The Cai-Fürer-Immerman construction

Benedikt Pago ¹ ESSLLI 2025, Bochum

¹University of Cambridge

Reminder

Infinitary Counting Logic

Just as IFP can be seen as a fragment of $\mathcal{L}_{\infty\omega}^{\omega}$, FPC is a fragment of $\mathcal{C}_{\infty\omega}^{\omega}$.

For every $k \in \mathbb{N}$, $\mathcal{C}_{\infty\omega}^k$ is the extension of $\mathcal{L}_{\infty\omega}^k$ with counting quantifiers $\exists^{\geq m} x$ for all $m \in \mathbb{N}$.

Infinitary Counting Logic

Just as IFP can be seen as a fragment of $\mathcal{L}_{\infty\omega}^{\omega}$, FPC is a fragment of $\mathcal{C}_{\infty\omega}^{\omega}$.

For every $k \in \mathbb{N}$, $\mathcal{C}_{\infty\omega}^k$ is the extension of $\mathcal{L}_{\infty\omega}^k$ with counting quantifiers $\exists^{\geq m} x$ for all $m \in \mathbb{N}$.

Theorem (Grädel and Otto, 1993)

For every sentence $\psi \in FPC$, there exists a $k \in \mathbb{N}$ and a $\varphi \in \mathcal{C}^k_{\infty \omega}$ such that ψ and φ are equivalent on all finite structures.

Separating FPC from PTIME

Goal: Construct a family of pairs of graphs $(G_n, H_n)_{n \in \mathbb{N}}$ such that

- For every $k \in \mathbb{N}$, for large enough $n \in \mathbb{N}$, it holds $G_n \equiv_{\mathcal{C}^k} H_n$.
- For all $n \in \mathbb{N}$, $G_n \ncong H_n$.
- There is a PTIME-algorithm that distinguishes all G_n and H_n .

Separating FPC from PTIME

Goal: Construct a family of pairs of graphs $(G_n, H_n)_{n \in \mathbb{N}}$ such that

- For every $k \in \mathbb{N}$, for large enough $n \in \mathbb{N}$, it holds $G_n \equiv_{\mathcal{C}^k} H_n$.
- For all $n \in \mathbb{N}$, $G_n \ncong H_n$.
- There is a PTIME-algorithm that distinguishes all G_n and H_n .

Consequences:

- There is no fixed k such that C^k -equivalence is the same as isomorphism.
- There is no fixed *k* such that the *k*-dimensional Weisfeiler-Leman algorithm decides isomorphism.
- For each $k \in \mathbb{N}$, $C^k \neq \mathsf{PTIME}$.
- \implies Since every FPC-sentence is equivalent to a \mathcal{C}^k -sentence for a fixed k, FPC \neq PTIME.

Definition

Let $\mathfrak{A},\mathfrak{B}$ two structures, $k \in \mathbb{N}$ the number of pebbles.

The *position* after any round is $(\bar{a} \in A^{\ell}, \bar{b} \in B^{\ell})$ with $\ell \leq k$. In each round,

• Spoiler may remove a pebble-pair (a_i, b_i) that is currently on the board.

Definition

Let $\mathfrak{A}, \mathfrak{B}$ two structures, $k \in \mathbb{N}$ the number of pebbles.

- Spoiler may remove a pebble-pair (a_i, b_i) that is currently on the board.
- Duplicator announces a bijection $f: A \rightarrow B$.

Definition

Let $\mathfrak{A}, \mathfrak{B}$ two structures, $k \in \mathbb{N}$ the number of pebbles.

- Spoiler may remove a pebble-pair (a_i, b_i) that is currently on the board.
- Duplicator announces a bijection $f: A \rightarrow B$.
- Spoiler places a pebble a_i on an element of A, and b_i on $f(a_i)$.

Definition

Let $\mathfrak{A},\mathfrak{B}$ two structures, $k \in \mathbb{N}$ the number of pebbles.

- Spoiler may remove a pebble-pair (a_i, b_i) that is currently on the board.
- Duplicator announces a bijection $f: A \rightarrow B$.
- Spoiler places a pebble a_i on an element of A, and b_i on $f(a_i)$.
- If $\bar{a} \to \bar{b}$ does not define a local isomorphism $\mathfrak{A}[\bar{a}] \to \mathfrak{B}[\bar{b}]$, then Spoiler wins.

