
Choiceless Polynomial Time

Benedikt Pago 1

ESSLLI 2025, Bochum
1University of Cambridge

Landscape of polynomial time logics

First-order logic (FO)

IFP

FPC

Rank logic

Group order logic

Ptime

�
�

�

≤

Choiceless Polynomial Time (CPT)

�

6=

≥ (=?)

Choiceless Polynomial Time (CPT)
6=

CPT + witnessed symmetric choice

≤

≥

FPC + witnessed symmetric choice

FPC + wsc + interpretation

�
�

≥

Candidates for capturing Ptime

Benedikt Pago (University of Cambridge) 2

Landscape of polynomial time logics

First-order logic (FO)

IFP

FPC

Rank logic

Group order logic

Ptime

�
�

�

≤

Choiceless Polynomial Time (CPT)

�

6=

≥ (=?)

Choiceless Polynomial Time (CPT)
6=

CPT + witnessed symmetric choice

≤

≥

FPC + witnessed symmetric choice

FPC + wsc + interpretation

�
�

≥

Candidates for capturing Ptime

Benedikt Pago (University of Cambridge) 2

Landscape of polynomial time logics

First-order logic (FO)

IFP

FPC

Rank logic

Group order logic

Ptime

�
�

�

≤

Choiceless Polynomial Time (CPT)

�

6=

≥ (=?)

Choiceless Polynomial Time (CPT)
6=

CPT + witnessed symmetric choice

≤

≥

FPC + witnessed symmetric choice

FPC + wsc + interpretation

�
�

≥

Candidates for capturing Ptime

Benedikt Pago (University of Cambridge) 2

Landscape of polynomial time logics

First-order logic (FO)

IFP

FPC

Rank logic

Group order logic

Ptime

�
�

�

≤

Choiceless Polynomial Time (CPT)

�

6=

≥ (=?)

Choiceless Polynomial Time (CPT)
6=

CPT + witnessed symmetric choice

≤

≥

FPC + witnessed symmetric choice

FPC + wsc + interpretation

�
�

≥

Candidates for capturing Ptime

Benedikt Pago (University of Cambridge) 2

Choiceless Polynomial Time

Up to now, all logics were extensions of FO/fixed-point logics.

CPT can be seen as a restriction:
It is obtained by enforcing polynomial-time Turing machines to be isomorphism-invariant
[Blass, Gurevich, Shelah, 1999].

Benedikt Pago (University of Cambridge) 3

Choiceless Polynomial Time

Up to now, all logics were extensions of FO/fixed-point logics.

CPT can be seen as a restriction:
It is obtained by enforcing polynomial-time Turing machines to be isomorphism-invariant
[Blass, Gurevich, Shelah, 1999].

Benedikt Pago (University of Cambridge) 3

Classical versus choiceless computation

1

2 void DFS(int graph[MAX_NODES][MAX_NODES], bool visited[MAX_NODES], int
current_node, int num_nodes)

3 {
4 visited[current_node] = true;
5

6 for (int i = 0; i < num_nodes; i++) {
7 if (graph[current_node][i] == 1 && !visited[i]) {
8 DFS(graph, visited, i, num_nodes);
9 }
10 }
11 }
12

A C-program for depth-first search

Benedikt Pago (University of Cambridge) 4

Classical versus choiceless computation

1 void DFS(int graph[MAX_NODES][MAX_NODES])
2 {
3 visited[current_node] = true;
4

5 for (int i = 0; i < num_nodes; i++) {
6 if (graph[current_node][i] == 1 && !visited[i]) {
7 DFS(graph);
8 }
9 }
10 }
11

A choiceless program for DFS

G = (V, E),current_node ∈ V

all i ∈ V do in parallel:

G, i

Benedikt Pago (University of Cambridge) 4

DFS with choices

1 2

34

5

6

Benedikt Pago (University of Cambridge) 5

DFS with choices

1 2

34

5

6

Benedikt Pago (University of Cambridge) 5

DFS with choices

1 2

34

5

6

Benedikt Pago (University of Cambridge) 5

DFS with choices

1 2

34

5

6

Benedikt Pago (University of Cambridge) 5

DFS with choices

1 2

34

5

6

Benedikt Pago (University of Cambridge) 5

DFS with choices

1 2

34

5

6

Benedikt Pago (University of Cambridge) 5

DFS with choices

1 2

34

5

6

Benedikt Pago (University of Cambridge) 5

DFS without choices

Benedikt Pago (University of Cambridge) 6

DFS without choices

Benedikt Pago (University of Cambridge) 7

DFS without choices

Benedikt Pago (University of Cambridge) 7

DFS without choices

Benedikt Pago (University of Cambridge) 8

DFS without choices

Benedikt Pago (University of Cambridge) 8

Presentations of CPT

1. Original definition: abstract state machine model [Blass, Gurevich, Shelah, 1999].
2. BGS-logic [Rossman, 2010].
3. Polynomial Interpretation Logic [Grädel, Pakusa, Schalthöfer, Kaiser, 2015].

Benedikt Pago (University of Cambridge) 9

Polynomial Interpretation Logic

Definition (FO-interpretation)
A σ-structureB is FO-interpretable in a τ-structure A if there exist formulas
ϕδ(x̄), ϕ(x̄, ȳ)≈, (ϕR)R∈σ and a k ∈ N such that

• B = {[ā]≈ | ā ∈ Ak,A |= ϕδ(ā)}
• For each r-ary R ∈ σ, RB = {(ā1, . . . , ār) | A |= ϕR(ā1, . . . , ār)}.

Benedikt Pago (University of Cambridge) 10

Polynomial Interpretation Logic

Definition (PIL, simplified)
Sentences of PIL are of the form (Istep, ψend, ψout,p(n)), where

• Istep is an FO-interpretation,
• ψend, ψout are FO-sentences,
• p(n) is a polynomial serving as a time and space bound.

