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Choiceless Polynomial Time

Up to now, all logics were extensions of FO/fixed-point logics.

CPT can be seen as a restriction:
It is obtained by enforcing polynomial-time Turing machines to be isomorphism-invariant
[Blass, Gurevich, Shelah, 1999].
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Classical versus choiceless computation

1

2 void DFS(int graph[MAX_NODES][MAX_NODES], bool visited[MAX_NODES], int
current_node, int num_nodes)

3 {
4 visited[current_node] = true;
5

6 for (int i = 0; i < num_nodes; i++) {
7 if (graph[current_node][i] == 1 && !visited[i]) {
8 DFS(graph, visited, i, num_nodes);
9 }
10 }
11 }
12

A C-program for depth-first search
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Classical versus choiceless computation

1 void DFS(int graph[MAX_NODES][MAX_NODES])
2 {
3 visited[current_node] = true;
4

5 for (int i = 0; i < num_nodes; i++) {
6 if (graph[current_node][i] == 1 && !visited[i]) {
7 DFS(graph);
8 }
9 }
10 }
11

A choiceless program for DFS

G = (V, E),current_node ∈ V

all i ∈ V do in parallel:

G, i
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DFS with choices
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DFS without choices
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DFS without choices
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DFS without choices
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DFS without choices
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Presentations of CPT

1. Original definition: abstract state machine model [Blass, Gurevich, Shelah, 1999].
2. BGS-logic [Rossman, 2010].
3. Polynomial Interpretation Logic [Grädel, Pakusa, Schalthöfer, Kaiser, 2015].
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Polynomial Interpretation Logic

Definition (FO-interpretation)
A σ-structureB is FO-interpretable in a τ-structure A if there exist formulas
ϕδ(x̄), ϕ(x̄, ȳ)≈, (ϕR)R∈σ and a k ∈ N such that

• B = {[ā]≈ | ā ∈ Ak,A |= ϕδ(ā)}
• For each r-ary R ∈ σ, RB = {(ā1, . . . , ār) | A |= ϕR(ā1, . . . , ār)}.

Benedikt Pago (University of Cambridge) 10



Polynomial Interpretation Logic

Definition (PIL, simplified)
Sentences of PIL are of the form (Istep, ψend, ψout,p(n)), where

• Istep is an FO-interpretation,
• ψend, ψout are FO-sentences,
• p(n) is a polynomial serving as a time and space bound.

(Istep, ψend, ψout,p(n)) defines a run in any structure A:

A, Istep(A), Istep(Istep(A)), . . . ,B.

whereB is the first structure in the run withB |= ψend.
If the number of steps or size of the structures exceeds p(|A|), it is aborted.

A |= (Istep, ψend, ψout,p(n)) ⇐⇒ the run terminates withB, s.t.B |= ψout.

Benedikt Pago (University of Cambridge) 11
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Example: Defining a linear order in PIL

Power of PIL: Using higher-dimensional interpretations, a PIL sentence can grow the input structure
arbitrarily.

Computing linear orders

Istep := (ϕδ(x1, x2) := true,
ϕ<(x1, x2, y1, y2) := (x1 = x2 ∧ y1 = y2 ∧ x1 < y1) ∨ (x1 = x2 ∧ y1 6= y2 ∧ y1 = x1)).

Ignore ψend, ψout,p(n) for now.
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Weakness of CPT

The stages A,A1,A2, . . . of a PIL computation are closed under the group Aut(A).

If A is very symmetric, then intuitively, the structures Ai quickly become super-polynomially large,
and the computation cannot be carried out in PIL.
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Presentations of CPT

1. Original definition: abstract state machine model.
2. BGS-logic: Useful for lower bounds.
3. Polynomial Interpretation Logic: Most understandable.
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Choiceless Polynomial Time as BGS-logic

BGS-logic is FO augmented with terms for the creation of hereditarily finite sets:

Syntax and semantics of set-terms:
Let A = (A, τ) be a structure.

• Universe of structure: JAtomsKA = A.

• Set constructor: JPair(r, s)KA = {JrKA, JsKA}.
• Comprehension term: J{s : x ∈ r : ϕ}KA = {Js(x)KA | x ∈ JrKA,A |= ϕ(x)}.
• Iteration term: Js(x)∗KA is the least fixed-point of the sequence

Js(∅)KA, Js(s(∅))KA, Js(s(s(∅)))KA, ....
• Iteration terms are accompanied by a polynomial resource bound for time and space: (s∗,p).
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CPT is strictly stronger than fixed-points

Theorem

FPC � CPT.

Proof.

