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Reminder

FO

P

FPC

IFP

NP = ∃SO

≈ Weisfeiler-Leman algorithm
for Graph Isomorphism

≈ k-consistency algorithm for CSP
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Infinitary Counting Logic

Just as IFP can be seen as a fragment of Lω
∞ω, FPC is a fragment of Cω

∞ω.

For every k ∈ N, Ck∞ω is the extension of Lk∞ω with counting quantifiers ∃≥mx for all m ∈ N.

Theorem (Grädel and Otto, 1993)
For every sentence ψ ∈ FPC, there exists a k ∈ N and a ϕ ∈ Ck∞ω such that ψ and ϕ are equivalent
on all finite structures.
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Separating FPC from Ptime

Goal: Construct a family of pairs of graphs (Gn,Hn)n∈N such that

• For every k ∈ N, for large enough n ∈ N, it holds Gn ≡Ck Hn.
• For all n ∈ N, Gn 6∼= Hn.
• There is a Ptime-algorithm that distinguishes all Gn and Hn.

Consequences:

• There is no fixed k such that Ck-equivalence is the same as isomorphism.
• There is no fixed k such that the k-dimensional Weisfeiler-Leman algorithm decides
isomorphism.

• For each k ∈ N, Ck 6= Ptime.
• =⇒ Since every FPC-sentence is equivalent to a Ck-sentence for a fixed k, FPC 6= Ptime.
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The bijective k-pebble game for Ck∞ω

Definition
Let A,B two structures, k ∈ N the number of pebbles.
The position after any round is (ā ∈ A`, b̄ ∈ B`) with ` ≤ k. In each round,

• Spoiler may remove a pebble-pair (ai,bi) that is currently on the board.

• Duplicator announces a bijection f : A→ B.
• Spoiler places a pebble ai on an element of A, and bi on f (ai).
• If ā→ b̄ does not define a local isomorphism A[ā] → B[b̄], then Spoiler wins.

Duplicator wins if the play continues forever without Spoiler winning.

Theorem (Hella, 1996)
Duplicator has a winning strategy in the k-pebble game on (A,B) if and only if A ≡Ck B.
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• If ā→ b̄ does not define a local isomorphism A[ā] → B[b̄], then Spoiler wins.
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The position after any round is (ā ∈ A`, b̄ ∈ B`) with ` ≤ k. In each round,

• Spoiler may remove a pebble-pair (ai,bi) that is currently on the board.
• Duplicator announces a bijection f : A→ B.
• Spoiler places a pebble ai on an element of A, and bi on f (ai).
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Motto: Construct locally consistent globally inconsistent instances.
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MC Escher on Equations

0 + 1 + 1 + 0 + 1 + 0 = 0 mod 2?
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Plan

Starting point: A CSP instance that is hard for k-consistency.

Second step: Lifting to graph isomorphism instances hard for k-Weisfeiler-Leman.
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Tseitin systems

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0

0 0 1 0

0 1 0 0

0 0 0 0

0 0 0 0

0 0 1 0

0 1 0 1

0 0 0 0

0 0 0 0

0 0 1 0

Given a graph G = (V, E) with node labels λ : V → Z2, define the
Tseitin system T (G, λ):
• Variables: For each e ∈ E, we have a variable xe.
• Equations: For each v ∈ V , we have an equation∑

e∈E(v)

xe = λ(v) mod 2.

Lemma
T (G, λ) is satisfiable over Z2 if and only if

∑
v∈V λ(v) = 0 mod 2.
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Tseitin systems

0 1 0 1
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Given a graph G = (V, E) with node labels λ : V → Z2, define the
Tseitin system T (G, λ):
• Variables: For each e ∈ E, we have a variable xe.
• Equations: For each v ∈ V , we have an equation∑

e∈E(v)

xe = λ(v) mod 2.

Lemma (Atserias, Bulatov, Dalmau, 2007)
If k is smaller than the dimensions of the grid, the k-consistency
algorithm does not detect unsatisfiability of T (G, λ).

Proof: Duplicator keeps the violated equation outside of the local
window.
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Tseitin systems

0 1 0 1

0 0 0 0

0 0 0 0

0 0 1 0

Given a graph G = (V, E) with node labels λ : V → Z2, define the
Tseitin system T (G, λ):
• Variables: For each e ∈ E, we have a variable xe.
• Equations: For each v ∈ V , we have an equation∑

e∈E(v)

xe = λ(v) mod 2.

