Limitations of Game Comonads for Invertible-Map Equivalence via Homomorphism Indistinguishability

Moritz Lichter ¹, **Benedikt Pago** ², Tim Seppelt ¹ CSL 2024

C3L 2024

¹RWTH Aachen University

²University of Cambridge

The Game Comonad Programme

- Initiated 2017 by Abramsky, Dawar, Wang: The Pebbling Comonad in Finite Model Theory.
- Aims at comonadic characterisations of concepts from finite model theory.

Game comonads for FO with all Lindström quantifiers

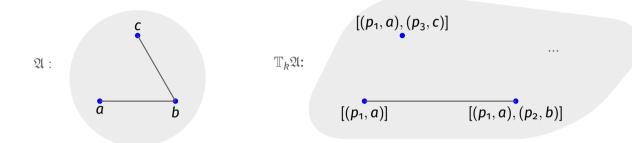
Question: Game comonads for Linear-Algebraic logic? **Answer:** Do not exist.

Game comonads for \mathcal{C}^k

- Logics induce equivalence relations on finite structures.
- $\mathfrak{A} \equiv_{\mathcal{C}^k} \mathfrak{B}$ if \mathfrak{A} and \mathfrak{B} satisfy the same \mathcal{C}^k -sentences.
- Logical equivalences are characterised by pebble games: $\mathfrak{A} \equiv_{\mathcal{C}^k} \mathfrak{B}$ iff Duplicator has a winning strategy in the *bijective k-pebble game*:
 - 1. Position: Pebbles $a_1, ..., a_k$ on \mathfrak{A} ; $b_1, ..., b_k$ on \mathfrak{B} .
 - 2. Spoiler picks up a pebble-pair (a_i, b_i) .
 - 3. Duplicator gives bijection $f : A \longrightarrow B$.
 - 4. Spoiler places a_i on an element of \mathfrak{A} and b_i on $f(a_i)$.
 - 5. If the pebbles do not induce a local isomorphism, Spoiler wins.

Game Comonads

For every τ -structure \mathfrak{A} , define $\mathbb{T}_k\mathfrak{A}$ as the structure of all Spoiler plays:



 \mathbb{T}_k is an endofunctor on the category of τ -structures and forms a *comonad* with a suitable counit and comultiplication. Duplicator has a winning strategy iff there exist homomorphisms $f : \mathbb{T}_k \mathfrak{A} \longrightarrow \mathfrak{B}$ and $g : \mathbb{T}_k \mathfrak{B} \longrightarrow \mathfrak{A}$ $(\mathfrak{A} \text{ and } \mathfrak{B} \text{ are } co-Kleisli isomorphic}).$

- Game comonad for *bijective k-pebble game* (Abramsky, Dawar, Wang).
- Game comonad for *k-round Ehrenfeucht-Fraïssé game* (Abramsky, Shah).
- Game comonad for FO with all *n*-ary *Lindström quantifiers* (Dawar, Ó Conghaile).
- *Coalgebras* of the respective comonads capture *graph decompositions* associated with treewidth, treedepth, pathwidth...
- Uniform framework for proving *Lovász-style theorems* on homomorphism indistinguishability.

Definition

Let \mathcal{F} be a class of finite graphs. Let G and H be two graphs. Then $G \equiv_{\mathcal{F}} H$ iff for every $F \in \mathcal{F}$, the number of homomorphisms from F to G is the same as from F to H.

${\cal F}$	$\equiv_{\mathcal{F}}$	
all graphs	isomorphism	Lovász, 1967
treewidth $\leq k$	$\equiv_{\mathcal{C}^k}$	Dvořák, 2009
treedepth $\leq k$	quantifier-rank <i>k</i> C-equivalence	Grohe, 2020

Theorem

There is no graph class \mathcal{F} such that $\equiv_{\mathcal{F}}$ is invertible-map equivalence (i.e. equivalence in Linear-Algebraic logic).

Theorem (Dawar, Jakl, Reggio; 2021)

Let \mathbb{C} be a comonad on the category of graphs that sends finite graphs to finite graphs. Then there exists a graph class \mathcal{F} such that co-Kleisli isomorphism for \mathbb{C} is the same as $\equiv_{\mathcal{F}}$.

Corollary

There is no comonad that characterises invertible-map equivalence.

- *Linear-Algebraic logic* (LA) is infinitary FO augmented with all isomorphism-invariant linear-algebraic operators over finite fields.
- For every $k \in \mathbb{N}$ and every subset Q of prime numbers, the *invertible-map equivalence* $\equiv_{k,Q}^{\mathsf{IM}}$ is equivalence in LA with $\leq k$ variables and linear-algebraic operators over prime fields \mathbb{F}_p for $p \in Q$.
- Each $\equiv_{k,0}^{IM}$ has a *pebble game* characterisation.

Theorem

For every k, Q, there exists no graph class \mathcal{F} such that $\equiv_{\mathcal{F}}$ is $\equiv_{k,Q}^{IM}$.

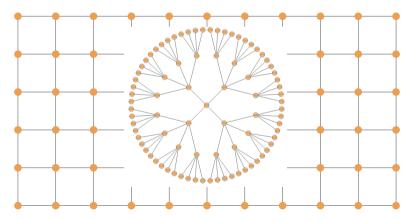
Proof: Construct non-isomorphic $\equiv_{k,0}^{IM}$ -equivalent CFI-graphs over *planar* base graphs. Why?

- 1. CFI-graphs over planar base graphs are **not** $\equiv_{\mathcal{P}}$ -equivalent, for \mathcal{P} the class of planar graphs (technique due to Roberson, 2022).
- 2. Any logical equivalence that strictly refines \equiv_{C^k} for every $k \in \mathbb{N}$ is **at least as fine as** $\equiv_{\mathcal{P}}$ if it is characterised by a hom-ind-relation (Seppelt, 2023).
- $\Rightarrow \equiv_{k,Q}^{\mathsf{IM}}$ cannot be a hom-ind-relation because it **does not refine** $\equiv_{\mathcal{P}}$ (but it does refine all $\equiv_{\mathcal{C}^k}$).

Theorem (Dawar, Grädel, Lichter; 2021)

For every k and Q, there exist non-isomorphic CFI-graphs (over non-planar base graphs) which are $\equiv_{k,Q}^{IM}$ -equivalent.

The construction can be adapted to planar base graphs:



Theorem

There is no graph class \mathcal{F} and number $m \in \mathbb{N}$ such that $\equiv_{k,Q}^{M}$ is captured by $\equiv_{\mathcal{F}}$ where homomorphisms are counted modulo m.

The 1-vertex graph and the edgeless graph on m + 1 vertices are $\equiv_{\mathcal{F}}$ -equivalent modulo m for any \mathcal{F} .

- There is *no homomorphism-indistinguishability relation* (neither in \mathbb{N} nor with modular counting) characterising the IM-equivalences.
- \Rightarrow There is *no game comonad* for the IM-equivalences.
- This can likely be shown for every logic strictly stronger than C^k which cannot distinguish CFI graphs over planar base graphs.