Definition

Let $\mathfrak{A},\mathfrak{B}$ two structures, $k \in \mathbb{N}$ the number of pebbles.

- Spoiler may remove a pebble-pair (a_i, b_i) that is currently on the board.
- Duplicator announces a bijection $f: A \rightarrow B$.
- Spoiler places a pebble a_i on an element of A, and b_i on $f(a_i)$.
- If $\bar{a} \to \bar{b}$ does not define a local isomorphism $\mathfrak{A}[\bar{a}] \to \mathfrak{B}[\bar{b}]$, then Spoiler wins.

Definition

Let $\mathfrak{A}, \mathfrak{B}$ two structures, $k \in \mathbb{N}$ the number of pebbles.

The *position* after any round is $(\bar{a} \in A^{\ell}, \bar{b} \in B^{\ell})$ with $\ell \leq k$. In each round,

- Spoiler may remove a pebble-pair (a_i, b_i) that is currently on the board.
- Duplicator announces a bijection $f: A \rightarrow B$.
- Spoiler places a pebble a_i on an element of A, and b_i on $f(a_i)$.
- If $\bar{a} \to \bar{b}$ does not define a local isomorphism $\mathfrak{A}[\bar{a}] \to \mathfrak{B}[\bar{b}]$, then Spoiler wins.

Duplicator wins if the play continues forever without Spoiler winning.

Definition

Let $\mathfrak{A}, \mathfrak{B}$ two structures, $k \in \mathbb{N}$ the number of pebbles.

The *position* after any round is $(\bar{a} \in A^{\ell}, \bar{b} \in B^{\ell})$ with $\ell \leq k$. In each round,

- Spoiler may remove a pebble-pair (a_i, b_i) that is currently on the board.
- Duplicator announces a bijection $f: A \rightarrow B$.
- Spoiler places a pebble a_i on an element of A, and b_i on $f(a_i)$.
- If $\bar{a} \to \bar{b}$ does not define a local isomorphism $\mathfrak{A}[\bar{a}] \to \mathfrak{B}[\bar{b}]$, then Spoiler wins.

Duplicator wins if the play continues forever without Spoiler winning.

Theorem (Hella, 1996)

Duplicator has a winning strategy in the k-pebble game on $(\mathfrak{A},\mathfrak{B})$ if and only if $\mathfrak{A} \equiv_{\mathcal{C}^k} \mathfrak{B}$.

Motto: Construct locally consistent globally inconsistent instances.

MC Escher on Equations

$$O + 1 + 1 + O + 1 + O = 0 \mod 2$$
?

Benedikt Pago (University of Cambridge)

MC Escher on Equations

$$0 + 1 + 1 + 0 + 1 + 0 = 0 \mod 2$$
?

Benedikt Pago (University of Cambridge)

Plan

Starting point: A **CSP instance** that is hard for *k-consistency*.

Second step: Lifting to graph isomorphism instances hard for *k-Weisfeiler-Leman*.

- **Variables:** For each $e \in E$, we have a variable x_e .
- **Equations:** For each $v \in V$, we have an equation

$$\sum_{e \in E(v)} x_e = \lambda(v) \mod 2.$$

- **Variables:** For each $e \in E$, we have a variable x_e .
- **Equations:** For each $v \in V$, we have an equation

$$\sum_{e \in E(v)} x_e = \lambda(v) \mod 2.$$

- **Variables:** For each $e \in E$, we have a variable x_e .
- **Equations:** For each $v \in V$, we have an equation

$$\sum_{e \in E(v)} x_e = \lambda(v) \mod 2.$$

- **Variables:** For each $e \in E$, we have a variable x_e .
- **Equations:** For each $v \in V$, we have an equation

$$\sum_{e \in E(v)} x_e = \lambda(v) \mod 2.$$

Given a graph G = (V, E) with node labels $\lambda \colon V \to \mathbb{Z}_2$, define the *Tseitin system* $\mathcal{T}(G, \lambda)$:

- **Variables:** For each $e \in E$, we have a variable x_e .
- **Equations:** For each $v \in V$, we have an equation

$$\sum_{e \in E(v)} x_e = \lambda(v) \mod 2.$$

Lemma

 $\mathcal{T}(G,\lambda)$ is satisfiable over \mathbb{Z}_2 if and only if $\sum_{v\in V}\lambda(v)=0\mod 2$.

