Limitations of affine CSP algorithms

Moritz Lichter ¹, Benedikt Pago ²

CWC 2024, Hotel Kolfuschgerhof

¹RWTH Aachen University

²University of Cambridge

- \mathbb{Z} -affine *k*-consistency (Dalmau, Opršal 2024).
- BLP+AIP (Brakensiek, Guruswami, Wrochna, Živný 2020).
- BA^k (Ciardo, Živný 2023).
- CLAP and variants (Ciardo, Živný 2023).
- *k*-cohomological algorithm (Ó Conghaile 2022).

Question: All these algorithms run in PTIME. Which tractable finite-domain CSPs do they solve? **Conjecture:** (Dalmau, Opršal 2024): Z-affine *k*-consistency *solves all* tractable CSPs.

Theorem

The following algorithms **fail** to solve all finite domain CSPs with **Mal'tsev** templates:

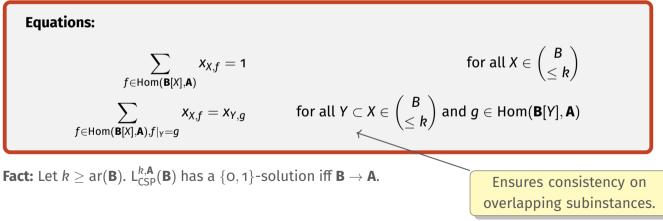
- \mathbb{Z} -affine k-consistency for every fixed $k \in \mathbb{N}$.
- BLP+AIP.
- BA^{*k*} for every fixed $k \in \mathbb{N}$.
- CLAP

The question remains open for the *k*-**cohomological algorithm** and a variant of CLAP called **C(BLP+AIP)**.

The basic LP relaxation for CSP

Let **A** be a template, **B** an instance, $k \in \mathbb{N}$ a width parameter. The *width-k LP relaxation* $L_{CSP}^{k,\mathbf{A}}(\mathbf{B})$:

Variables: $\left\{ X_{X,f} \mid X \in {B \choose \leq k}, f \in \operatorname{Hom}(\mathbf{B}[X], \mathbf{A}) \right\}.$

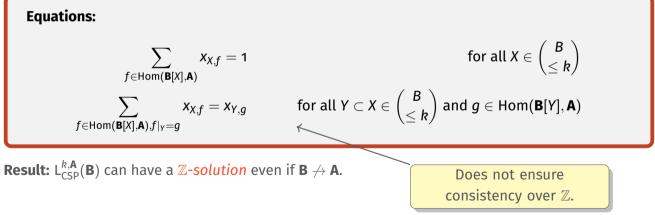


Moritz Lichter , Benedikt Pago (RWTH Aachen University, University of Cambridge)

The basic LP relaxation for CSP

Let **A** be a template, **B** an instance, $k \in \mathbb{N}$ a width parameter. The *width-k LP relaxation* $L_{CSP}^{k,\mathbf{A}}(\mathbf{B})$:

Variables: $\left\{ X_{X,f} \mid X \in {B \choose \leq k}, f \in \operatorname{Hom}(\mathbf{B}[X], \mathbf{A}) \right\}.$



Moritz Lichter , Benedikt Pago (RWTH Aachen University, University of Cambridge)

• \mathbb{Z} -affine *k*-consistency:

- 1. Remove partial homomorphisms that are not *k*-consistent.
- 2. Solve $L_{CSP}^{k,\mathbf{A}}(\mathbf{B})$ over \mathbb{Z} for the *k*-consistent partial homomorphisms.
- **BLP+AIP:** Let *k* be the arity of **B**. Refine $L_{CSP}^{k,\mathbf{A}}(\mathbf{B})$ by forcing every variable to 0 that is 0 in every *non-negative rational* solution. Solve the refined LP over \mathbb{Z} .
- **BA**^k: Like BLP+AIP, but here, k is a *parameter* of the algorithm.
- **CLAP:** Similar to BLP+AIP. Every variable that cannot receive value 1 in a non-negative rational solution is forced to 0.

- 1. The template **A**: Coset CSPs.
- 2. Encoding the graph isomorphism problem as a coset CSP.
- 3. Constructing the instances $\mathbf{B}_n \not\rightarrow \mathbf{A}$: A disjunction of Cai-Fürer-Immerman graphs.
- 4. A \mathbb{Z} -solution for $L_{CSP}^{k,\mathbf{A}}(\mathbf{B}_n)$.