• FPC cannot distinguish CFI graphs.

• This is also true if they are augmented with exponentially many isolated vertices
(padding).

• CPT can distinguish the padded CFI structures by computing all linear orders on the
non-padding part and running the Ptime-algorithm that distinguishes them.
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Inexpressibility results for CPT?

• It is known that CPT cannot define the set of all hyperplanes in a given finite vector space
[Rossman, 2010].

• But there is no known decision problem in Ptime that is not in CPT.
• Obvious idea: Try CFI graphs...
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Is the CFI-query definable in Choiceless Polynomial Time?

Definability on different classes of base graphs:

Linearly ordered base graphs 1 "

Preordered base graphs with log-size colour classes 2 "

Base graphs with linear degree 2 "

General unordered base graphs ?

1

23

4

5 6

1

12

2

3 3

1[Dawar, Richerby, Rossman, 2008]
2[Pakusa, Schalthöfer, Selman, 2018]
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Non-definability of preorders

Theorem (P., CSL 2021)
There exists a family of unordered base graphs (with sub-linear degree) where no preorder with
log-size colour classes is CPT-definable.

⇒ There are CFI-instances that cannot be handled with any of the known CPT-algorithms.

Theorem (technical version)
Any preorder with log-size colour classes on the n-dimensional
hypercube has an orbit of super-polynomial size.

4-dimensional hypercube

Benedikt Pago (University of Cambridge) 20
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Lower bound techniques for CPT

Problem: The expressive power of a CPT sentence is not limited by its number of variables.
The creation of h.f. sets can “simulate” extra variables.

=⇒ There is no pebble game that characterises CPT.

But: A property of the created h.f. sets controls the expressivity like the pebble number.

Benedikt Pago (University of Cambridge) 21



Lower bound techniques for CPT

Problem: The expressive power of a CPT sentence is not limited by its number of variables.
The creation of h.f. sets can “simulate” extra variables.

=⇒ There is no pebble game that characterises CPT.

But: A property of the created h.f. sets controls the expressivity like the pebble number.

Benedikt Pago (University of Cambridge) 21



Lower bound techniques for CPT

Problem: The expressive power of a CPT sentence is not limited by its number of variables.
The creation of h.f. sets can “simulate” extra variables.

=⇒ There is no pebble game that characterises CPT.

But: A property of the created h.f. sets controls the expressivity like the pebble number.

Benedikt Pago (University of Cambridge) 21



The support of a hereditarily finite set

Definition (Support)
Let x a h.f. set over A. A support for x is a tuple α over A such that “fixing α also fixes x”.

Formally: For every π ∈ Aut(A) such that π(α) = α, it holds π(x) = x.

Example:

a

b

c

The structure A

• Aut(A) = {id, (a b)}.
• Let x = {a, {c}}.
• A trivial support for x: ac.
• A smallest support: a (or b).

Benedikt Pago (University of Cambridge) 22
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An approach to prove indistinguishability in CPT

• Let A,B satisfy A ≡Ck B.

• =⇒ Any CPT-program distinguishing A andB must construct (on input A) a h.f. set x whose
smallest support has size ≥ k [Dawar, Richerby, Rossman, 2008].

• Since CPT is isomorphism-invariant, it must construct x together with all its automorphic
images OrbA(x) := {π(x) | π ∈ Aut(A)}.

• Since CPT is polynomially bounded, |OrbA(x)| must be polynomial in |A|.
• =⇒ One way to show CPT-indistinguishability is to prove that large support implies a large
orbit.

Benedikt Pago (University of Cambridge) 23
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Estimating orbit-sizes

Goal: Establish lower bounds on orbit size depending on support size.

Example:

• Let A = {1, 2, . . . ,n}, and x some subset, e.g. x = {1, 2, ..., k}.
• We have Aut(A) = Sym(n).
• The smallest support S of x is S = x.
• OrbA(x) is the set of all k-element subsets of [n].
• |OrbA(x)| =

(n
k
)
≈ nk is polynomial in n iff k = |S| is constant.

Generally: On any structure A with Aut(A) = Sym(A),
|Orb(x)| is polynomial in |A| if and only if x has a support of constant size.

=⇒ Informally, on structures with Aut(A) = Sym(A), CPT is not stronger than FPC.
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Estimating orbit-sizes

Goal: Establish lower bounds on orbit size depending on support size.

Example:

• Let A = {1, 2, . . . ,n}, and x some subset, e.g. x = {1, 2, ..., k}.

