Symmetric Proofs in the Ideal Proof System

Anuj Dawar ², Erich Grädel ¹, Leon Kullmann ¹, **Benedikt Pago** ² 12.08.2025

¹RWTH Aachen University

²University of Cambridge

The Ideal Proof System (IPS)

Definition (Grochow, Pitassi; 2018)

An **IPS certificate** of unsatisfiability of $\mathcal{F} = \{f_1(\vec{x}), ..., f_m(\vec{x})\} \subseteq \mathbb{F}[X]$ is a polynomial $C(\vec{x}, y_1, ..., y_m)$ such that:

- 1. $C(\vec{x}, \vec{0}) = 0$.
- 2. $C(\vec{x}, \vec{f}) = 1$.

An **IPS refutation** of \mathcal{F} is an *algebraic circuit* that represents $C(\vec{x}, \vec{y})$.

The size of a refutation is the number of gates in the circuit.

The Ideal Proof System (IPS)

Definition (Grochow, Pitassi; 2018)

An **IPS certificate** of unsatisfiability of $\mathcal{F} = \{f_1(\vec{x}), ..., f_m(\vec{x})\} \subseteq \mathbb{F}[X]$ is a polynomial $C(\vec{x}, y_1, ..., y_m)$ such that:

- 1. $C(\vec{x}, \vec{0}) = 0$.
- 2. $C(\vec{x}, \vec{f}) = 1$.

An **IPS refutation** of \mathcal{F} is an *algebraic circuit* that represents $C(\vec{x}, \vec{y})$.

The size of a refutation is the number of gates in the circuit.

A certificate $C(\vec{x}, \vec{y})$ is *linear* if it is linear in the \vec{y} -variables.

The Ideal Proof System (IPS)

Definition (Grochow, Pitassi; 2018)

An **IPS certificate** of unsatisfiability of $\mathcal{F} = \{f_1(\vec{x}), ..., f_m(\vec{x})\} \subseteq \mathbb{F}[X]$ is a polynomial $C(\vec{x}, y_1, ..., y_m)$ such that:

- 1. $C(\vec{x}, \vec{0}) = 0$.
- 2. $C(\vec{x}, \vec{f}) = 1$.

An **IPS refutation** of \mathcal{F} is an *algebraic circuit* that represents $C(\vec{x}, \vec{y})$.

The size of a refutation is the number of gates in the circuit.

A certificate $C(\vec{x}, \vec{y})$ is *linear* if it is linear in the \vec{y} -variables.

Novelty: We restrict to **symmetric circuits**.

Why symmetry?

1. **Symmetric computation models** (*logics*) are well-studied in finite model theory and have known connections to proof systems like bounded-width resolution, bounded-degree PC [Grädel, Grohe, Pakusa, P. 2019].

Why symmetry?

- 1. **Symmetric computation models** (*logics*) are well-studied in finite model theory and have known connections to proof systems like bounded-width resolution, bounded-degree PC [Grädel, Grohe, Pakusa, P. 2019].
- 2. **Lower bounds** for symmetric algebraic circuits are known: The determinant and *permanent* have an *exponential* complexity gap for symmetric circuits [Dawar, Wilsenach 2020].

Symmetries of polynomials

Definition

- Let $\mathcal{F} \subseteq \mathbb{F}[X]$ be a set of polynomials.
- Let $\Gamma \leq \text{Sym}(X)$ be a permutation group acting on X.
- Then \mathcal{F} is Γ -invariant if for every $\pi \in \Gamma$, $\pi(\mathcal{F}) = \mathcal{F}$.

Symmetries of polynomials

Definition

- Let $\mathcal{F} \subseteq \mathbb{F}[X]$ be a set of polynomials.
- Let $\Gamma \leq \text{Sym}(X)$ be a permutation group acting on X.
- Then \mathcal{F} is Γ -invariant if for every $\pi \in \Gamma$, $\pi(\mathcal{F}) = \mathcal{F}$.

Example:

$$\operatorname{perm}_n = \sum_{\pi \in \operatorname{Sym}_n} \prod_{i \in [n]} x_{i\pi(i)}$$

is invariant under the action of $(\mathbf{Sym}_n \times \mathbf{Sym}_n)$ on $\{x_{ij} \mid i,j \in [n]\}$, where $(\pi,\sigma)(x_{ij}) = x_{\pi(i)\sigma(j)}$.

Symmetric proofs in the IPS

Problem

Input: A pair (\mathcal{F}, Γ) where $\mathcal{F} \subseteq \mathbb{F}[X]$ and $\Gamma \leq \text{Sym}(X)$ is a group under which \mathcal{F} is invariant.

Question: Is there a common zero of all polynomials in \mathcal{F} ?

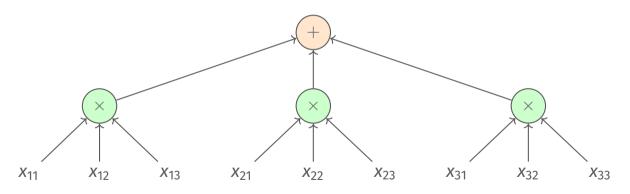
A **sym-IPS refutation** of (\mathcal{F}, Γ) is a Γ -symmetric algebraic circuit that represents a certificate $C(\vec{x}, \vec{y})$ of unsatisfiability of \mathcal{F} .

