
The Cai-Fürer-Immerman construction

Benedikt Pago 1

ESSLLI 2025, Bochum
1University of Cambridge

Reminder

FO

P

FPC

IFP

NP = ∃SO

≈ Weisfeiler-Leman algorithm
for Graph Isomorphism

≈ k-consistency algorithm for CSP

Benedikt Pago (University of Cambridge) 2

Infinitary Counting Logic

Just as IFP can be seen as a fragment of Lω
∞ω, FPC is a fragment of Cω

∞ω.

For every k ∈ N, Ck∞ω is the extension of Lk∞ω with counting quantifiers ∃≥mx for all m ∈ N.

Theorem (Grädel and Otto, 1993)
For every sentence ψ ∈ FPC, there exists a k ∈ N and a ϕ ∈ Ck∞ω such that ψ and ϕ are equivalent
on all finite structures.

Benedikt Pago (University of Cambridge) 3

Infinitary Counting Logic

Just as IFP can be seen as a fragment of Lω
∞ω, FPC is a fragment of Cω

∞ω.

For every k ∈ N, Ck∞ω is the extension of Lk∞ω with counting quantifiers ∃≥mx for all m ∈ N.

Theorem (Grädel and Otto, 1993)
For every sentence ψ ∈ FPC, there exists a k ∈ N and a ϕ ∈ Ck∞ω such that ψ and ϕ are equivalent
on all finite structures.

Benedikt Pago (University of Cambridge) 3

Separating FPC from Ptime

Goal: Construct a family of pairs of graphs (Gn,Hn)n∈N such that

• For every k ∈ N, for large enough n ∈ N, it holds Gn ≡Ck Hn.
• For all n ∈ N, Gn 6∼= Hn.
• There is a Ptime-algorithm that distinguishes all Gn and Hn.

Consequences:

• There is no fixed k such that Ck-equivalence is the same as isomorphism.
• There is no fixed k such that the k-dimensional Weisfeiler-Leman algorithm decides
isomorphism.

• For each k ∈ N, Ck 6= Ptime.
• =⇒ Since every FPC-sentence is equivalent to a Ck-sentence for a fixed k, FPC 6= Ptime.

Benedikt Pago (University of Cambridge) 4

Separating FPC from Ptime

Goal: Construct a family of pairs of graphs (Gn,Hn)n∈N such that

• For every k ∈ N, for large enough n ∈ N, it holds Gn ≡Ck Hn.
• For all n ∈ N, Gn 6∼= Hn.
• There is a Ptime-algorithm that distinguishes all Gn and Hn.

Consequences:

• There is no fixed k such that Ck-equivalence is the same as isomorphism.
• There is no fixed k such that the k-dimensional Weisfeiler-Leman algorithm decides
isomorphism.

• For each k ∈ N, Ck 6= Ptime.
• =⇒ Since every FPC-sentence is equivalent to a Ck-sentence for a fixed k, FPC 6= Ptime.

Benedikt Pago (University of Cambridge) 4

The bijective k-pebble game for Ck∞ω

Definition
Let A,B two structures, k ∈ N the number of pebbles.
The position after any round is (ā ∈ A`, b̄ ∈ B`) with ` ≤ k. In each round,

• Spoiler may remove a pebble-pair (ai,bi) that is currently on the board.

• Duplicator announces a bijection f : A→ B.
• Spoiler places a pebble ai on an element of A, and bi on f (ai).
• If ā→ b̄ does not define a local isomorphism A[ā] → B[b̄], then Spoiler wins.

Duplicator wins if the play continues forever without Spoiler winning.

Theorem (Hella, 1996)
Duplicator has a winning strategy in the k-pebble game on (A,B) if and only if A ≡Ck B.

Benedikt Pago (University of Cambridge) 5

The bijective k-pebble game for Ck∞ω

Definition
Let A,B two structures, k ∈ N the number of pebbles.
The position after any round is (ā ∈ A`, b̄ ∈ B`) with ` ≤ k. In each round,

• Spoiler may remove a pebble-pair (ai,bi) that is currently on the board.
• Duplicator announces a bijection f : A→ B.

• Spoiler places a pebble ai on an element of A, and bi on f (ai).
• If ā→ b̄ does not define a local isomorphism A[ā] → B[b̄], then Spoiler wins.

Duplicator wins if the play continues forever without Spoiler winning.

Theorem (Hella, 1996)
Duplicator has a winning strategy in the k-pebble game on (A,B) if and only if A ≡Ck B.

