Hom}(\mathbf{A}[X],\mathbf{B}),f|_{Y}=g} x_{X,f} = x_{Y,g} \qquad \qquad \text{for all } Y \subset X \in \begin{pmatrix} A \\ \leq k \end{pmatrix} \text{ and } g \in \operatorname{Hom}(\mathbf{A}[Y],\mathbf{B})$$

Fact: Let $k \ge \operatorname{ar}(\mathbf{A})$. $\mathsf{L}_{\mathsf{CSP}}^{k,\mathbf{B}}(\mathbf{A})$ has a $\{0,1\}$ -solution iff $\mathbf{A} \to \mathbf{B}$.

Ensures consistency on overlapping subinstances.

The basic LP relaxation for CSP

Let **A** be a template, **B** an instance, $k \in \mathbb{N}$ a width parameter.

The width-k LP relaxation $L_{CSP}^{k,A}(B)$:

Variables: $\left\{ x_{X,f} \mid X \in \binom{B}{\leq k}, f \in \operatorname{Hom}(\mathbf{B}[X], \mathbf{A}) \right\}$.

Equations:

$$\sum_{f \in \mathsf{Hom}(\mathbf{B}[X], \mathbf{A})} \mathsf{X}_{X,f} = 1 \qquad \qquad \mathsf{for all } X \in \binom{B}{\leq k}$$

$$\sum_{f \in \mathsf{Hom}(\mathbf{B}[X], \mathbf{A}), f|_{Y} = g} \mathsf{X}_{X,f} = \mathsf{X}_{Y,g} \qquad \qquad \mathsf{for all } Y \subset X \in \binom{B}{\leq k} \text{ and } g \in \mathsf{Hom}(\mathbf{B}[Y], \mathbf{A})$$

Result: $L_{CSP}^{k,B}(A)$ can have a \mathbb{Z} -solution even if $A \rightarrow B$.

Ensures consistency on overlapping subinstances.

The \mathbb{Z} -affine k-consistency algorithm

Let $k \in \mathbb{N}$ and a template **B** be fixed.

\mathbb{Z} -affine k-consistency

- 1: Input: Instance A.
- 2: Run the *k-consistency algorithm* and remove all partial *k-*solutions that are not consistent.
- 3: Find a \mathbb{Z} -solution Φ of $L_{CSP}^{k,A}(\mathbf{B})$ that only sets k-consistent partial homomorphisms to non-zero.
- 4: **Output** "YES" iff Φ exists.

Constructing the counterexample

Lemma

There exists an operation $OR[\cdot,\cdot]$ on finite structures such that: If A_1 is an instance of $CSP(B_1)$ and A_2 is an instance of $CSP(B_2)$, then

- 1. $OR[A_1, A_2]$ is an instance of $CSP(OR[B_1, B_2])$.
- 2. $OR[A_1, A_2] \rightarrow OR[B_1, B_2]$ if and only if $(A_1 \rightarrow B_1 \text{ or } A_2 \rightarrow B_2)$.

The hard template for affine algorithms is $\mathbf{OR}[\mathbb{Z}_2, \mathbb{Z}_3]$.

Hardness for hierarchies like \mathbb{Z} -affine k-consistency or BA k for $k \in o(n)$ is shown via Tseitin instances based on expander graphs (akin to Berkholz-Grohe, 2017).

The strength of the cohomological algorithm

Cohomological k-consistency (Ó Conghaile 2022) is a version of \mathbb{Z} -affine k-consistency that *fixes* partial solutions in the LP relaxation.

Theorem

There is a constant k such that cohomological k-consistency solves our counterexample $\mathbf{OR}[\mathbb{Z}_2,\mathbb{Z}_3]$. But there exists an NP-complete template that is not solved by cohomological k-consistency.

Exciting question: Is cohomological *k*-consistency a universal PTIME-algorithm for tractable CSPs?