(Istep, ψend, ψout,p(n)) defines a run in any structure A:

A, Istep(A), Istep(Istep(A)), . . . ,B.

whereB is the first structure in the run withB |= ψend.
If the number of steps or size of the structures exceeds p(|A|), it is aborted.

A |= (Istep, ψend, ψout,p(n)) ⇐⇒ the run terminates withB, s.t.B |= ψout.

Benedikt Pago (University of Cambridge) 11

Polynomial Interpretation Logic

Definition (PIL, simplified)
Sentences of PIL are of the form (Istep, ψend, ψout,p(n)), where

• Istep is an FO-interpretation,
• ψend, ψout are FO-sentences,
• p(n) is a polynomial serving as a time and space bound.

(Istep, ψend, ψout,p(n)) defines a run in any structure A:

A, Istep(A), Istep(Istep(A)), . . . ,B.

whereB is the first structure in the run withB |= ψend.

If the number of steps or size of the structures exceeds p(|A|), it is aborted.

A |= (Istep, ψend, ψout,p(n)) ⇐⇒ the run terminates withB, s.t.B |= ψout.

Benedikt Pago (University of Cambridge) 11

Polynomial Interpretation Logic

Definition (PIL, simplified)
Sentences of PIL are of the form (Istep, ψend, ψout,p(n)), where

• Istep is an FO-interpretation,
• ψend, ψout are FO-sentences,
• p(n) is a polynomial serving as a time and space bound.

(Istep, ψend, ψout,p(n)) defines a run in any structure A:

A, Istep(A), Istep(Istep(A)), . . . ,B.

whereB is the first structure in the run withB |= ψend.
If the number of steps or size of the structures exceeds p(|A|), it is aborted.

A |= (Istep, ψend, ψout,p(n)) ⇐⇒ the run terminates withB, s.t.B |= ψout.

Benedikt Pago (University of Cambridge) 11

Example: Defining a linear order in PIL

Power of PIL: Using higher-dimensional interpretations, a PIL sentence can grow the input structure
arbitrarily.

Computing linear orders

Istep := (ϕδ(x1, x2) := true,
ϕ<(x1, x2, y1, y2) := (x1 = x2 ∧ y1 = y2 ∧ x1 < y1) ∨ (x1 = x2 ∧ y1 6= y2 ∧ y1 = x1)).

Ignore ψend, ψout,p(n) for now.

Benedikt Pago (University of Cambridge) 12

Example: Defining a linear order in PIL

Computing linear orders

Istep := ((ϕδ(x1, x2) := true,
ϕ<(x1, x2, y1, y2) := (x1 = x2 ∧ y1 = y2 ∧ x1 < y1) ∨ (x1 = x2 ∧ y1 6= y2 ∧ y1 = x1)).

Ignore ψend, ψout,p(n) for now.

a b

c

aa
bb

cc

abac

ba
bc

ca
cb

<

>

<
<

<
< . . .

<

>

<
<

<
<

>

< < < <<

<

<<

<<<

Benedikt Pago (University of Cambridge) 13

Example: Defining a linear order in PIL

Computing linear orders

Istep := ((ϕδ(x1, x2) := true,
ϕ<(x1, x2, y1, y2) := (x1 = x2 ∧ y1 = y2 ∧ x1 < y1) ∨ (x1 = x2 ∧ y1 6= y2 ∧ y1 = x1)).

Ignore ψend, ψout,p(n) for now.

a b

c

aa
bb

cc

abac

ba
bc

ca
cb

<

>
<
<

<
<

. . .

<

>

<
<

<
<

>

< < < <<

<

<<

<<<

Benedikt Pago (University of Cambridge) 13

Example: Defining a linear order in PIL

Computing linear orders

Istep := ((ϕδ(x1, x2) := true,
ϕ<(x1, x2, y1, y2) := (x1 = x2 ∧ y1 = y2 ∧ x1 < y1) ∨ (x1 = x2 ∧ y1 6= y2 ∧ y1 = x1)).

Ignore ψend, ψout,p(n) for now.

a b

c

aa
bb

cc

abac

ba
bc

ca
cb

<

>
<
<

<
< . . .

<

>

<
<

<
<

>

< < < <<

<

<<

<<<

Benedikt Pago (University of Cambridge) 13

Weakness of CPT

The stages A,A1,A2, . . . of a PIL computation are closed under the group Aut(A).

If A is very symmetric, then intuitively, the structures Ai quickly become super-polynomially large,
and the computation cannot be carried out in PIL.

Benedikt Pago (University of Cambridge) 14

Presentations of CPT

1. Original definition: abstract state machine model.
2. BGS-logic: Useful for lower bounds.
3. Polynomial Interpretation Logic: Most understandable.

Benedikt Pago (University of Cambridge) 15

Choiceless Polynomial Time as BGS-logic

BGS-logic is FO augmented with terms for the creation of hereditarily finite sets:

Syntax and semantics of set-terms:
Let A = (A, τ) be a structure.

• Universe of structure: JAtomsKA = A.

• Set constructor: JPair(r, s)KA = {JrKA, JsKA}.
• Comprehension term: J{s : x ∈ r : ϕ}KA = {Js(x)KA | x ∈ JrKA,A |= ϕ(x)}.
• Iteration term: Js(x)∗KA is the least fixed-point of the sequence

Js(∅)KA, Js(s(∅))KA, Js(s(s(∅)))KA,
• Iteration terms are accompanied by a polynomial resource bound for time and space: (s∗,p).

Benedikt Pago (University of Cambridge) 16

Choiceless Polynomial Time as BGS-logic

BGS-logic is FO augmented with terms for the creation of hereditarily finite sets:

Syntax and semantics of set-terms:
Let A = (A, τ) be a structure.

• Universe of structure: JAtomsKA = A.
• Set constructor: JPair(r, s)KA = {JrKA, JsKA}.

• Comprehension term: J{s : x ∈ r : ϕ}KA = {Js(x)KA | x ∈ JrKA,A |= ϕ(x)}.
• Iteration term: Js(x)∗KA is the least fixed-point of the sequence

Js(∅)KA, Js(s(∅))KA, Js(s(s(∅)))KA,
• Iteration terms are accompanied by a polynomial resource bound for time and space: (s∗,p).