Benedikt Pago (University of Cambridge) 5

The bijective k-pebble game for Ck∞ω

Definition
Let A,B two structures, k ∈ N the number of pebbles.
The position after any round is (ā ∈ A`, b̄ ∈ B`) with ` ≤ k. In each round,

• Spoiler may remove a pebble-pair (ai,bi) that is currently on the board.
• Duplicator announces a bijection f : A→ B.
• Spoiler places a pebble ai on an element of A, and bi on f (ai).

• If ā→ b̄ does not define a local isomorphism A[ā] → B[b̄], then Spoiler wins.

Duplicator wins if the play continues forever without Spoiler winning.

Theorem (Hella, 1996)
Duplicator has a winning strategy in the k-pebble game on (A,B) if and only if A ≡Ck B.

Benedikt Pago (University of Cambridge) 5

The bijective k-pebble game for Ck∞ω

Definition
Let A,B two structures, k ∈ N the number of pebbles.
The position after any round is (ā ∈ A`, b̄ ∈ B`) with ` ≤ k. In each round,

• Spoiler may remove a pebble-pair (ai,bi) that is currently on the board.
• Duplicator announces a bijection f : A→ B.
• Spoiler places a pebble ai on an element of A, and bi on f (ai).
• If ā→ b̄ does not define a local isomorphism A[ā] → B[b̄], then Spoiler wins.

Duplicator wins if the play continues forever without Spoiler winning.

Theorem (Hella, 1996)
Duplicator has a winning strategy in the k-pebble game on (A,B) if and only if A ≡Ck B.

Benedikt Pago (University of Cambridge) 5

The bijective k-pebble game for Ck∞ω

Definition
Let A,B two structures, k ∈ N the number of pebbles.
The position after any round is (ā ∈ A`, b̄ ∈ B`) with ` ≤ k. In each round,

• Spoiler may remove a pebble-pair (ai,bi) that is currently on the board.
• Duplicator announces a bijection f : A→ B.
• Spoiler places a pebble ai on an element of A, and bi on f (ai).
• If ā→ b̄ does not define a local isomorphism A[ā] → B[b̄], then Spoiler wins.

Duplicator wins if the play continues forever without Spoiler winning.

Theorem (Hella, 1996)
Duplicator has a winning strategy in the k-pebble game on (A,B) if and only if A ≡Ck B.

Benedikt Pago (University of Cambridge) 5

The bijective k-pebble game for Ck∞ω

Definition
Let A,B two structures, k ∈ N the number of pebbles.
The position after any round is (ā ∈ A`, b̄ ∈ B`) with ` ≤ k. In each round,

• Spoiler may remove a pebble-pair (ai,bi) that is currently on the board.
• Duplicator announces a bijection f : A→ B.
• Spoiler places a pebble ai on an element of A, and bi on f (ai).
• If ā→ b̄ does not define a local isomorphism A[ā] → B[b̄], then Spoiler wins.

Duplicator wins if the play continues forever without Spoiler winning.

Theorem (Hella, 1996)
Duplicator has a winning strategy in the k-pebble game on (A,B) if and only if A ≡Ck B.

Benedikt Pago (University of Cambridge) 5

The bijective k-pebble game for Ck∞ω

Definition
Let A,B two structures, k ∈ N the number of pebbles.
The position after any round is (ā ∈ A`, b̄ ∈ B`) with ` ≤ k. In each round,

• Spoiler may remove a pebble-pair (ai,bi) that is currently on the board.
• Duplicator announces a bijection f : A→ B.
• Spoiler places a pebble ai on an element of A, and bi on f (ai).
• If ā→ b̄ does not define a local isomorphism A[ā] → B[b̄], then Spoiler wins.

Duplicator wins if the play continues forever without Spoiler winning.

Theorem (Hella, 1996)
Duplicator has a winning strategy in the k-pebble game on (A,B) if and only if A ≡Ck B.

Benedikt Pago (University of Cambridge) 5

Motto: Construct locally consistent globally inconsistent instances.

Benedikt Pago (University of Cambridge) 6

MC Escher on Equations

0 + 1 + 1 + 0 + 1 + 0 = 0 mod 2?

Benedikt Pago (University of Cambridge) 7

MC Escher on Equations

0 + 1 + 1 + 0 + 1 + 0 = 0 mod 2?

Benedikt Pago (University of Cambridge) 7

Plan

Starting point: A CSP instance that is hard for k-consistency.

Second step: Lifting to graph isomorphism instances hard for k-Weisfeiler-Leman.