Given a graph G = (V, E) with node labels $\lambda \colon V \to \mathbb{Z}_2$, define the *Tseitin system* $\mathcal{T}(G, \lambda)$:

- **Variables:** For each $e \in E$, we have a variable x_e .
- **Equations:** For each $v \in V$, we have an equation

$$\sum_{e \in E(v)} x_e = \lambda(v) \mod 2.$$

Lemma (Atserias, Bulatov, Dalmau, 2007)

Given a graph G=(V,E) with node labels $\lambda\colon V\to\mathbb{Z}_2$, define the *Tseitin system* $\mathcal{T}(G,\lambda)$:

- **Variables:** For each $e \in E$, we have a variable x_e .
- **Equations:** For each $v \in V$, we have an equation

$$\sum_{e \in E(v)} x_e = \lambda(v) \mod 2.$$

Lemma (Atserias, Bulatov, Dalmau, 2007)

Given a graph G = (V, E) with node labels $\lambda \colon V \to \mathbb{Z}_2$, define the *Tseitin system* $\mathcal{T}(G, \lambda)$:

- **Variables:** For each $e \in E$, we have a variable x_e .
- **Equations:** For each $v \in V$, we have an equation

$$\sum_{e \in E(v)} x_e = \lambda(v) \mod 2.$$

Lemma (Atserias, Bulatov, Dalmau, 2007)

Given a graph G = (V, E) with node labels $\lambda \colon V \to \mathbb{Z}_2$, define the *Tseitin system* $\mathcal{T}(G, \lambda)$:

- **Variables:** For each $e \in E$, we have a variable x_e .
- **Equations:** For each $v \in V$, we have an equation

$$\sum_{e \in E(v)} x_e = \lambda(v) \mod 2.$$

Lemma (Atserias, Bulatov, Dalmau, 2007)

Given a graph G = (V, E) with node labels $\lambda \colon V \to \mathbb{Z}_2$, define the *Tseitin system* $\mathcal{T}(G, \lambda)$:

- **Variables:** For each $e \in E$, we have a variable x_e .
- **Equations:** For each $v \in V$, we have an equation

$$\sum_{e \in E(v)} x_e = \lambda(v) \mod 2.$$

Lemma (Atserias, Bulatov, Dalmau, 2007)

Given a graph G = (V, E) with node labels $\lambda \colon V \to \mathbb{Z}_2$, define the *Tseitin system* $\mathcal{T}(G, \lambda)$:

- **Variables:** For each $e \in E$, we have a variable x_e .
- **Equations:** For each $v \in V$, we have an equation

$$\sum_{e \in E(v)} x_e = \lambda(v) \mod 2.$$

Lemma (Atserias, Bulatov, Dalmau, 2007)

Given a graph G = (V, E) with node labels $\lambda \colon V \to \mathbb{Z}_2$, define the *Tseitin system* $\mathcal{T}(G, \lambda)$:

- **Variables:** For each $e \in E$, we have a variable x_e .
- **Equations:** For each $v \in V$, we have an equation

$$\sum_{e \in E(v)} x_e = \lambda(v) \mod 2.$$

Lemma (Atserias, Bulatov, Dalmau, 2007)

If k is smaller than the dimensions of the grid, the k-consistency algorithm does not detect unsatisfiability of $\mathcal{T}(G, \lambda)$.

Proof: Duplicator keeps the violated equation outside of the local window.

Given a graph G = (V, E) with node labels $\lambda \colon V \to \mathbb{Z}_2$, define the *Tseitin system* $\mathcal{T}(G, \lambda)$:

- **Variables:** For each $e \in E$, we have a variable x_e .
- **Equations:** For each $v \in V$, we have an equation

$$\sum_{e \in E(v)} x_e = \lambda(v) \mod 2.$$

Problem: In the logic C^k , we can decide satisfiability by expressing how many equations are odd.

Reminder: Separating FPC from PTIME

Goal: Construct a family of pairs of graphs $(G_n, H_n)_{n \in \mathbb{N}}$ such that

- For every $k \in \mathbb{N}$, for large enough $n \in \mathbb{N}$, it holds $G_n \equiv_{\mathcal{C}^k} H_n$.
- For all $n \in \mathbb{N}$, $G_n \ncong H_n$.
- There is a PTIME-algorithm that distinguishes all G_n and H_n .