Problem: In the logic Ck, we can decide satisfiability by expressing
how many equations are odd.
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Reminder: Separating FPC from Ptime

Goal: Construct a family of pairs of graphs (Gn,Hn)n∈N such that

• For every k ∈ N, for large enough n ∈ N, it holds Gn ≡Ck Hn.
• For all n ∈ N, Gn 6∼= Hn.
• There is a Ptime-algorithm that distinguishes all Gn and Hn.
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From Tseitin systems to Cai-Fürer-Immerman graphs

0 1 0 0

0 0 0 0

0 0 0 0

0 0 0 0
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0 0 0 0

H
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Properties of CFI graphs

Lemma (Cai, Fürer, Immerman, 1992)
Let G be a connected graph, and λ0, λ1 : V → Z2 two node labellings.

CFI(G, λ0) ∼= CFI(G, λ1) ⇐⇒
∑
v∈V

λ0(v) =
∑
v∈V

λ1(v) mod 2.

To show:

Lemma (Cai, Fürer, Immerman, 1992)
If k ∈ N is smaller than any separator of G, then

CFI(G, λ0) ≡Ck CFI(G, λ1),

for any choice of λ0, λ1.

Benedikt Pago (University of Cambridge) 15



Properties of CFI graphs

Lemma (Cai, Fürer, Immerman, 1992)
Let G be a connected graph, and λ0, λ1 : V → Z2 two node labellings.

CFI(G, λ0) ∼= CFI(G, λ1) ⇐⇒
∑
v∈V

λ0(v) =
∑
v∈V

λ1(v) mod 2.

To show:

Lemma (Cai, Fürer, Immerman, 1992)
If k ∈ N is smaller than any separator of G, then

CFI(G, λ0) ≡Ck CFI(G, λ1),

for any choice of λ0, λ1.

Benedikt Pago (University of Cambridge) 15



The CFI gadget

∅

{e, f}
{e, g}

{e,h}

{f, g}

{f,h}
{g,h}

{e, f, g,h}

e0

e1

g0

g1

f0 f1

h0 h1

• Each inner vertex is labelled with
an even set S of incident edges.

• The vertex with label S is

connected with

e1 if e ∈ S
e0 e /∈ S

.

• Every “flip” of an even number of
edges induces an automorphism of
the gadget.

• Every flip of an odd number of
edges is an isomorphism into the
odd gadget.
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The CFI gadget

{e}

{f}
{g}

{h}

{e, f, g}

{e, f,h}
{e, g,h}

{f, g,h}

e0

e1

g0

g1

f0 f1

h0 h1
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an odd set S of incident edges.

• The vertex with label S is

connected with
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.

• Every “flip” of an even number of
edges induces an automorphism of
the gadget.
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Proving indistinguishability of CFI graphs in counting logic

To show:

Lemma (Cai, Fürer, Immerman, 1992)
If k ∈ N is smaller than any separator of G, then

CFI(G, λ0) ≡Ck CFI(G, λ1),

for any choice of λ0, λ1.

We have to show: Duplicator wins the bijective k-pebble game on CFI(G, λ0) and CFI(G, λ1).
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Reminder: the bijective pebble game

Definition
Let A,B two structures, k ∈ N the number of pebbles.
The position after any round is (ā ∈ A`, b̄ ∈ B`) with ` ≤ k. In each round,

• Spoiler may remove a pebble-pair (ai,bi) that is currently on the board.
• Duplicator announces a bijection f : A→ B.
• Spoiler places a pebble ai on an element of A, and bi on f (ai).
• If ā→ b̄ does not define a local isomorphism A[ā] → B[b̄], then Spoiler wins.

Duplicator wins if the play continues forever without Spoiler winning.
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A winning strategy for Duplicator

• If CFI(G, λ0) 6∼= CFI(G, λ1), then there is a bijection f : CFI(G, λ0) → CFI(G, λ1) which is an
isomorphism except at the gadget of one vertex u ∈ V(G). Call such an f good bar u.

• Duplicator maintains the invariant that the current bijection f is good bar u, for a vertex u
whose gadget is pebble-free and in a component of G of size ≥ |V(G)|/2.

• Suppose the current bijection f satisfies the invariant for u ∈ V(G), and Spoiler places a pebble
on some x ∈ V(CFI(G, λ0)) such that (x, y) ∈ E(CFI(G, λ0)) but (f (x), f (y)) /∈ E(CFI(G, λ1)).

• Duplicator chooses an “escape path” P from u to some pebble-free v ∈ V(G).
• In the next round, Duplicator defines a new bijection f ′ like f but with all edges in P flipped.
This f ′ is good bar v.

Benedikt Pago (University of Cambridge) 20
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Indistinguishability of CFI graphs

Lemma (Cai, Fürer, Immerman, 1992)
If k ∈ N is smaller than any separator of G, then

CFI(G, λ0) ≡Ck CFI(G, λ1),

for any choice of λ0, λ1.