Benedikt Pago (University of Cambridge) 16

Choiceless Polynomial Time as BGS-logic

BGS-logic is FO augmented with terms for the creation of hereditarily finite sets:

Syntax and semantics of set-terms:
Let A = (A, τ) be a structure.

• Universe of structure: JAtomsKA = A.
• Set constructor: JPair(r, s)KA = {JrKA, JsKA}.
• Comprehension term: J{s : x ∈ r : ϕ}KA = {Js(x)KA | x ∈ JrKA,A |= ϕ(x)}.

• Iteration term: Js(x)∗KA is the least fixed-point of the sequence
Js(∅)KA, Js(s(∅))KA, Js(s(s(∅)))KA,

• Iteration terms are accompanied by a polynomial resource bound for time and space: (s∗,p).

Benedikt Pago (University of Cambridge) 16

Choiceless Polynomial Time as BGS-logic

BGS-logic is FO augmented with terms for the creation of hereditarily finite sets:

Syntax and semantics of set-terms:
Let A = (A, τ) be a structure.

• Universe of structure: JAtomsKA = A.
• Set constructor: JPair(r, s)KA = {JrKA, JsKA}.
• Comprehension term: J{s : x ∈ r : ϕ}KA = {Js(x)KA | x ∈ JrKA,A |= ϕ(x)}.
• Iteration term: Js(x)∗KA is the least fixed-point of the sequence

Js(∅)KA, Js(s(∅))KA, Js(s(s(∅)))KA,

• Iteration terms are accompanied by a polynomial resource bound for time and space: (s∗,p).

Benedikt Pago (University of Cambridge) 16

Choiceless Polynomial Time as BGS-logic

BGS-logic is FO augmented with terms for the creation of hereditarily finite sets:

Syntax and semantics of set-terms:
Let A = (A, τ) be a structure.

• Universe of structure: JAtomsKA = A.
• Set constructor: JPair(r, s)KA = {JrKA, JsKA}.
• Comprehension term: J{s : x ∈ r : ϕ}KA = {Js(x)KA | x ∈ JrKA,A |= ϕ(x)}.
• Iteration term: Js(x)∗KA is the least fixed-point of the sequence

Js(∅)KA, Js(s(∅))KA, Js(s(s(∅)))KA,
• Iteration terms are accompanied by a polynomial resource bound for time and space: (s∗,p).

Benedikt Pago (University of Cambridge) 16

CPT is strictly stronger than fixed-points

Theorem

FPC � CPT.

Proof.

• FPC cannot distinguish CFI graphs.

• This is also true if they are augmented with exponentially many isolated vertices
(padding).

• CPT can distinguish the padded CFI structures by computing all linear orders on the
non-padding part and running the Ptime-algorithm that distinguishes them.

Benedikt Pago (University of Cambridge) 17

CPT is strictly stronger than fixed-points

Theorem

FPC � CPT.

Proof.

• FPC cannot distinguish CFI graphs.
• This is also true if they are augmented with exponentially many isolated vertices
(padding).

• CPT can distinguish the padded CFI structures by computing all linear orders on the
non-padding part and running the Ptime-algorithm that distinguishes them.

Benedikt Pago (University of Cambridge) 17

CPT is strictly stronger than fixed-points

Theorem

FPC � CPT.

Proof.

• FPC cannot distinguish CFI graphs.
• This is also true if they are augmented with exponentially many isolated vertices
(padding).

• CPT can distinguish the padded CFI structures by computing all linear orders on the
non-padding part and running the Ptime-algorithm that distinguishes them.

Benedikt Pago (University of Cambridge) 17

Inexpressibility results for CPT?

• It is known that CPT cannot define the set of all hyperplanes in a given finite vector space
[Rossman, 2010].

• But there is no known decision problem in Ptime that is not in CPT.
• Obvious idea: Try CFI graphs...

Benedikt Pago (University of Cambridge) 18

Inexpressibility results for CPT?

• It is known that CPT cannot define the set of all hyperplanes in a given finite vector space
[Rossman, 2010].

• But there is no known decision problem in Ptime that is not in CPT.

• Obvious idea: Try CFI graphs...

Benedikt Pago (University of Cambridge) 18

Inexpressibility results for CPT?

• It is known that CPT cannot define the set of all hyperplanes in a given finite vector space
[Rossman, 2010].

• But there is no known decision problem in Ptime that is not in CPT.
• Obvious idea: Try CFI graphs...

Benedikt Pago (University of Cambridge) 18

Is the CFI-query definable in Choiceless Polynomial Time?

Definability on different classes of base graphs:

Linearly ordered base graphs 1 "

Preordered base graphs with log-size colour classes 2 "

Base graphs with linear degree 2 "

General unordered base graphs ?

1

23

4

5 6

1

12

2

3 3

1[Dawar, Richerby, Rossman, 2008]
2[Pakusa, Schalthöfer, Selman, 2018]

Benedikt Pago (University of Cambridge) 19

Is the CFI-query definable in Choiceless Polynomial Time?

Definability on different classes of base graphs:

Linearly ordered base graphs 1 "

Preordered base graphs with log-size colour classes 2 "

Base graphs with linear degree 2 "

General unordered base graphs ?

1

23

4

5 6

1

12

2

3 3

1[Dawar, Richerby, Rossman, 2008]
2[Pakusa, Schalthöfer, Selman, 2018]

Benedikt Pago (University of Cambridge) 19

Is the CFI-query definable in Choiceless Polynomial Time?

Definability on different classes of base graphs:

Linearly ordered base graphs 1 "

Preordered base graphs with log-size colour classes 2 "

Base graphs with linear degree 2 "

General unordered base graphs ?