Benedikt Pago (University of Cambridge) 8

Tseitin systems

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0

0 0 1 0

0 1 0 0

0 0 0 0

0 0 0 0

0 0 1 0

0 1 0 1

0 0 0 0

0 0 0 0

0 0 1 0

Given a graph G = (V, E) with node labels λ : V → Z2, define the
Tseitin system T (G, λ):
• Variables: For each e ∈ E, we have a variable xe.
• Equations: For each v ∈ V , we have an equation∑

e∈E(v)

xe = λ(v) mod 2.

Lemma
T (G, λ) is satisfiable over Z2 if and only if

∑
v∈V λ(v) = 0 mod 2.

Benedikt Pago (University of Cambridge) 9

Tseitin systems

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0

0 0 1 0

0 1 0 0

0 0 0 0

0 0 0 0

0 0 1 0

0 1 0 1

0 0 0 0

0 0 0 0

0 0 1 0

Given a graph G = (V, E) with node labels λ : V → Z2, define the
Tseitin system T (G, λ):
• Variables: For each e ∈ E, we have a variable xe.
• Equations: For each v ∈ V , we have an equation∑

e∈E(v)

xe = λ(v) mod 2.

Lemma
T (G, λ) is satisfiable over Z2 if and only if

∑
v∈V λ(v) = 0 mod 2.

Benedikt Pago (University of Cambridge) 9

Tseitin systems

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0

0 0 1 0

0 1 0 0

0 0 0 0

0 0 0 0

0 0 1 0

0 1 0 1

0 0 0 0

0 0 0 0

0 0 1 0

Given a graph G = (V, E) with node labels λ : V → Z2, define the
Tseitin system T (G, λ):
• Variables: For each e ∈ E, we have a variable xe.
• Equations: For each v ∈ V , we have an equation∑

e∈E(v)

xe = λ(v) mod 2.

Lemma
T (G, λ) is satisfiable over Z2 if and only if

∑
v∈V λ(v) = 0 mod 2.

Benedikt Pago (University of Cambridge) 9

Tseitin systems

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0

0 0 1 0

0 1 0 0

0 0 0 0

0 0 0 0

0 0 1 0

0 1 0 1

0 0 0 0

0 0 0 0

0 0 1 0

Given a graph G = (V, E) with node labels λ : V → Z2, define the
Tseitin system T (G, λ):
• Variables: For each e ∈ E, we have a variable xe.
• Equations: For each v ∈ V , we have an equation∑

e∈E(v)

xe = λ(v) mod 2.

Lemma
T (G, λ) is satisfiable over Z2 if and only if

∑
v∈V λ(v) = 0 mod 2.

Benedikt Pago (University of Cambridge) 9

Tseitin systems

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0

0 0 1 0

0 1 0 0

0 0 0 0

0 0 0 0

0 0 1 0

0 1 0 1

0 0 0 0

0 0 0 0

0 0 1 0

Given a graph G = (V, E) with node labels λ : V → Z2, define the
Tseitin system T (G, λ):
• Variables: For each e ∈ E, we have a variable xe.
• Equations: For each v ∈ V , we have an equation∑

e∈E(v)

xe = λ(v) mod 2.

Lemma
T (G, λ) is satisfiable over Z2 if and only if

∑
v∈V λ(v) = 0 mod 2.

Benedikt Pago (University of Cambridge) 9

Tseitin systems

0 1 0 1

0 0 0 0

0 0 0 0

0 0 1 0

Given a graph G = (V, E) with node labels λ : V → Z2, define the
Tseitin system T (G, λ):
• Variables: For each e ∈ E, we have a variable xe.
• Equations: For each v ∈ V , we have an equation∑

e∈E(v)

xe = λ(v) mod 2.

Lemma (Atserias, Bulatov, Dalmau, 2007)
If k is smaller than the dimensions of the grid, the k-consistency
algorithm does not detect unsatisfiability of T (G, λ).

Proof: Duplicator keeps the violated equation outside of the local
window.

Benedikt Pago (University of Cambridge) 10

Tseitin systems

0 1 0 1

0 0 0 0

0 0 0 0

0 0 1 0

Given a graph G = (V, E) with node labels λ : V → Z2, define the
Tseitin system T (G, λ):
• Variables: For each e ∈ E, we have a variable xe.
• Equations: For each v ∈ V , we have an equation∑

e∈E(v)

xe = λ(v) mod 2.

Lemma (Atserias, Bulatov, Dalmau, 2007)
If k is smaller than the dimensions of the grid, the k-consistency
algorithm does not detect unsatisfiability of T (G, λ).