Properties of CFI graphs

Lemma (Cai, Fürer, Immerman, 1992)

Let G be a connected graph, and $\lambda_0, \lambda_1 \colon V \to \mathbb{Z}_2$ two node labellings.

$$\mathsf{CFI}(G,\lambda_0) \cong \mathsf{CFI}(G,\lambda_1) \iff \sum_{v \in V} \lambda_0(v) = \sum_{v \in V} \lambda_1(v) \mod 2.$$

Properties of CFI graphs

Lemma (Cai, Fürer, Immerman, 1992)

Let G be a connected graph, and $\lambda_0, \lambda_1 \colon V \to \mathbb{Z}_2$ two node labellings.

$$CFI(G, \lambda_0) \cong CFI(G, \lambda_1) \iff \sum_{v \in V} \lambda_0(v) = \sum_{v \in V} \lambda_1(v) \mod 2.$$

To show:

Lemma (Cai, Fürer, Immerman, 1992)

If $k \in \mathbb{N}$ is smaller than any separator of G, then

$$CFI(G, \lambda_0) \equiv_{\mathcal{C}^k} CFI(G, \lambda_1),$$

for any choice of λ_0, λ_1 .

• Each inner vertex is labelled with an even set *S* of incident edges.

- Each inner vertex is labelled with an even set S of incident edges.
- The vertex with label S is connected with $\begin{cases} e_1 & \text{if } e \in S \\ e_0 & e \notin S \end{cases}$.

- Each inner vertex is labelled with an even set S of incident edges.
- The vertex with label S is connected with $\begin{cases} e_1 & \text{if } e \in S \\ e_0 & e \notin S \end{cases}.$
- Every "flip" of an even number of edges induces an automorphism of the gadget.

- Each inner vertex is labelled with an even set S of incident edges.
- The vertex with label S is connected with $\begin{cases} e_1 & \text{if } e \in S \\ e_0 & e \notin S \end{cases}.$
- Every "flip" of an even number of edges induces an automorphism of the gadget.
- Every flip of an odd number of edges is an isomorphism into the odd gadget.

- Each inner vertex is labelled with an odd set S of incident edges.
- The vertex with label S is connected with $\begin{cases} e_1 & \text{if } e \in S \\ e_0 & e \notin S \end{cases}.$
- Every "flip" of an even number of edges induces an automorphism of the gadget.
- Every flip of an odd number of edges is an isomorphism into the even gadget.

Proving indistinguishability of CFI graphs in counting logic

To show:

Lemma (Cai, Fürer, Immerman, 1992)

If $k \in \mathbb{N}$ is smaller than any separator of G, then

$$CFI(G, \lambda_0) \equiv_{\mathcal{C}^k} CFI(G, \lambda_1),$$

for any choice of λ_0, λ_1 .

Proving indistinguishability of CFI graphs in counting logic

To show:

Lemma (Cai, Fürer, Immerman, 1992)

If $k \in \mathbb{N}$ is smaller than any separator of G, then

$$CFI(G, \lambda_0) \equiv_{\mathcal{C}^k} CFI(G, \lambda_1),$$

for any choice of λ_0, λ_1 .

We have to show: Duplicator wins the bijective k-pebble game on CFI(G, λ_0) and CFI(G, λ_1).

Reminder: the bijective pebble game

Definition

Let $\mathfrak{A}, \mathfrak{B}$ two structures, $k \in \mathbb{N}$ the number of pebbles.

The *position* after any round is $(\bar{a} \in A^{\ell}, \bar{b} \in B^{\ell})$ with $\ell \leq k$. In each round,

- Spoiler may remove a pebble-pair (a_i, b_i) that is currently on the board.
- Duplicator announces a bijection $f: A \rightarrow B$.
- Spoiler places a pebble a_i on an element of A_i and b_i on $f(a_i)$.
- If $\bar{a} \to \bar{b}$ does not define a local isomorphism $\mathfrak{A}[\bar{a}] \to \mathfrak{B}[\bar{b}]$, then Spoiler wins.

Duplicator wins if the play continues forever without Spoiler winning.

• If $CFI(G, \lambda_0) \not\cong CFI(G, \lambda_1)$, then there is a bijection $f: CFI(G, \lambda_0) \to CFI(G, \lambda_1)$ which is an isomorphism except at the gadget of one vertex $u \in V(G)$. Call such an f good bar u.