1

23

4

5 6

1

12

2

3 3

1[Dawar, Richerby, Rossman, 2008]
2[Pakusa, Schalthöfer, Selman, 2018]

Benedikt Pago (University of Cambridge) 19

Is the CFI-query definable in Choiceless Polynomial Time?

Definability on different classes of base graphs:

Linearly ordered base graphs 1 "

Preordered base graphs with log-size colour classes 2 "

Base graphs with linear degree 2 "

General unordered base graphs ?

1

23

4

5 6

1

12

2

3 3

1[Dawar, Richerby, Rossman, 2008]
2[Pakusa, Schalthöfer, Selman, 2018]

Benedikt Pago (University of Cambridge) 19

Is the CFI-query definable in Choiceless Polynomial Time?

Definability on different classes of base graphs:

Linearly ordered base graphs 1 "

Preordered base graphs with log-size colour classes 2 "

Base graphs with linear degree 2 "

General unordered base graphs ?

1

23

4

5 6

1

12

2

3 3

1[Dawar, Richerby, Rossman, 2008]
2[Pakusa, Schalthöfer, Selman, 2018]

Benedikt Pago (University of Cambridge) 19

Non-definability of preorders

Theorem (P., CSL 2021)
There exists a family of unordered base graphs (with sub-linear degree) where no preorder with
log-size colour classes is CPT-definable.

⇒ There are CFI-instances that cannot be handled with any of the known CPT-algorithms.

Theorem (technical version)
Any preorder with log-size colour classes on the n-dimensional
hypercube has an orbit of super-polynomial size.

4-dimensional hypercube

Benedikt Pago (University of Cambridge) 20

Non-definability of preorders

Theorem (P., CSL 2021)
There exists a family of unordered base graphs (with sub-linear degree) where no preorder with
log-size colour classes is CPT-definable.

⇒ There are CFI-instances that cannot be handled with any of the known CPT-algorithms.

Theorem (technical version)
Any preorder with log-size colour classes on the n-dimensional
hypercube has an orbit of super-polynomial size.

4-dimensional hypercube

Benedikt Pago (University of Cambridge) 20

Lower bound techniques for CPT

Problem: The expressive power of a CPT sentence is not limited by its number of variables.
The creation of h.f. sets can “simulate” extra variables.

=⇒ There is no pebble game that characterises CPT.

But: A property of the created h.f. sets controls the expressivity like the pebble number.

Benedikt Pago (University of Cambridge) 21

Lower bound techniques for CPT

Problem: The expressive power of a CPT sentence is not limited by its number of variables.
The creation of h.f. sets can “simulate” extra variables.

=⇒ There is no pebble game that characterises CPT.

But: A property of the created h.f. sets controls the expressivity like the pebble number.

Benedikt Pago (University of Cambridge) 21

Lower bound techniques for CPT

Problem: The expressive power of a CPT sentence is not limited by its number of variables.
The creation of h.f. sets can “simulate” extra variables.

=⇒ There is no pebble game that characterises CPT.

But: A property of the created h.f. sets controls the expressivity like the pebble number.

Benedikt Pago (University of Cambridge) 21

The support of a hereditarily finite set

Definition (Support)
Let x a h.f. set over A. A support for x is a tuple α over A such that “fixing α also fixes x”.

Formally: For every π ∈ Aut(A) such that π(α) = α, it holds π(x) = x.

Example:

a

b

c

The structure A

• Aut(A) = {id, (a b)}.
• Let x = {a, {c}}.
• A trivial support for x: ac.
• A smallest support: a (or b).

Benedikt Pago (University of Cambridge) 22

The support of a hereditarily finite set

Definition (Support)
Let x a h.f. set over A. A support for x is a tuple α over A such that “fixing α also fixes x”.

Formally: For every π ∈ Aut(A) such that π(α) = α, it holds π(x) = x.

Example:

a

b

c

The structure A

• Aut(A) = {id, (a b)}.
• Let x = {a, {c}}.
• A trivial support for x: ac.
• A smallest support: a (or b).

Benedikt Pago (University of Cambridge) 22

An approach to prove indistinguishability in CPT

• Let A,B satisfy A ≡Ck B.

• =⇒ Any CPT-program distinguishing A andB must construct (on input A) a h.f. set x whose
smallest support has size ≥ k [Dawar, Richerby, Rossman, 2008].

• Since CPT is isomorphism-invariant, it must construct x together with all its automorphic
images OrbA(x) := {π(x) | π ∈ Aut(A)}.

• Since CPT is polynomially bounded, |OrbA(x)| must be polynomial in |A|.
• =⇒ One way to show CPT-indistinguishability is to prove that large support implies a large
orbit.

Benedikt Pago (University of Cambridge) 23

An approach to prove indistinguishability in CPT

• Let A,B satisfy A ≡Ck B.
• =⇒ Any CPT-program distinguishing A andB must construct (on input A) a h.f. set x whose
smallest support has size ≥ k [Dawar, Richerby, Rossman, 2008].

• Since CPT is isomorphism-invariant, it must construct x together with all its automorphic
images OrbA(x) := {π(x) | π ∈ Aut(A)}.

• Since CPT is polynomially bounded, |OrbA(x)| must be polynomial in |A|.
• =⇒ One way to show CPT-indistinguishability is to prove that large support implies a large
orbit.

Benedikt Pago (University of Cambridge) 23

An approach to prove indistinguishability in CPT

• Let A,B satisfy A ≡Ck B.
• =⇒ Any CPT-program distinguishing A andB must construct (on input A) a h.f. set x whose
smallest support has size ≥ k [Dawar, Richerby, Rossman, 2008].

• Since CPT is isomorphism-invariant, it must construct x together with all its automorphic
images OrbA(x) := {π(x) | π ∈ Aut(A)}.

• Since CPT is polynomially bounded, |OrbA(x)| must be polynomial in |A|.
• =⇒ One way to show CPT-indistinguishability is to prove that large support implies a large
orbit.