Proof: Duplicator keeps the violated equation outside of the local
window.

Benedikt Pago (University of Cambridge) 10

Tseitin systems

0 1 0 1

0 0 0 0

0 0 0 0

0 0 1 0

Given a graph G = (V, E) with node labels λ : V → Z2, define the
Tseitin system T (G, λ):
• Variables: For each e ∈ E, we have a variable xe.
• Equations: For each v ∈ V , we have an equation∑

e∈E(v)

xe = λ(v) mod 2.

Lemma (Atserias, Bulatov, Dalmau, 2007)
If k is smaller than the dimensions of the grid, the k-consistency
algorithm does not detect unsatisfiability of T (G, λ).

Proof: Duplicator keeps the violated equation outside of the local
window.

Benedikt Pago (University of Cambridge) 10

Tseitin systems

0 1 0 1

0 0 0 0

0 0 0 0

0 0 1 0

Given a graph G = (V, E) with node labels λ : V → Z2, define the
Tseitin system T (G, λ):
• Variables: For each e ∈ E, we have a variable xe.
• Equations: For each v ∈ V , we have an equation∑

e∈E(v)

xe = λ(v) mod 2.

Lemma (Atserias, Bulatov, Dalmau, 2007)
If k is smaller than the dimensions of the grid, the k-consistency
algorithm does not detect unsatisfiability of T (G, λ).

Proof: Duplicator keeps the violated equation outside of the local
window.

Benedikt Pago (University of Cambridge) 10

Tseitin systems

0 1 0 1

0 0 0 0

0 0 0 0

0 0 1 0

Given a graph G = (V, E) with node labels λ : V → Z2, define the
Tseitin system T (G, λ):
• Variables: For each e ∈ E, we have a variable xe.
• Equations: For each v ∈ V , we have an equation∑

e∈E(v)

xe = λ(v) mod 2.

Lemma (Atserias, Bulatov, Dalmau, 2007)
If k is smaller than the dimensions of the grid, the k-consistency
algorithm does not detect unsatisfiability of T (G, λ).

Proof: Duplicator keeps the violated equation outside of the local
window.

Benedikt Pago (University of Cambridge) 10

Tseitin systems

0 1 0 1

0 0 0 0

0 0 0 0

0 0 1 0

Given a graph G = (V, E) with node labels λ : V → Z2, define the
Tseitin system T (G, λ):
• Variables: For each e ∈ E, we have a variable xe.
• Equations: For each v ∈ V , we have an equation∑

e∈E(v)

xe = λ(v) mod 2.

Lemma (Atserias, Bulatov, Dalmau, 2007)
If k is smaller than the dimensions of the grid, the k-consistency
algorithm does not detect unsatisfiability of T (G, λ).

Proof: Duplicator keeps the violated equation outside of the local
window.

Benedikt Pago (University of Cambridge) 10

Tseitin systems

0 1 0 1

0 0 0 0

0 0 0 0

0 0 1 0

Given a graph G = (V, E) with node labels λ : V → Z2, define the
Tseitin system T (G, λ):
• Variables: For each e ∈ E, we have a variable xe.
• Equations: For each v ∈ V , we have an equation∑

e∈E(v)

xe = λ(v) mod 2.

Lemma (Atserias, Bulatov, Dalmau, 2007)
If k is smaller than the dimensions of the grid, the k-consistency
algorithm does not detect unsatisfiability of T (G, λ).

Proof: Duplicator keeps the violated equation outside of the local
window.

Benedikt Pago (University of Cambridge) 10

Tseitin systems

0 1 0 1

0 0 0 0

0 0 0 0

0 0 1 0

Given a graph G = (V, E) with node labels λ : V → Z2, define the
Tseitin system T (G, λ):
• Variables: For each e ∈ E, we have a variable xe.
• Equations: For each v ∈ V , we have an equation∑

e∈E(v)

xe = λ(v) mod 2.

Problem: In the logic Ck, we can decide satisfiability by expressing
how many equations are odd.

Benedikt Pago (University of Cambridge) 11

Reminder: Separating FPC from Ptime

Goal: Construct a family of pairs of graphs (Gn,Hn)n∈N such that

• For every k ∈ N, for large enough n ∈ N, it holds Gn ≡Ck Hn.
• For all n ∈ N, Gn 6∼= Hn.
• There is a Ptime-algorithm that distinguishes all Gn and Hn.