The template **A** of an *r*-ary *coset CSP* consists of:

- Universe: A group T.
- **Relations:** Cosets $\Delta \gamma$, where $\Delta \leq \Gamma^r, \gamma \in \Gamma^r$.

Example (Linear equations over Abelian groups)

Ternary linear equations over \mathbb{Z}_p : Let $\Delta = \{(a_1, a_2, a_3) \in \mathbb{Z}_p^3 \mid a_1 + a_2 + a_3 = 0 \mod p\} \le \mathbb{Z}_p^3$. Equation $x_1 + x_2 + x_3 = b$ corresponds to the coset $\Delta(b, 0, 0)$.

Fact: Every coset CSP has the *Mal'tsev* polymorphism $f(x, y, z) = xy^{-1}z$.

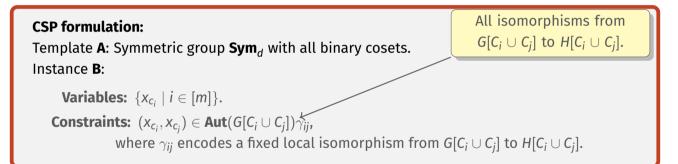
Problem (Bounded colour class graph isomorphism)

Let $d \in \mathbb{N}$ a constant.

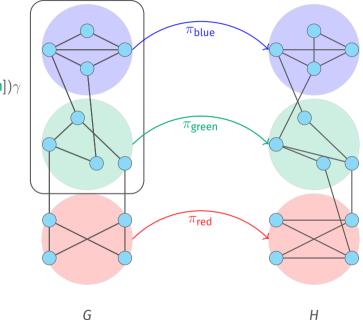
Input: Vertex-coloured graphs G, H where every colour is assigned to at most d vertices. **Problem:** Is there a colour-preserving isomorphism from G to H?

The problem is in PTIME via a group-theoretic algorithm due to Luks.

Given: Graphs *G*, *H* with colours $c_1, ..., c_m$ and colour class size *d*. Let $C_i \subseteq V(G)$ denote the vertices with colour c_i .



Bounded colour class graph isomorphism as a coset CSP



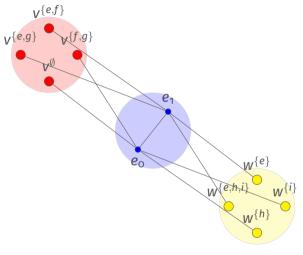
 $(\pi_{\mathsf{blue}}, \pi_{\mathsf{green}}) \in \mathsf{Aut}(G[\mathsf{Blue} \cup \mathsf{Green}])\gamma$

Moritz Lichter , **Benedikt Pago** (RWTH Aachen University, University of Cambridge)

- Graph isomorphism with colour class size *d* can be seen as a coset CSP over **Sym**_{*d*} (tractable).
- The template **A** is fixed, the instance **B** depends on the graphs.
- Next step: For all $n \in \mathbb{N}$, construct a pair of coloured graphs $G_n \ncong H_n$ such that, for every $k \in \mathbb{N}$, $L_{CSP}^{k,\mathbf{A}}(\mathbf{B}_n)$ has a \mathbb{Z} -solution for almost all $n \in \mathbb{N}$.

Cai-Fürer-Immerman graphs

- Fix a sequence $(G_n)_{n \in \mathbb{N}}$ of 3-regular expander graphs.
- For any prime p, and t ∈ Z_p, CFI_{Z_p}(G_n, t) is the CFI graph over Z_p with twist t.
- If $t \neq t'$, then $CFI_{\mathbb{Z}_p}(G_n, t) \not\cong CFI_{\mathbb{Z}_p}(G_n, t')$, but they look isomorphic for "local consistency methods".
- CFI graphs have constant colour class size.