- If $CFI(G, \lambda_0) \not\cong CFI(G, \lambda_1)$, then there is a bijection $f: CFI(G, \lambda_0) \to CFI(G, \lambda_1)$ which is an isomorphism except at the gadget of one vertex $u \in V(G)$. Call such an f good bar u.
- Duplicator maintains the **invariant** that the current bijection f is good bar u, for a vertex u whose gadget is pebble-free and in a component of G of size $\geq |V(G)|/2$.

- If $CFI(G, \lambda_0) \not\cong CFI(G, \lambda_1)$, then there is a bijection $f: CFI(G, \lambda_0) \to CFI(G, \lambda_1)$ which is an isomorphism except at the gadget of one vertex $u \in V(G)$. Call such an f good bar u.
- Duplicator maintains the **invariant** that the current bijection f is good bar u, for a vertex u whose gadget is pebble-free and in a component of G of size $\geq |V(G)|/2$.
- Suppose the current bijection f satisfies the **invariant** for $u \in V(G)$, and Spoiler places a pebble on some $x \in V(CFI(G, \lambda_0))$ such that $(x, y) \in E(CFI(G, \lambda_0))$ but $(f(x), f(y)) \notin E(CFI(G, \lambda_1))$.

- If $CFI(G, \lambda_0) \not\cong CFI(G, \lambda_1)$, then there is a bijection $f: CFI(G, \lambda_0) \to CFI(G, \lambda_1)$ which is an isomorphism except at the gadget of one vertex $u \in V(G)$. Call such an f good bar u.
- Duplicator maintains the **invariant** that the current bijection f is good bar u, for a vertex u whose gadget is pebble-free and in a component of G of size $\geq |V(G)|/2$.
- Suppose the current bijection f satisfies the **invariant** for $u \in V(G)$, and Spoiler places a pebble on some $x \in V(CFI(G, \lambda_0))$ such that $(x, y) \in E(CFI(G, \lambda_0))$ but $(f(x), f(y)) \notin E(CFI(G, \lambda_1))$.
- Duplicator chooses an "escape path" P from u to some pebble-free $v \in V(G)$.

- If $CFI(G, \lambda_0) \not\cong CFI(G, \lambda_1)$, then there is a bijection $f: CFI(G, \lambda_0) \to CFI(G, \lambda_1)$ which is an isomorphism except at the gadget of one vertex $u \in V(G)$. Call such an f good bar u.
- Duplicator maintains the **invariant** that the current bijection f is good bar u, for a vertex u whose gadget is pebble-free and in a component of G of size $\geq |V(G)|/2$.
- Suppose the current bijection f satisfies the **invariant** for $u \in V(G)$, and Spoiler places a pebble on some $x \in V(CFI(G, \lambda_0))$ such that $(x, y) \in E(CFI(G, \lambda_0))$ but $(f(x), f(y)) \notin E(CFI(G, \lambda_1))$.
- Duplicator chooses an "escape path" P from u to some pebble-free $v \in V(G)$.
- In the next round, Duplicator defines a new bijection f' like f but with all edges in P flipped. This f' is good bar v.

Indistinguishability of CFI graphs

Lemma (Cai, Fürer, Immerman, 1992)

If $k \in \mathbb{N}$ is smaller than any separator of G, then

$$CFI(G, \lambda_0) \equiv_{\mathcal{C}^k} CFI(G, \lambda_1),$$

for any choice of λ_0, λ_1 .

Indistinguishability of CFI graphs

Lemma (Cai, Fürer, Immerman, 1992)

If $k \in \mathbb{N}$ is smaller than any separator of G, then

$$CFI(G, \lambda_0) \equiv_{\mathcal{C}^k} CFI(G, \lambda_1),$$

for any choice of λ_0, λ_1 .

Choose a family of base graphs $(G_n)_{n\in\mathbb{N}}$ such that in each G_n , any separator is large:

- The $(n \times n)$ -grid has separator size $\Theta(\sqrt{|V(G_n)|})$.
- 3-regular **expander graphs** have separator size $\Theta(|V(G_n)|)$.

Wrap-up

Theorem (Cai, Fürer, Immerman, 1992)

There is a family of pairs of graphs $(G_n, H_n)_{n \in \mathbb{N}}$ such that

- For every $k \in o(|V(G_n)|)$ it holds $G_n \equiv_{C^k} H_n$ for all large enough n.
- For all $n \in \mathbb{N}$, $G_n \ncong H_n$.
- There is a PTIME-algorithm that distinguishes all G_n and H_n .