• We have Aut(A) = Sym(n).
• The smallest support S of x is S = x.
• OrbA(x) is the set of all k-element subsets of [n].
• |OrbA(x)| =

(n
k
)
≈ nk is polynomial in n iff k = |S| is constant.

Generally: On any structure A with Aut(A) = Sym(A),
|Orb(x)| is polynomial in |A| if and only if x has a support of constant size.

=⇒ Informally, on structures with Aut(A) = Sym(A), CPT is not stronger than FPC.

Benedikt Pago (University of Cambridge) 24



Estimating orbit-sizes

Goal: Establish lower bounds on orbit size depending on support size.

Example:

• Let A = {1, 2, . . . ,n}, and x some subset, e.g. x = {1, 2, ..., k}.
• We have Aut(A) = Sym(n).

• The smallest support S of x is S = x.
• OrbA(x) is the set of all k-element subsets of [n].
• |OrbA(x)| =

(n
k
)
≈ nk is polynomial in n iff k = |S| is constant.

Generally: On any structure A with Aut(A) = Sym(A),
|Orb(x)| is polynomial in |A| if and only if x has a support of constant size.

=⇒ Informally, on structures with Aut(A) = Sym(A), CPT is not stronger than FPC.

Benedikt Pago (University of Cambridge) 24



Estimating orbit-sizes

Goal: Establish lower bounds on orbit size depending on support size.

Example:

• Let A = {1, 2, . . . ,n}, and x some subset, e.g. x = {1, 2, ..., k}.
• We have Aut(A) = Sym(n).
• The smallest support S of x is S = x.

• OrbA(x) is the set of all k-element subsets of [n].
• |OrbA(x)| =

(n
k
)
≈ nk is polynomial in n iff k = |S| is constant.

Generally: On any structure A with Aut(A) = Sym(A),
|Orb(x)| is polynomial in |A| if and only if x has a support of constant size.

=⇒ Informally, on structures with Aut(A) = Sym(A), CPT is not stronger than FPC.

Benedikt Pago (University of Cambridge) 24



Estimating orbit-sizes

Goal: Establish lower bounds on orbit size depending on support size.

Example:

• Let A = {1, 2, . . . ,n}, and x some subset, e.g. x = {1, 2, ..., k}.
• We have Aut(A) = Sym(n).
• The smallest support S of x is S = x.
• OrbA(x) is the set of all k-element subsets of [n].

• |OrbA(x)| =
(n
k
)
≈ nk is polynomial in n iff k = |S| is constant.

Generally: On any structure A with Aut(A) = Sym(A),
|Orb(x)| is polynomial in |A| if and only if x has a support of constant size.

=⇒ Informally, on structures with Aut(A) = Sym(A), CPT is not stronger than FPC.

Benedikt Pago (University of Cambridge) 24



Estimating orbit-sizes

Goal: Establish lower bounds on orbit size depending on support size.

Example:

• Let A = {1, 2, . . . ,n}, and x some subset, e.g. x = {1, 2, ..., k}.
• We have Aut(A) = Sym(n).
• The smallest support S of x is S = x.
• OrbA(x) is the set of all k-element subsets of [n].
• |OrbA(x)| =

(n
k
)
≈ nk is polynomial in n iff k = |S| is constant.

Generally: On any structure A with Aut(A) = Sym(A),
|Orb(x)| is polynomial in |A| if and only if x has a support of constant size.

=⇒ Informally, on structures with Aut(A) = Sym(A), CPT is not stronger than FPC.

Benedikt Pago (University of Cambridge) 24



Estimating orbit-sizes

Goal: Establish lower bounds on orbit size depending on support size.

Example:

• Let A = {1, 2, . . . ,n}, and x some subset, e.g. x = {1, 2, ..., k}.
• We have Aut(A) = Sym(n).
• The smallest support S of x is S = x.
• OrbA(x) is the set of all k-element subsets of [n].
• |OrbA(x)| =

(n
k
)
≈ nk is polynomial in n iff k = |S| is constant.

Generally: On any structure A with Aut(A) = Sym(A),
|Orb(x)| is polynomial in |A| if and only if x has a support of constant size.

=⇒ Informally, on structures with Aut(A) = Sym(A), CPT is not stronger than FPC.

Benedikt Pago (University of Cambridge) 24



Estimating orbit-sizes

Goal: Establish lower bounds on orbit size depending on support size.

Example:

• Let A = {1, 2, . . . ,n}, and x some subset, e.g. x = {1, 2, ..., k}.
• We have Aut(A) = Sym(n).
• The smallest support S of x is S = x.
• OrbA(x) is the set of all k-element subsets of [n].
• |OrbA(x)| =

(n
k
)
≈ nk is polynomial in n iff k = |S| is constant.