Symmetric algebraic circuits

- Let X be a set of variables.
- Let Γ be a group acting on X.
- An algebraic circuit C over X is Γ -symmetric if the action on X extends to **automorphisms** of C.

Symmetric algebraic circuits

- Let X be a set of variables.
- Let Γ be a group acting on X.
- An algebraic circuit C over X is Γ -symmetric if the action on X extends to **automorphisms** of C.



Basic facts about symmetric IPS

Theorem

Sym-IPS is a complete proof system on all instances (\mathcal{F}, Γ) .

Basic facts about symmetric IPS

Theorem

Sym-IPS is a complete proof system on all instances (\mathcal{F}, Γ) .

Linear sym-IPS is incomplete over finite fields (if $|\Gamma|$ and the field characteristic are not coprime).

Overview of results

- 1. Connections with **symmetric computation models** from finite model theory.
- 2. **Upper bounds** on typical benchmark instances.
- 3. (Work in progress: Lower bounds).

Symmetric complexity of graph isomorphism

Theorem

Let $G \ncong H$, $k \in \mathbb{N}$.

- G and H k-WL-distinguishable \Rightarrow "G \cong H" has a poly-size $\deg_k \text{sym-IPS}$ refutation.
- G and H **CPT-distinguishable** \Rightarrow "G \cong H" has a poly-size linear sym-IPS refutation.

k-WL: k-dimensional Weisfeiler Leman algorithm

CPT: Choiceless Polynomial Time, a logic/symmetric computation model that distinguishes strictly more graphs than any fixed k-WL.

Summary of upper bounds

Proof System	Graph non-isomorphism	CFI	Subset sum	Pigeonhole principle
deg _k -sym-IPS	$\mathcal{O}(n^c)$ if k-WL-	none	none	none
	distinguishable			
sym-IPS _{LIN}	$\mathcal{O}(n^c)$ if CPT-	$\mathcal{O}(2^n)$	$\mathcal{O}(n^c)$	$O(3^n \cdot n) O(n^c)$
	distinguishable			
sym-IPS	$\mathcal{O}(n^c)$ if CPT-	$\mathcal{O}(n^c)$	$\mathcal{O}(n^c)$	$O(3^n n) O(n^c)$
	distinguishable			

CFI: System of linear equations over \mathbb{F}_2 related to isomorphism of *Cai-Fürer-Immerman* graphs.

Cai-Fürer-Immerman equations: A possible lower bound example?

Fix a connected 3-regular graph G = (V, E) and some distinguished vertex $\tilde{v} \in V$.

Variables: $\{x_i^e \mid e \in E, i \in \mathbb{F}_2\}$. The following is unsatisfiable in \mathbb{F}_2 .

Cai-Fürer-Immerman

$$x_i^e + x_j^f + x_k^g = i + j + k$$
 for each $v \in V \setminus \{\tilde{v}\}, E(v) = \{e, f, g\}, i, j, k \in \mathbb{F}_2$. $x_i^e + x_j^f + x_k^g = i + j + k + 1$ for $\tilde{v}, E(\tilde{v}) = \{e, f, g\}, i, j, k \in \mathbb{F}_2$. $x_0^e + x_1^e = 1$ for all $e \in E$

Boolean axioms

Cai-Fürer-Immerman equations: A possible lower bound example?

Fix a connected 3-regular graph G = (V, E) and some distinguished vertex $\tilde{v} \in V$.

Variables: $\{x_i^e \mid e \in E, i \in \mathbb{F}_2\}$. The following is unsatisfiable in \mathbb{F}_2 .

Cai-Fürer-Immerman

$$x_i^e + x_j^f + x_k^g = i + j + k$$
 for each $v \in V \setminus \{\tilde{v}\}, E(v) = \{e, f, g\}, i, j, k \in \mathbb{F}_2$. $x_i^e + x_j^f + x_k^g = i + j + k + 1$ for $\tilde{v}, E(\tilde{v}) = \{e, f, g\}, i, j, k \in \mathbb{F}_2$. $x_0^e + x_1^e = 1$ for all $e \in E$

Boolean axioms

Symmetries: Group generated by certain "edge flips" $x_0^e \leftrightarrow x_1^e$.

• Goal: Super-polynomial lower bounds for symmetric (linear) IPS.

- Goal: Super-polynomial lower bounds for symmetric (linear) IPS.
- First step: Consider fragments like symmetric multilinear formula/constant depth IPS.

- Goal: Super-polynomial lower bounds for symmetric (linear) IPS.
- First step: Consider fragments like symmetric multilinear formula/constant depth IPS.
- Combination of the *functional lower bound method* [Forbes, Shpilka, Tzameret, Wigderson 2021; ...] with symmetry might yield lower bounds for **Boolean CNFs**.

- Goal: Super-polynomial lower bounds for symmetric (linear) IPS.
- First step: Consider fragments like symmetric multilinear formula/constant depth IPS.
- Combination of the *functional lower bound method* [Forbes, Shpilka, Tzameret, Wigderson 2021; ...] with symmetry might yield lower bounds for **Boolean CNFs**.
- Alternative technique:

For polynomials expressing graph parameters, small symmetric circuits exist if and only if the parameter is a linear combination of *bounded-treewidth homomorphism counts* [Dawar, P., Seppelt 2025].