Wrap-up

Theorem (Cai, Fürer, Immerman, 1992)

There is a family of pairs of graphs $(G_n, H_n)_{n \in \mathbb{N}}$ such that

- For every $k \in o(|V(G_n)|)$ it holds $G_n \equiv_{C^k} H_n$ for all large enough n.
- For all $n \in \mathbb{N}$, $G_n \ncong H_n$.
- There is a PTIME-algorithm that distinguishes all G_n and H_n .

Distinguishability in PTIME: Arbitrarily assign labels e_0 , e_1 to the vertices in edge gadgets. Then read off how many odd vertex gadgets there are.

Best possible pebble number

Theorem (Atserias, Bulatov, Dawar, 2009)

Let G be a connected base graph and t its treewidth. Then $CFI(G, \lambda) \equiv_{C^k} CFI(G, \lambda')$ for all $k \leq t$.

Applications of the CFI construction

Lower bounds based on the CFI construction

- CFI graphs are hard to distinguish in the polynomial calculus proof system [Berkholz, Grohe, 2015].
- So-called "multipedes" [Gurevich, Shelah, 1996] are a hard example for individualisation refinement graph isomorphism algorithms [Neuen, Schweitzer, 2017].
- A disjunction construction of CFI graphs is hard for integer programming relaxations of graph isomorphism [Berkholz, Grohe, 2017] and CSPs [Lichter, P., 2025].
- A variant of the CFI construction yields graphs that have a different number of homomorphisms from a fixed graph *F* [Roberson, 2022].

Lower bounds for the polynomial calculus

The **polynomial calculus** allows to derive that a given set of polynomials has no common zero.

Definition (Proof rules)

Let \mathbb{F} be a field, \mathcal{V} the set of variables, f, g polynomials.

Linear combination:

$$\frac{f g}{a \cdot f + b \cdot g}$$

$$a,b\in \mathbb{F}.$$

Multiplication with variable:

$$\frac{f}{Xf}$$

$$X \in \mathcal{V}$$
.

Lower bounds for the polynomial calculus

Theorem (Berkholz, Grohe, 2015)

Any polynomial calculus proof of non-isomorphism of CFI graphs requires at least linear degree.

Multipedes

CFI graphs have many automorphisms, which explains why \mathcal{C}^k cannot define them up to isomorphism.

But can C^k define isomorphism on structures without automorphisms?

Multipedes

CFI graphs have many automorphisms, which explains why \mathcal{C}^k cannot define them up to isomorphism.

But can C^k define isomorphism on structures without automorphisms?

No! The feet of a *multipede* are indistinguishable even though it has no automorphisms.

Multipedes

Theorem (Neuen, Schweitzer, 2017)

Graph isomorphism algorithms based on the individualisation-refinement technique require exponential running time to distinguish multipedes.

Lower bounds for integer programming algorithms

Tseitin equations and CFI graphs can be defined over any finite field, not just \mathbb{Z}_2 .

A combination of \mathbb{Z}_2 -and \mathbb{Z}_3 -CFI structures yields hard instances for algorithms based on *integer linear programming*.

Theorem (Berkholz, Grohe, 2017; Lichter, P. 2025)

- Any sublinear level of the natural integer programming relaxation of graph isomorphism fails to distinguish all graphs.
- There is a tractable CSP which is not solved by almost all currently studied CSP algorithms based on integer programming.

Lower bounds for integer programming algorithms

Tseitin equations and CFI graphs can be defined over any finite field, not just \mathbb{Z}_2 .

A combination of \mathbb{Z}_2 -and \mathbb{Z}_3 -CFI structures yields hard instances for algorithms based on *integer linear programming*.

Theorem (Berkholz, Grohe, 2017; Lichter, P. 2025)

- Any sublinear level of the natural integer programming relaxation of graph isomorphism fails to distinguish all graphs.
- There is a tractable CSP which is not solved by almost all currently studied CSP algorithms based on integer programming.

Open problem: To get hard examples for more CSP algorithms, a *non-Abelian* CFI construction seems to be needed.

Two graphs G, H are called **homomorphism-indistinguishable** over a graph class \mathcal{F} if every graph $F \in \mathcal{F}$ has the same numbers of homomorphisms into G and H.

Two graphs G, H are called **homomorphism-indistinguishable** over a graph class \mathcal{F} if every graph $F \in \mathcal{F}$ has the same numbers of homomorphisms into G and H.