Choose a family of base graphs (Gn)n∈N such that in each Gn, any separator is large:

• The (n× n)-grid has separator size Θ(
√
|V(Gn)|).

• 3-regular expander graphs have separator size Θ(|V(Gn)|).
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Wrap-up

Theorem (Cai, Fürer, Immerman, 1992)
There is a family of pairs of graphs (Gn,Hn)n∈N such that

• For every k ∈ o(|V(Gn)|) it holds Gn ≡Ck Hn for all large enough n.
• For all n ∈ N, Gn 6∼= Hn.
• There is a Ptime-algorithm that distinguishes all Gn and Hn.

Distinguishability in Ptime: Arbitrarily assign labels e0, e1 to the vertices in edge gadgets. Then read
off how many odd vertex gadgets there are.

Benedikt Pago (University of Cambridge) 22



Wrap-up

Theorem (Cai, Fürer, Immerman, 1992)
There is a family of pairs of graphs (Gn,Hn)n∈N such that

• For every k ∈ o(|V(Gn)|) it holds Gn ≡Ck Hn for all large enough n.
• For all n ∈ N, Gn 6∼= Hn.
• There is a Ptime-algorithm that distinguishes all Gn and Hn.

Distinguishability in Ptime: Arbitrarily assign labels e0, e1 to the vertices in edge gadgets. Then read
off how many odd vertex gadgets there are.

Benedikt Pago (University of Cambridge) 22



Best possible pebble number

Theorem (Atserias, Bulatov, Dawar, 2009)
Let G be a connected base graph and t its treewidth. Then CFI(G, λ) ≡Ck CFI(G, λ′) for all k ≤ t.
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Applications of the CFI construction



Lower bounds based on the CFI construction

• CFI graphs are hard to distinguish in the polynomial calculus proof system
[Berkholz, Grohe, 2015] .

• So-called “multipedes” [Gurevich, Shelah, 1996] are a hard example for individualisation
refinement graph isomorphism algorithms [Neuen, Schweitzer, 2017].

• A disjunction construction of CFI graphs is hard for integer programming relaxations of graph
isomorphism [Berkholz, Grohe, 2017] and CSPs [Lichter, P., 2025].

• A variant of the CFI construction yields graphs that have a different number of
homomorphisms from a fixed graph F [Roberson, 2022].
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Lower bounds for the polynomial calculus

The polynomial calculus allows to derive that a given set of polynomials has no common zero.

Definition (Proof rules)
Let F be a field, V the set of variables, f ,g polynomials.

Linear combination: f g
a · f + b · g a,b ∈ F.

Multiplication with variable: f
Xf X ∈ V.
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Lower bounds for the polynomial calculus

Theorem (Berkholz, Grohe, 2015)
Any polynomial calculus proof of non-isomorphism of CFI graphs requires at least linear degree.
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Multipedes

CFI graphs have many automorphisms, which explains why Ck cannot define them up to
isomorphism.

But can Ck define isomorphism on structures without automorphisms?

No! The feet of a multipede are indistinguishable even though it has no automorphisms.
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Multipedes

Theorem (Neuen, Schweitzer, 2017)
Graph isomorphism algorithms based on the individualisation-refinement technique require
exponential running time to distinguish multipedes.
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Lower bounds for integer programming algorithms

Tseitin equations and CFI graphs can be defined over any finite field, not just Z2.

A combination of Z2-and Z3-CFI structures yields hard instances for algorithms based on integer
linear programming.

Theorem (Berkholz, Grohe, 2017; Lichter, P. 2025)

• Any sublinear level of the natural integer programming relaxation of graph isomorphism fails
to distinguish all graphs.

• There is a tractable CSP which is not solved by almost all currently studied CSP algorithms
based on integer programming.

Open problem: To get hard examples for more CSP algorithms, a non-Abelian CFI construction
seems to be needed.
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Homomorphism indistinguishability

Two graphs G,H are called homomorphism-indistinguishable over a graph class F if every graph
F ∈ F has the same numbers of homomorphisms into G and H.

• Isomorphism is homomorphism-indistinguishability over all graphs [Lovász, 1967].
• Ck-equivalence is homomorphism-indistinguishability over all graphs of treewidth ≤ k
[Dvořák, 2010].

• Cospectrality is homomorphism-indistinguishability over all cycles.
• ...
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Homomorphism indistinguishability

Roberson showed how to use the CFI construction to generate, given G, two graphs G0,G1 such that

hom(G,G0) 6= hom(G,G1).

This idea has numerous applications, such as:

Theorem (Roberson, 2022)
Homomorphism indistinguishability over graphs of bounded degree is not isomorphism.

Theorem (Lichter, P., Seppelt, 2024)
Equivalence in linear-algebraic logic is not captured by any homomorphism indistinguishability
relation.
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