Benedikt Pago (University of Cambridge) 12

From Tseitin systems to Cai-Fürer-Immerman graphs

0 1 0 0

0 0 0 0

0 0 0 0

0 0 0 0

G

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

H

Benedikt Pago (University of Cambridge) 13

From Tseitin systems to Cai-Fürer-Immerman graphs

0 1 0 0

0 0 0 0

0 0 0 0

0 0 0 0

CFI(G)

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

CFI(H)

Benedikt Pago (University of Cambridge) 14

From Tseitin systems to Cai-Fürer-Immerman graphs

0 1 0 0

0 0 0 0

0 0 0 0

0 0 0 0

CFI(G)

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

CFI(H)

Benedikt Pago (University of Cambridge) 14

From Tseitin systems to Cai-Fürer-Immerman graphs

0 1 0 0

0 0 0 0

0 0 0 0

0 0 0 0

CFI(G)

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

CFI(H)

Benedikt Pago (University of Cambridge) 14

Properties of CFI graphs

Lemma (Cai, Fürer, Immerman, 1992)
Let G be a connected graph, and λ0, λ1 : V → Z2 two node labellings.

CFI(G, λ0) ∼= CFI(G, λ1) ⇐⇒
∑
v∈V

λ0(v) =
∑
v∈V

λ1(v) mod 2.

To show:

Lemma (Cai, Fürer, Immerman, 1992)
If k ∈ N is smaller than any separator of G, then

CFI(G, λ0) ≡Ck CFI(G, λ1),

for any choice of λ0, λ1.

Benedikt Pago (University of Cambridge) 15

Properties of CFI graphs

Lemma (Cai, Fürer, Immerman, 1992)
Let G be a connected graph, and λ0, λ1 : V → Z2 two node labellings.

CFI(G, λ0) ∼= CFI(G, λ1) ⇐⇒
∑
v∈V

λ0(v) =
∑
v∈V

λ1(v) mod 2.

To show:

Lemma (Cai, Fürer, Immerman, 1992)
If k ∈ N is smaller than any separator of G, then

CFI(G, λ0) ≡Ck CFI(G, λ1),

for any choice of λ0, λ1.

Benedikt Pago (University of Cambridge) 15

The CFI gadget

∅

{e, f}
{e, g}

{e,h}

{f, g}

{f,h}
{g,h}

{e, f, g,h}

e0

e1

g0

g1

f0 f1

h0 h1

• Each inner vertex is labelled with
an even set S of incident edges.

• The vertex with label S is

connected with

e1 if e ∈ S
e0 e /∈ S

.

• Every “flip” of an even number of
edges induces an automorphism of
the gadget.

• Every flip of an odd number of
edges is an isomorphism into the
odd gadget.

Benedikt Pago (University of Cambridge) 16

The CFI gadget

∅

{e, f}
{e, g}

{e,h}

{f, g}

{f,h}
{g,h}

{e, f, g,h}

e0

e1

g0

g1

f0 f1

h0 h1

• Each inner vertex is labelled with
an even set S of incident edges.

• The vertex with label S is

connected with

e1 if e ∈ S
e0 e /∈ S

.

• Every “flip” of an even number of
edges induces an automorphism of
the gadget.

• Every flip of an odd number of
edges is an isomorphism into the
odd gadget.

Benedikt Pago (University of Cambridge) 16

The CFI gadget

∅

{e, f}
{e, g}

{e,h}

{f, g}

{f,h}
{g,h}

{e, f, g,h}

e0

e1

g0

g1

f0 f1

h0 h1

• Each inner vertex is labelled with
an even set S of incident edges.

• The vertex with label S is

connected with

e1 if e ∈ S
e0 e /∈ S

.

• Every “flip” of an even number of
edges induces an automorphism of
the gadget.

• Every flip of an odd number of
edges is an isomorphism into the
odd gadget.

Benedikt Pago (University of Cambridge) 16

The CFI gadget

∅

{e, f}
{e, g}

{e,h}

{f, g}

{f,h}
{g,h}

{e, f, g,h}

e0

e1

g0

g1

f0 f1

h0 h1

• Each inner vertex is labelled with
an even set S of incident edges.

• The vertex with label S is

connected with

e1 if e ∈ S
e0 e /∈ S

.

• Every “flip” of an even number of
edges induces an automorphism of
the gadget.

• Every flip of an odd number of
edges is an isomorphism into the
odd gadget.

Benedikt Pago (University of Cambridge) 16

The CFI gadget

{e}

{f}
{g}

{h}

{e, f, g}

{e, f,h}
{e, g,h}

{f, g,h}

e0

e1

g0

g1

f0 f1

h0 h1

• Each inner vertex is labelled with
an odd set S of incident edges.