Benedikt Pago (University of Cambridge) 23

An approach to prove indistinguishability in CPT

• Let A,B satisfy A ≡Ck B.
• =⇒ Any CPT-program distinguishing A andB must construct (on input A) a h.f. set x whose
smallest support has size ≥ k [Dawar, Richerby, Rossman, 2008].

• Since CPT is isomorphism-invariant, it must construct x together with all its automorphic
images OrbA(x) := {π(x) | π ∈ Aut(A)}.

• Since CPT is polynomially bounded, |OrbA(x)| must be polynomial in |A|.

• =⇒ One way to show CPT-indistinguishability is to prove that large support implies a large
orbit.

Benedikt Pago (University of Cambridge) 23

An approach to prove indistinguishability in CPT

• Let A,B satisfy A ≡Ck B.
• =⇒ Any CPT-program distinguishing A andB must construct (on input A) a h.f. set x whose
smallest support has size ≥ k [Dawar, Richerby, Rossman, 2008].

• Since CPT is isomorphism-invariant, it must construct x together with all its automorphic
images OrbA(x) := {π(x) | π ∈ Aut(A)}.

• Since CPT is polynomially bounded, |OrbA(x)| must be polynomial in |A|.
• =⇒ One way to show CPT-indistinguishability is to prove that large support implies a large
orbit.

Benedikt Pago (University of Cambridge) 23

Estimating orbit-sizes

Goal: Establish lower bounds on orbit size depending on support size.

Example:

• Let A = {1, 2, . . . ,n}, and x some subset, e.g. x = {1, 2, ..., k}.
• We have Aut(A) = Sym(n).
• The smallest support S of x is S = x.
• OrbA(x) is the set of all k-element subsets of [n].
• |OrbA(x)| =

(n
k
)
≈ nk is polynomial in n iff k = |S| is constant.

Generally: On any structure A with Aut(A) = Sym(A),
|Orb(x)| is polynomial in |A| if and only if x has a support of constant size.

=⇒ Informally, on structures with Aut(A) = Sym(A), CPT is not stronger than FPC.

Benedikt Pago (University of Cambridge) 24

Estimating orbit-sizes

Goal: Establish lower bounds on orbit size depending on support size.

Example:

• Let A = {1, 2, . . . ,n}, and x some subset, e.g. x = {1, 2, ..., k}.

• We have Aut(A) = Sym(n).
• The smallest support S of x is S = x.
• OrbA(x) is the set of all k-element subsets of [n].
• |OrbA(x)| =

(n
k
)
≈ nk is polynomial in n iff k = |S| is constant.

Generally: On any structure A with Aut(A) = Sym(A),
|Orb(x)| is polynomial in |A| if and only if x has a support of constant size.

=⇒ Informally, on structures with Aut(A) = Sym(A), CPT is not stronger than FPC.

Benedikt Pago (University of Cambridge) 24

Estimating orbit-sizes

Goal: Establish lower bounds on orbit size depending on support size.

Example:

• Let A = {1, 2, . . . ,n}, and x some subset, e.g. x = {1, 2, ..., k}.
• We have Aut(A) = Sym(n).

• The smallest support S of x is S = x.
• OrbA(x) is the set of all k-element subsets of [n].
• |OrbA(x)| =

(n
k
)
≈ nk is polynomial in n iff k = |S| is constant.

Generally: On any structure A with Aut(A) = Sym(A),
|Orb(x)| is polynomial in |A| if and only if x has a support of constant size.

=⇒ Informally, on structures with Aut(A) = Sym(A), CPT is not stronger than FPC.

Benedikt Pago (University of Cambridge) 24

Estimating orbit-sizes

Goal: Establish lower bounds on orbit size depending on support size.

Example:

• Let A = {1, 2, . . . ,n}, and x some subset, e.g. x = {1, 2, ..., k}.
• We have Aut(A) = Sym(n).
• The smallest support S of x is S = x.

• OrbA(x) is the set of all k-element subsets of [n].
• |OrbA(x)| =

(n
k
)
≈ nk is polynomial in n iff k = |S| is constant.

Generally: On any structure A with Aut(A) = Sym(A),
|Orb(x)| is polynomial in |A| if and only if x has a support of constant size.

=⇒ Informally, on structures with Aut(A) = Sym(A), CPT is not stronger than FPC.

Benedikt Pago (University of Cambridge) 24

Estimating orbit-sizes

Goal: Establish lower bounds on orbit size depending on support size.

Example:

• Let A = {1, 2, . . . ,n}, and x some subset, e.g. x = {1, 2, ..., k}.
• We have Aut(A) = Sym(n).
• The smallest support S of x is S = x.
• OrbA(x) is the set of all k-element subsets of [n].

• |OrbA(x)| =
(n
k
)
≈ nk is polynomial in n iff k = |S| is constant.

Generally: On any structure A with Aut(A) = Sym(A),
|Orb(x)| is polynomial in |A| if and only if x has a support of constant size.

=⇒ Informally, on structures with Aut(A) = Sym(A), CPT is not stronger than FPC.

Benedikt Pago (University of Cambridge) 24

Estimating orbit-sizes

Goal: Establish lower bounds on orbit size depending on support size.

Example:

• Let A = {1, 2, . . . ,n}, and x some subset, e.g. x = {1, 2, ..., k}.
• We have Aut(A) = Sym(n).
• The smallest support S of x is S = x.
• OrbA(x) is the set of all k-element subsets of [n].
• |OrbA(x)| =

(n
k
)
≈ nk is polynomial in n iff k = |S| is constant.

Generally: On any structure A with Aut(A) = Sym(A),
|Orb(x)| is polynomial in |A| if and only if x has a support of constant size.

=⇒ Informally, on structures with Aut(A) = Sym(A), CPT is not stronger than FPC.

Benedikt Pago (University of Cambridge) 24

Estimating orbit-sizes

Goal: Establish lower bounds on orbit size depending on support size.