Generally: On any structure A with Aut(A) = Sym(A),
|Orb(x)| is polynomial in |A| if and only if x has a support of constant size.

=⇒ Informally, on structures with Aut(A) = Sym(A), CPT is not stronger than FPC.

Benedikt Pago (University of Cambridge) 24



Estimating orbit-sizes

Goal: Establish lower bounds on orbit size depending on support size.

Example:

• Let A = {1, 2, . . . ,n}, and x some subset, e.g. x = {1, 2, ..., k}.
• We have Aut(A) = Sym(n).
• The smallest support S of x is S = x.
• OrbA(x) is the set of all k-element subsets of [n].
• |OrbA(x)| =

(n
k
)
≈ nk is polynomial in n iff k = |S| is constant.

Generally: On any structure A with Aut(A) = Sym(A),
|Orb(x)| is polynomial in |A| if and only if x has a support of constant size.

=⇒ Informally, on structures with Aut(A) = Sym(A), CPT is not stronger than FPC.

Benedikt Pago (University of Cambridge) 24



CPT - wrap up

• CPT is a candidate logic for capturing Ptime.

• CPT can distinguish CFI-graphs if they come with a certain preorder relation; in fact, it
distinguishes also the CFI graphs over Z2i that are indistinguishable in rank logic.

• But: It seems plausible that CPT cannot distinguish unordered CFI graphs, e.g. over
n-dimensional hypercubes.

• In particular, the rank operator is probably not expressible in CPT (?)
• Open problem: Separate CPT from Ptime.
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Proof complexity and finite model
theory



Proof complexity

Problem
Input: A set F = {ϕ1(~x), ...ϕm(~x)} of propositional formulas.
Question: Is there a {0, 1}-assignment to the variables that satisfies all formulas?

• Propositional proof systems provide efficiently verifiable certificates for the non-existence of
solutions.

• If every certificate has polynomial size, then co-NP = NP.
• Proof complexity seeks to establish proof size lower bounds against stronger and stronger
proof systems, towards co-NP 6= NP.
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Proof complexity and finite model theory

Motivation: Transfer lower-bound techniques from finite model theory to proof complexity.
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Algebraic Proof Complexity

Problem
Input: A set F = {f1(~x), ...fm(~x)} of polynomials in F[X].
Question: Is there a solution, i.e. an assignment s : X → F that is a common zero?

Typical certificate via Hilbert’s Nullstellensatz: F is unsat iff there exist g1, ...gm ∈ F[X] such that∑
i∈[m] gi · fi = 1.
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The Ideal Proof System (IPS)

Definition (Grochow, Pitassi; 2016)
An IPS certificate of unsatisfiability of F = {f1(~x), ..., fm(~x)} ⊆ F[X] is a polynomial C(~x, y1, ..., ym)
such that:

1. C(~x, ~0) = 0.
2. C(~x,~f ) = 1.

An IPS refutation of F is an algebraic circuit that represents C(~x,~y).
The size of a refutation is the number of gates in the circuit.

To make IPS “isomorphism-invariant”, we only allow circuits that are symmetric under the
symmetries of F .
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Symmetric proof complexity of graph isomorphism

Theorem (Dawar, Grädel, Kullmann, P., 2025)
Let G 6∼= H, k ∈ N.

• G and H k-WL-distinguishable⇔ there is a poly-size proof of non-isomorphism in degk sym-IPS.
• G and H CPT-distinguishable⇒ there is a poly-size proof of non-isomorphism in sym-IPS
(possibly of unbounded degree).
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Logics with witnessed choice
operators



How to allow choices without breaking isomorphism-invariance

• Observation: Suppose C ⊆ Ak is an orbit of A, i.e. there is a tuple ā ∈ Ak such that

C = {π(ā) | π ∈ Aut(A)}.

Then the computation outcome will be the same for every possible choice from C.

• =⇒ we can allow choices from choice sets that are orbits.
• Choice sets can be defined via formulas.
• Problem: If C is not an orbit, then the computation should be aborted because the choice
would break isomorphism-invariance. How does the program know if C is an orbit?

• Solution: Not only C must be defined by a formula, but also the automorphisms witnessing the
fact that C is an orbit.
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CPT with witnessed symmetric choice

Theorem (Lichter, Schweitzer, 2024)
CPT with witnessed symmetric choice captures Ptime on every class of structures on which it
defines isomorphism.
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Landscape of polynomial time logics

First-order logic (FO)
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FPC

Rank logic

Group order logic

Ptime
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Candidates for capturing Ptime
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