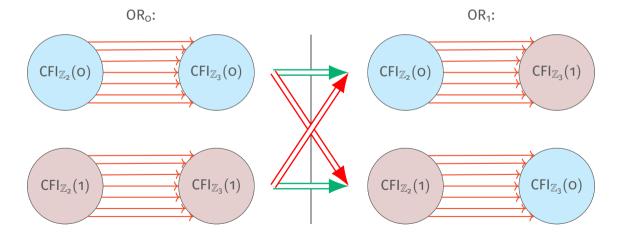


CFI gadget over \mathbb{Z}_2

Graph isomorphism disjunction construction

Goal: Given G_0, G_1, H_0, H_1 , define graphs OR_0, OR_1 such that:

$$OR_0 \cong OR_1$$
 if and only if $(G_0 \cong G_1)$ or $(H_0 \cong H_1)$.



Moritz Lichter, Benedikt Pago (RWTH Aachen University, University of Cambridge)

- For every $n \in \mathbb{N}$, we have graphs $G_n \ncong H_n$ with bounded colour class size.
- The corresponding coset CSP over \mathbf{Sym}_d has no solution.
- **Next step:** Construct a \mathbb{Z} -solution for $L_{CSP}^{k,\mathbf{A}}(\mathbf{B}_n)$.

Definition

A *p*-solution to a system of equations is a rational solution in which every variable has value p^z for some $z \in \mathbb{Z}$.

Lemma (Berkholz, Grohe 2017)

Let $p, q \in \mathbb{Z}$ be co-prime. If a system of linear equations over \mathbb{Z} has both a p- and a q-solution, then it has an integral solution.

Lemma

The LP for " $CFI_{\mathbb{Z}_2}(0) \cong CFI_{\mathbb{Z}_2}(1)$?" has a 2-solution, and the LP for " $CFI_{\mathbb{Z}_3}(0) \cong CFI_{\mathbb{Z}_3}(1)$?" has a 3-solution.

Theorem

The following algorithms fail to solve all finite domain CSPs with Mal'tsev templates:

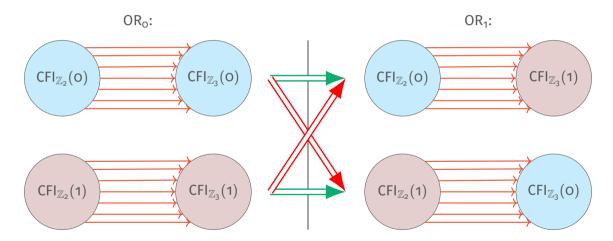
- \mathbb{Z} -affine k-consistency for every fixed $k \in \mathbb{N}$.
- BLP+AIP.
- BA^{*k*} for every fixed $k \in \mathbb{N}$.
- CLAP

The question remains open for the *k*-**cohomological algorithm** and a variant of CLAP called **C(BLP+AIP)**.

Algorithm 1 k-cohomology

- 1: **Input:** Instance **B**. 2: Let $\mathcal{H}_{0}(X) := \operatorname{Hom}(\mathbf{B}[X], \mathbf{A})$ for every $X \in {B \choose \leq k}$. 3: **repeat** 4: Let $\mathcal{H}'_{i}(X) \subseteq \mathcal{H}_{i}(X)$ be the partial homomorphisms 5: that are not removed by the *k*-consistency procedure.
 - 6: Let $\mathcal{H}_{i+1}(X) \subseteq \mathcal{H}'_i(X)$ be the partial homomorphisms $f: X \to A$
 - 7: such that $L_{CSP}^{k,A}(B)$, augmented with the equation $x_{X,f} = 1$, has a \mathbb{Z} -solution.
 - 8: **until** $\mathcal{H}_{i+1} = \mathcal{H}_i$
 - 9: If $\mathcal{H}_i(X) = \emptyset$ for some $X \in {B \choose \langle k}$, then return $\mathbf{B} \not\to \mathbf{A}$.

 $L_{CSP}^{k,\mathbf{A}}(\mathbf{B})$, augmented with the equation $x_{X,f} = 1$, has only a 2- or a 3-solution, but not both. Hence *no* \mathbb{Z} -solution.



Moritz Lichter, Benedikt Pago (RWTH Aachen University, University of Cambridge)

- Find a counterexample (tractable or NP-complete) that cannot be solved by the *k*-cohomological algorithm for any fixed *k*.
- Simplify the counterexample. The current template is **Sym**₇₂. Shouldn't **Sym**₃ already work?
- Is there a *dichotomy* for coset CSPs: Do affine algorithms solve precisely the Abelian ones?