• The vertex with label S is

connected with

e1 if e ∈ S
e0 e /∈ S

.

• Every “flip” of an even number of
edges induces an automorphism of
the gadget.

• Every flip of an odd number of
edges is an isomorphism into the
even gadget.

Benedikt Pago (University of Cambridge) 17

Proving indistinguishability of CFI graphs in counting logic

To show:

Lemma (Cai, Fürer, Immerman, 1992)
If k ∈ N is smaller than any separator of G, then

CFI(G, λ0) ≡Ck CFI(G, λ1),

for any choice of λ0, λ1.

We have to show: Duplicator wins the bijective k-pebble game on CFI(G, λ0) and CFI(G, λ1).

Benedikt Pago (University of Cambridge) 18

Proving indistinguishability of CFI graphs in counting logic

To show:

Lemma (Cai, Fürer, Immerman, 1992)
If k ∈ N is smaller than any separator of G, then

CFI(G, λ0) ≡Ck CFI(G, λ1),

for any choice of λ0, λ1.

We have to show: Duplicator wins the bijective k-pebble game on CFI(G, λ0) and CFI(G, λ1).

Benedikt Pago (University of Cambridge) 18

Reminder: the bijective pebble game

Definition
Let A,B two structures, k ∈ N the number of pebbles.
The position after any round is (ā ∈ A`, b̄ ∈ B`) with ` ≤ k. In each round,

• Spoiler may remove a pebble-pair (ai,bi) that is currently on the board.
• Duplicator announces a bijection f : A→ B.
• Spoiler places a pebble ai on an element of A, and bi on f (ai).
• If ā→ b̄ does not define a local isomorphism A[ā] → B[b̄], then Spoiler wins.

Duplicator wins if the play continues forever without Spoiler winning.

Benedikt Pago (University of Cambridge) 19

A winning strategy for Duplicator

• If CFI(G, λ0) 6∼= CFI(G, λ1), then there is a bijection f : CFI(G, λ0) → CFI(G, λ1) which is an
isomorphism except at the gadget of one vertex u ∈ V(G). Call such an f good bar u.

• Duplicator maintains the invariant that the current bijection f is good bar u, for a vertex u
whose gadget is pebble-free and in a component of G of size ≥ |V(G)|/2.

• Suppose the current bijection f satisfies the invariant for u ∈ V(G), and Spoiler places a pebble
on some x ∈ V(CFI(G, λ0)) such that (x, y) ∈ E(CFI(G, λ0)) but (f (x), f (y)) /∈ E(CFI(G, λ1)).

• Duplicator chooses an “escape path” P from u to some pebble-free v ∈ V(G).
• In the next round, Duplicator defines a new bijection f ′ like f but with all edges in P flipped.
This f ′ is good bar v.

Benedikt Pago (University of Cambridge) 20

A winning strategy for Duplicator

• If CFI(G, λ0) 6∼= CFI(G, λ1), then there is a bijection f : CFI(G, λ0) → CFI(G, λ1) which is an
isomorphism except at the gadget of one vertex u ∈ V(G). Call such an f good bar u.

• Duplicator maintains the invariant that the current bijection f is good bar u, for a vertex u
whose gadget is pebble-free and in a component of G of size ≥ |V(G)|/2.

• Suppose the current bijection f satisfies the invariant for u ∈ V(G), and Spoiler places a pebble
on some x ∈ V(CFI(G, λ0)) such that (x, y) ∈ E(CFI(G, λ0)) but (f (x), f (y)) /∈ E(CFI(G, λ1)).

• Duplicator chooses an “escape path” P from u to some pebble-free v ∈ V(G).
• In the next round, Duplicator defines a new bijection f ′ like f but with all edges in P flipped.
This f ′ is good bar v.

Benedikt Pago (University of Cambridge) 20

A winning strategy for Duplicator

• If CFI(G, λ0) 6∼= CFI(G, λ1), then there is a bijection f : CFI(G, λ0) → CFI(G, λ1) which is an
isomorphism except at the gadget of one vertex u ∈ V(G). Call such an f good bar u.

• Duplicator maintains the invariant that the current bijection f is good bar u, for a vertex u
whose gadget is pebble-free and in a component of G of size ≥ |V(G)|/2.

• Suppose the current bijection f satisfies the invariant for u ∈ V(G), and Spoiler places a pebble
on some x ∈ V(CFI(G, λ0)) such that (x, y) ∈ E(CFI(G, λ0)) but (f (x), f (y)) /∈ E(CFI(G, λ1)).