Example:

• Let A = {1, 2, . . . ,n}, and x some subset, e.g. x = {1, 2, ..., k}.
• We have Aut(A) = Sym(n).
• The smallest support S of x is S = x.
• OrbA(x) is the set of all k-element subsets of [n].
• |OrbA(x)| =

(n
k
)
≈ nk is polynomial in n iff k = |S| is constant.

Generally: On any structure A with Aut(A) = Sym(A),
|Orb(x)| is polynomial in |A| if and only if x has a support of constant size.

=⇒ Informally, on structures with Aut(A) = Sym(A), CPT is not stronger than FPC.

Benedikt Pago (University of Cambridge) 24

Estimating orbit-sizes

Goal: Establish lower bounds on orbit size depending on support size.

Example:

• Let A = {1, 2, . . . ,n}, and x some subset, e.g. x = {1, 2, ..., k}.
• We have Aut(A) = Sym(n).
• The smallest support S of x is S = x.
• OrbA(x) is the set of all k-element subsets of [n].
• |OrbA(x)| =

(n
k
)
≈ nk is polynomial in n iff k = |S| is constant.

Generally: On any structure A with Aut(A) = Sym(A),
|Orb(x)| is polynomial in |A| if and only if x has a support of constant size.

=⇒ Informally, on structures with Aut(A) = Sym(A), CPT is not stronger than FPC.

Benedikt Pago (University of Cambridge) 24

Estimating orbit-sizes

Goal: Establish lower bounds on orbit size depending on support size.

Example:

• Let A = {1, 2, . . . ,n}, and x some subset, e.g. x = {1, 2, ..., k}.
• We have Aut(A) = Sym(n).
• The smallest support S of x is S = x.
• OrbA(x) is the set of all k-element subsets of [n].
• |OrbA(x)| =

(n
k
)
≈ nk is polynomial in n iff k = |S| is constant.

Generally: On any structure A with Aut(A) = Sym(A),
|Orb(x)| is polynomial in |A| if and only if x has a support of constant size.

=⇒ Informally, on structures with Aut(A) = Sym(A), CPT is not stronger than FPC.

Benedikt Pago (University of Cambridge) 24

CPT - wrap up

• CPT is a candidate logic for capturing Ptime.

• CPT can distinguish CFI-graphs if they come with a certain preorder relation; in fact, it
distinguishes also the CFI graphs over Z2i that are indistinguishable in rank logic.

• But: It seems plausible that CPT cannot distinguish unordered CFI graphs, e.g. over
n-dimensional hypercubes.

• In particular, the rank operator is probably not expressible in CPT (?)
• Open problem: Separate CPT from Ptime.

Benedikt Pago (University of Cambridge) 25

CPT - wrap up

• CPT is a candidate logic for capturing Ptime.
• CPT can distinguish CFI-graphs if they come with a certain preorder relation; in fact, it
distinguishes also the CFI graphs over Z2i that are indistinguishable in rank logic.

• But: It seems plausible that CPT cannot distinguish unordered CFI graphs, e.g. over
n-dimensional hypercubes.

• In particular, the rank operator is probably not expressible in CPT (?)
• Open problem: Separate CPT from Ptime.

Benedikt Pago (University of Cambridge) 25

CPT - wrap up

• CPT is a candidate logic for capturing Ptime.
• CPT can distinguish CFI-graphs if they come with a certain preorder relation; in fact, it
distinguishes also the CFI graphs over Z2i that are indistinguishable in rank logic.

• But: It seems plausible that CPT cannot distinguish unordered CFI graphs, e.g. over
n-dimensional hypercubes.

• In particular, the rank operator is probably not expressible in CPT (?)
• Open problem: Separate CPT from Ptime.

Benedikt Pago (University of Cambridge) 25

CPT - wrap up

• CPT is a candidate logic for capturing Ptime.
• CPT can distinguish CFI-graphs if they come with a certain preorder relation; in fact, it
distinguishes also the CFI graphs over Z2i that are indistinguishable in rank logic.

• But: It seems plausible that CPT cannot distinguish unordered CFI graphs, e.g. over
n-dimensional hypercubes.

• In particular, the rank operator is probably not expressible in CPT (?)

• Open problem: Separate CPT from Ptime.

Benedikt Pago (University of Cambridge) 25

CPT - wrap up

• CPT is a candidate logic for capturing Ptime.
• CPT can distinguish CFI-graphs if they come with a certain preorder relation; in fact, it
distinguishes also the CFI graphs over Z2i that are indistinguishable in rank logic.

• But: It seems plausible that CPT cannot distinguish unordered CFI graphs, e.g. over
n-dimensional hypercubes.

• In particular, the rank operator is probably not expressible in CPT (?)
• Open problem: Separate CPT from Ptime.

Benedikt Pago (University of Cambridge) 25

Proof complexity and finite model
theory

Proof complexity

Problem
Input: A set F = {ϕ1(~x), ...ϕm(~x)} of propositional formulas.
Question: Is there a {0, 1}-assignment to the variables that satisfies all formulas?

• Propositional proof systems provide efficiently verifiable certificates for the non-existence of
solutions.

• If every certificate has polynomial size, then co-NP = NP.
• Proof complexity seeks to establish proof size lower bounds against stronger and stronger
proof systems, towards co-NP 6= NP.

Benedikt Pago (University of Cambridge) 26

Proof complexity

Problem
Input: A set F = {ϕ1(~x), ...ϕm(~x)} of propositional formulas.
Question: Is there a {0, 1}-assignment to the variables that satisfies all formulas?

• Propositional proof systems provide efficiently verifiable certificates for the non-existence of
solutions.

• If every certificate has polynomial size, then co-NP = NP.
• Proof complexity seeks to establish proof size lower bounds against stronger and stronger
proof systems, towards co-NP 6= NP.

Benedikt Pago (University of Cambridge) 26

Proof complexity

Problem
Input: A set F = {ϕ1(~x), ...ϕm(~x)} of propositional formulas.
Question: Is there a {0, 1}-assignment to the variables that satisfies all formulas?

• Propositional proof systems provide efficiently verifiable certificates for the non-existence of
solutions.