- Isomorphism is homomorphism-indistinguishability over all graphs [Lovász, 1967].
- C^k -equivalence is homomorphism-indistinguishability over all graphs of treewidth $\leq k$ [Dvořák, 2010].
- Cospectrality is homomorphism-indistinguishability over all cycles.
- ...

Roberson showed how to use the CFI construction to generate, given G, two graphs G_0, G_1 such that $hom(G, G_0) \neq hom(G, G_1)$.

Roberson showed how to use the CFI construction to generate, given G, two graphs G_0 , G_1 such that

$$hom(G, G_0) \neq hom(G, G_1).$$

This idea has numerous applications, such as:

Theorem (Roberson, 2022)

Homomorphism indistinguishability over graphs of bounded degree is not isomorphism.

Theorem (Lichter, P., Seppelt, 2024)

Equivalence in linear-algebraic logic is not captured by any homomorphism indistinguishability relation.

References i

- [1] Albert Atserias, Andrei Bulatov, and Anuj Dawar. "Affine systems of equations and counting infinitary logic". In: Theoretical Computer Science 410.18 (2009), pp. 1666–1683.
- [2] Albert Atserias, Andrei A. Bulatov, and Víctor Dalmau. "On the Power of *k*-Consistency". In: Automata, Languages and Programming, 34th International Colloquium, ICALP 2007, Wroclaw, Poland, July 9-13, 2007, Proceedings. Ed. by Lars Arge et al. 4596. Lecture Notes in Computer Science. Springer, 2007, pp. 279–290. 10.1007/978-3-540-73420-8_26.
- [3] Christoph Berkholz and Martin Grohe. "Limitations of algebraic approaches to graph isomorphism testing". In: International Colloquium on Automata, Languages, and Programming. Springer. 2015, pp. 155–166.
- [4] Christoph Berkholz and Martin Grohe. "Linear Diophantine Equations, Group CSPs, and Graph Isomorphism". In: Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2017, Barcelona, Spain, Hotel Porta Fira, January 16-19. Ed. by Philip N. Klein. SIAM, 2017, pp. 327–339. 10.1137/1.9781611974782.21.

References ii

- [5] Jin-yi Cai, Martin Fürer, and Neil Immerman. "An optimal lower bound on the number of variables for graph identification". In: Combinatorica 12 (1992), pp. 389–410.
- [6] Zdeněk Dvořák. "On recognizing graphs by numbers of homomorphisms". In: Journal of Graph Theory 64.4 (2010), pp. 330–342.
- [7] Yuri Gurevich and Saharon Shelah. **"On finite rigid structures".** In: The Journal of Symbolic Logic 61.2 (1996), pp. 549–562.
- [8] L. Hella. "Logical Hierarchies in PTIME". In: Information and Computation 129 (1996), pp. 1–19.
- [9] M. Lichter and B. Pago. Limitations of Affine Integer Relaxations for Solving Constraint Satisfaction Problems. Ed. by Keren Censor-Hillel et al. Dagstuhl, Germany, 2025. 10.4230/LIPIcs.ICALP.2025.166. https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2025.166.

References iii

- [10] M. Lichter, B. Pago, and T. Seppelt. "Limitations of Game Comonads for Invertible-Map Equivalence via Homomorphism Indistinguishability". In: 32nd EACSL Annual Conference on Computer Science Logic (CSL 2024). Ed. by Aniello Murano and Alexandra Silva. 288. Leibniz International Proceedings in Informatics (LIPIcs). Dagstuhl, Germany: Schloss Dagstuhl Leibniz-Zentrum für Informatik, 2024, 36:1–36:19. ISBN: 978-3-95977-310-2. 10.4230/LIPIcs.CSL.2024.36. https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CSL.2024.36.
- [11] László Lovász. "Operations with structures". In: Acta Mathematica Hungarica 18.3-4 (1967), pp. 321–328.
- [12] Daniel Neuen and Pascal Schweitzer. "An exponential lower bound for Individualization-Refinement algorithms for Graph Isomorphism". In: CoRR abs/1705.03283 (2017). arXiv: 1705.03283. http://arxiv.org/abs/1705.03283.
- [13] David E. Roberson. **Oddomorphisms and homomorphism indistinguishability over graphs of bounded degree.** 2022. arXiv: 2206.10321 [math.CO]. https://arxiv.org/abs/2206.10321.