• Duplicator chooses an “escape path” P from u to some pebble-free v ∈ V(G).
• In the next round, Duplicator defines a new bijection f ′ like f but with all edges in P flipped.
This f ′ is good bar v.

Benedikt Pago (University of Cambridge) 20

A winning strategy for Duplicator

• If CFI(G, λ0) 6∼= CFI(G, λ1), then there is a bijection f : CFI(G, λ0) → CFI(G, λ1) which is an
isomorphism except at the gadget of one vertex u ∈ V(G). Call such an f good bar u.

• Duplicator maintains the invariant that the current bijection f is good bar u, for a vertex u
whose gadget is pebble-free and in a component of G of size ≥ |V(G)|/2.

• Suppose the current bijection f satisfies the invariant for u ∈ V(G), and Spoiler places a pebble
on some x ∈ V(CFI(G, λ0)) such that (x, y) ∈ E(CFI(G, λ0)) but (f (x), f (y)) /∈ E(CFI(G, λ1)).

• Duplicator chooses an “escape path” P from u to some pebble-free v ∈ V(G).

• In the next round, Duplicator defines a new bijection f ′ like f but with all edges in P flipped.
This f ′ is good bar v.

Benedikt Pago (University of Cambridge) 20

A winning strategy for Duplicator

• If CFI(G, λ0) 6∼= CFI(G, λ1), then there is a bijection f : CFI(G, λ0) → CFI(G, λ1) which is an
isomorphism except at the gadget of one vertex u ∈ V(G). Call such an f good bar u.

• Duplicator maintains the invariant that the current bijection f is good bar u, for a vertex u
whose gadget is pebble-free and in a component of G of size ≥ |V(G)|/2.

• Suppose the current bijection f satisfies the invariant for u ∈ V(G), and Spoiler places a pebble
on some x ∈ V(CFI(G, λ0)) such that (x, y) ∈ E(CFI(G, λ0)) but (f (x), f (y)) /∈ E(CFI(G, λ1)).

• Duplicator chooses an “escape path” P from u to some pebble-free v ∈ V(G).
• In the next round, Duplicator defines a new bijection f ′ like f but with all edges in P flipped.
This f ′ is good bar v.

Benedikt Pago (University of Cambridge) 20

Indistinguishability of CFI graphs

Lemma (Cai, Fürer, Immerman, 1992)
If k ∈ N is smaller than any separator of G, then

CFI(G, λ0) ≡Ck CFI(G, λ1),

for any choice of λ0, λ1.

Choose a family of base graphs (Gn)n∈N such that in each Gn, any separator is large:

• The (n× n)-grid has separator size Θ(
√
|V(Gn)|).

• 3-regular expander graphs have separator size Θ(|V(Gn)|).

Benedikt Pago (University of Cambridge) 21

Indistinguishability of CFI graphs

Lemma (Cai, Fürer, Immerman, 1992)
If k ∈ N is smaller than any separator of G, then

CFI(G, λ0) ≡Ck CFI(G, λ1),

for any choice of λ0, λ1.

Choose a family of base graphs (Gn)n∈N such that in each Gn, any separator is large:

• The (n× n)-grid has separator size Θ(
√
|V(Gn)|).

• 3-regular expander graphs have separator size Θ(|V(Gn)|).

Benedikt Pago (University of Cambridge) 21

Wrap-up

Theorem (Cai, Fürer, Immerman, 1992)
There is a family of pairs of graphs (Gn,Hn)n∈N such that

• For every k ∈ o(|V(Gn)|) it holds Gn ≡Ck Hn for all large enough n.
• For all n ∈ N, Gn 6∼= Hn.
• There is a Ptime-algorithm that distinguishes all Gn and Hn.

Distinguishability in Ptime: Arbitrarily assign labels e0, e1 to the vertices in edge gadgets. Then read
off how many odd vertex gadgets there are.

Benedikt Pago (University of Cambridge) 22

Wrap-up

Theorem (Cai, Fürer, Immerman, 1992)
There is a family of pairs of graphs (Gn,Hn)n∈N such that

• For every k ∈ o(|V(Gn)|) it holds Gn ≡Ck Hn for all large enough n.
• For all n ∈ N, Gn 6∼= Hn.
• There is a Ptime-algorithm that distinguishes all Gn and Hn.

Distinguishability in Ptime: Arbitrarily assign labels e0, e1 to the vertices in edge gadgets. Then read
off how many odd vertex gadgets there are.