• If every certificate has polynomial size, then co-NP = NP.

• Proof complexity seeks to establish proof size lower bounds against stronger and stronger
proof systems, towards co-NP 6= NP.

Benedikt Pago (University of Cambridge) 26

Proof complexity

Problem
Input: A set F = {ϕ1(~x), ...ϕm(~x)} of propositional formulas.
Question: Is there a {0, 1}-assignment to the variables that satisfies all formulas?

• Propositional proof systems provide efficiently verifiable certificates for the non-existence of
solutions.

• If every certificate has polynomial size, then co-NP = NP.
• Proof complexity seeks to establish proof size lower bounds against stronger and stronger
proof systems, towards co-NP 6= NP.

Benedikt Pago (University of Cambridge) 26

Proof complexity and finite model theory

Motivation: Transfer lower-bound techniques from finite model theory to proof complexity.

Benedikt Pago (University of Cambridge) 27

Algebraic Proof Complexity

Problem
Input: A set F = {f1(~x), ...fm(~x)} of polynomials in F[X].
Question: Is there a solution, i.e. an assignment s : X → F that is a common zero?

Typical certificate via Hilbert’s Nullstellensatz: F is unsat iff there exist g1, ...gm ∈ F[X] such that∑
i∈[m] gi · fi = 1.

Benedikt Pago (University of Cambridge) 28

Algebraic Proof Complexity

Problem
Input: A set F = {f1(~x), ...fm(~x)} of polynomials in F[X].
Question: Is there a solution, i.e. an assignment s : X → F that is a common zero?

Typical certificate via Hilbert’s Nullstellensatz: F is unsat iff there exist g1, ...gm ∈ F[X] such that∑
i∈[m] gi · fi = 1.

Benedikt Pago (University of Cambridge) 28

The Ideal Proof System (IPS)

Definition (Grochow, Pitassi; 2016)
An IPS certificate of unsatisfiability of F = {f1(~x), ..., fm(~x)} ⊆ F[X] is a polynomial C(~x, y1, ..., ym)
such that:

1. C(~x, ~0) = 0.
2. C(~x,~f) = 1.

An IPS refutation of F is an algebraic circuit that represents C(~x,~y).
The size of a refutation is the number of gates in the circuit.

To make IPS “isomorphism-invariant”, we only allow circuits that are symmetric under the
symmetries of F .

Benedikt Pago (University of Cambridge) 29

The Ideal Proof System (IPS)

Definition (Grochow, Pitassi; 2016)
An IPS certificate of unsatisfiability of F = {f1(~x), ..., fm(~x)} ⊆ F[X] is a polynomial C(~x, y1, ..., ym)
such that:

1. C(~x, ~0) = 0.
2. C(~x,~f) = 1.

An IPS refutation of F is an algebraic circuit that represents C(~x,~y).
The size of a refutation is the number of gates in the circuit.

To make IPS “isomorphism-invariant”, we only allow circuits that are symmetric under the
symmetries of F .

Benedikt Pago (University of Cambridge) 29

Symmetric proof complexity of graph isomorphism

Theorem (Dawar, Grädel, Kullmann, P., 2025)
Let G 6∼= H, k ∈ N.

• G and H k-WL-distinguishable⇔ there is a poly-size proof of non-isomorphism in degk sym-IPS.
• G and H CPT-distinguishable⇒ there is a poly-size proof of non-isomorphism in sym-IPS
(possibly of unbounded degree).

Benedikt Pago (University of Cambridge) 30

Logics with witnessed choice
operators

How to allow choices without breaking isomorphism-invariance

• Observation: Suppose C ⊆ Ak is an orbit of A, i.e. there is a tuple ā ∈ Ak such that

C = {π(ā) | π ∈ Aut(A)}.

Then the computation outcome will be the same for every possible choice from C.

• =⇒ we can allow choices from choice sets that are orbits.
• Choice sets can be defined via formulas.
• Problem: If C is not an orbit, then the computation should be aborted because the choice
would break isomorphism-invariance. How does the program know if C is an orbit?

• Solution: Not only C must be defined by a formula, but also the automorphisms witnessing the
fact that C is an orbit.

Benedikt Pago (University of Cambridge) 31

How to allow choices without breaking isomorphism-invariance

• Observation: Suppose C ⊆ Ak is an orbit of A, i.e. there is a tuple ā ∈ Ak such that

C = {π(ā) | π ∈ Aut(A)}.

Then the computation outcome will be the same for every possible choice from C.
• =⇒ we can allow choices from choice sets that are orbits.

• Choice sets can be defined via formulas.
• Problem: If C is not an orbit, then the computation should be aborted because the choice
would break isomorphism-invariance. How does the program know if C is an orbit?

• Solution: Not only C must be defined by a formula, but also the automorphisms witnessing the
fact that C is an orbit.

Benedikt Pago (University of Cambridge) 31

How to allow choices without breaking isomorphism-invariance

• Observation: Suppose C ⊆ Ak is an orbit of A, i.e. there is a tuple ā ∈ Ak such that

C = {π(ā) | π ∈ Aut(A)}.

Then the computation outcome will be the same for every possible choice from C.
• =⇒ we can allow choices from choice sets that are orbits.
• Choice sets can be defined via formulas.

• Problem: If C is not an orbit, then the computation should be aborted because the choice
would break isomorphism-invariance. How does the program know if C is an orbit?

• Solution: Not only C must be defined by a formula, but also the automorphisms witnessing the
fact that C is an orbit.

Benedikt Pago (University of Cambridge) 31

How to allow choices without breaking isomorphism-invariance

• Observation: Suppose C ⊆ Ak is an orbit of A, i.e. there is a tuple ā ∈ Ak such that

C = {π(ā) | π ∈ Aut(A)}.

Then the computation outcome will be the same for every possible choice from C.
• =⇒ we can allow choices from choice sets that are orbits.
• Choice sets can be defined via formulas.
• Problem: If C is not an orbit, then the computation should be aborted because the choice
would break isomorphism-invariance. How does the program know if C is an orbit?

• Solution: Not only C must be defined by a formula, but also the automorphisms witnessing the
fact that C is an orbit.

Benedikt Pago (University of Cambridge) 31

How to allow choices without breaking isomorphism-invariance

• Observation: Suppose C ⊆ Ak is an orbit of A, i.e. there is a tuple ā ∈ Ak such that

C = {π(ā) | π ∈ Aut(A)}.

Then the computation outcome will be the same for every possible choice from C.
• =⇒ we can allow choices from choice sets that are orbits.
• Choice sets can be defined via formulas.
• Problem: If C is not an orbit, then the computation should be aborted because the choice
would break isomorphism-invariance. How does the program know if C is an orbit?

• Solution: Not only C must be defined by a formula, but also the automorphisms witnessing the
fact that C is an orbit.

Benedikt Pago (University of Cambridge) 31

CPT with witnessed symmetric choice

Theorem (Lichter, Schweitzer, 2024)
CPT with witnessed symmetric choice captures Ptime on every class of structures on which it
defines isomorphism.

Benedikt Pago (University of Cambridge) 32

Landscape of polynomial time logics

First-order logic (FO)

IFP

FPC

Rank logic

Group order logic

Ptime

�
�

�

≤

Choiceless Polynomial Time (CPT)
6=

CPT + witnessed symmetric choice

≤

≥

FPC + witnessed symmetric choice

FPC + wsc + interpretation

�
�

≥

Candidates for capturing Ptime

Benedikt Pago (University of Cambridge) 33

References i

[1] A. Blass, Y. Gurevich, and S. Shelah. “On polynomial time computation over unordered
structures”. In: The Journal of Symbolic Logic 67.3 (2002), pp. 1093–1125.

[2] Andreas Blass, Yuri Gurevich, and Saharon Shelah. “Choiceless polynomial time”. In: Annals of
Pure and Applied Logic 100.1-3 (1999), pp. 141–187.

[3] Anuj Dawar and David Richerby. “A fixed-point logic with symmetric choice”. In: International
Workshop on Computer Science Logic. Springer. 2003, pp. 169–182.

[4] Anuj Dawar, David Richerby, and Benjamin Rossman. “Choiceless Polynomial Time, Counting
and the Cai–Fürer–Immerman graphs”. In: Annals of Pure and Applied Logic 152.1-3 (2008),
pp. 31–50.

[5] Anuj Dawar et al. Symmetric Proofs in the Ideal Proof System. 2025. arXiv: 2504.16820
[cs.LO]. https://arxiv.org/abs/2504.16820.

Benedikt Pago (University of Cambridge) 34

https://arxiv.org/abs/2504.16820
https://arxiv.org/abs/2504.16820

References ii

[6] F. Gire and H.K. Hoang. “An Extension of Fixpoint Logic with a Symmetry-Based Choice
Construct”. In: Information and Computation 144.1 (1998), pp. 40–65. issn: 0890-5401.
https://doi.org/10.1006/inco.1998.2712.

[7] Erich Grädel and Martin Grohe. “Is Polynomial Time Choiceless?” In: Fields of Logic and
Computation II. Springer, 2015, pp. 193–209.

[8] Erich Grädel et al. “Characterising Choiceless Polynomial Time with First-Order
Interpretations”. In: 30th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2015,
Kyoto, Japan, July 6-10, 2015. IEEE Computer Society, 2015, pp. 677–688. 10.1109/LICS.2015.68.
https://doi.org/10.1109/LICS.2015.68.

[9] Joshua A. Grochow and Toniann Pitassi. “Circuit Complexity, Proof Complexity, and
Polynomial Identity Testing: The Ideal Proof System”. In: J. ACM 65.6 (2018), 37:1–37:59.
10.1145/3230742. https://doi.org/10.1145/3230742.

Benedikt Pago (University of Cambridge) 35

References iii

[10] Moritz Lichter. “Witnessed Symmetric Choice and Interpretations in Fixed-Point Logic with
Counting”. In: 50th International Colloquium on Automata, Languages, and Programming (ICALP 2023).
Ed. by Kousha Etessami, Uriel Feige, and Gabriele Puppis. 261. Leibniz International Proceedings in
Informatics (LIPIcs). Dagstuhl, Germany: Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2023,
133:1–133:20. isbn: 978-3-95977-278-5. 10.4230/LIPIcs.ICALP.2023.133.
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2023.133.

[11] Moritz Lichter and Pascal Schweitzer. “Choiceless Polynomial Time with Witnessed Symmetric
Choice”. In: J. ACM 71.2 (Apr. 2024). issn: 0004-5411. 10.1145/3648104. https://doi.org/10.1145/3648104.

[12] Benedikt Pago. “Choiceless Computation and Symmetry: Limitations of Definability”. In: 29th
EACSL Annual Conference on Computer Science Logic (CSL 2021). 183. Leibniz International Proceedings
in Informatics (LIPIcs). 2021, 33:1–33:21. 10.4230/LIPIcs.CSL.2021.33.
https://drops.dagstuhl.de/opus/volltexte/2021/13467.

Benedikt Pago (University of Cambridge) 36

References iv

[13] Wied Pakusa, Svenja Schalthöfer, and Erkal Selman. “Definability of Cai-Fürer-Immerman
problems in Choiceless Polynomial Time”. In: ACM Transactions on Computational Logic (TOCL) 19.2
(2018), pp. 1–27. 10.1145/3154456.

[14] Benjamin Rossman. “Choiceless Computation and Symmetry”. In: Fields of Logic and
Computation. Springer, 2010, pp. 565–580.

[15] Faried Abu Zaid et al. “Choiceless Polynomial Time on structures with small Abelian colour
classes”. In: International Symposium on Mathematical Foundations of Computer Science. Springer.
2014, pp. 50–62.

Benedikt Pago (University of Cambridge) 37

	Proof complexity and finite model theory
	Logics with witnessed choice operators