Benedikt Pago (University of Cambridge) 22

Best possible pebble number

Theorem (Atserias, Bulatov, Dawar, 2009)
Let G be a connected base graph and t its treewidth. Then CFI(G, λ) ≡Ck CFI(G, λ′) for all k ≤ t.

Benedikt Pago (University of Cambridge) 23

Applications of the CFI construction

Lower bounds based on the CFI construction

• CFI graphs are hard to distinguish in the polynomial calculus proof system
[Berkholz, Grohe, 2015] .

• So-called “multipedes” [Gurevich, Shelah, 1996] are a hard example for individualisation
refinement graph isomorphism algorithms [Neuen, Schweitzer, 2017].

• A disjunction construction of CFI graphs is hard for integer programming relaxations of graph
isomorphism [Berkholz, Grohe, 2017] and CSPs [Lichter, P., 2025].

• A variant of the CFI construction yields graphs that have a different number of
homomorphisms from a fixed graph F [Roberson, 2022].

Benedikt Pago (University of Cambridge) 24

Lower bounds for the polynomial calculus

The polynomial calculus allows to derive that a given set of polynomials has no common zero.

Definition (Proof rules)
Let F be a field, V the set of variables, f ,g polynomials.

Linear combination: f g
a · f + b · g a,b ∈ F.

Multiplication with variable: f
Xf X ∈ V.

Benedikt Pago (University of Cambridge) 25

Lower bounds for the polynomial calculus

Theorem (Berkholz, Grohe, 2015)
Any polynomial calculus proof of non-isomorphism of CFI graphs requires at least linear degree.

Benedikt Pago (University of Cambridge) 26

Multipedes

CFI graphs have many automorphisms, which explains why Ck cannot define them up to
isomorphism.

But can Ck define isomorphism on structures without automorphisms?

No! The feet of a multipede are indistinguishable even though it has no automorphisms.

Benedikt Pago (University of Cambridge) 27

Multipedes

CFI graphs have many automorphisms, which explains why Ck cannot define them up to
isomorphism.

But can Ck define isomorphism on structures without automorphisms?

No! The feet of a multipede are indistinguishable even though it has no automorphisms.

Benedikt Pago (University of Cambridge) 27

Multipedes

Theorem (Neuen, Schweitzer, 2017)
Graph isomorphism algorithms based on the individualisation-refinement technique require
exponential running time to distinguish multipedes.

Benedikt Pago (University of Cambridge) 28

Lower bounds for integer programming algorithms

Tseitin equations and CFI graphs can be defined over any finite field, not just Z2.

A combination of Z2-and Z3-CFI structures yields hard instances for algorithms based on integer
linear programming.

Theorem (Berkholz, Grohe, 2017; Lichter, P. 2025)

• Any sublinear level of the natural integer programming relaxation of graph isomorphism fails
to distinguish all graphs.

• There is a tractable CSP which is not solved by almost all currently studied CSP algorithms
based on integer programming.

Open problem: To get hard examples for more CSP algorithms, a non-Abelian CFI construction
seems to be needed.

Benedikt Pago (University of Cambridge) 29

Lower bounds for integer programming algorithms

Tseitin equations and CFI graphs can be defined over any finite field, not just Z2.

A combination of Z2-and Z3-CFI structures yields hard instances for algorithms based on integer
linear programming.

Theorem (Berkholz, Grohe, 2017; Lichter, P. 2025)

• Any sublinear level of the natural integer programming relaxation of graph isomorphism fails
to distinguish all graphs.

• There is a tractable CSP which is not solved by almost all currently studied CSP algorithms
based on integer programming.

Open problem: To get hard examples for more CSP algorithms, a non-Abelian CFI construction
seems to be needed.

Benedikt Pago (University of Cambridge) 29

Homomorphism indistinguishability

Two graphs G,H are called homomorphism-indistinguishable over a graph class F if every graph
F ∈ F has the same numbers of homomorphisms into G and H.

• Isomorphism is homomorphism-indistinguishability over all graphs [Lovász, 1967].
• Ck-equivalence is homomorphism-indistinguishability over all graphs of treewidth ≤ k
[Dvořák, 2010].

• Cospectrality is homomorphism-indistinguishability over all cycles.
• ...

Benedikt Pago (University of Cambridge) 30

Homomorphism indistinguishability

Two graphs G,H are called homomorphism-indistinguishable over a graph class F if every graph
F ∈ F has the same numbers of homomorphisms into G and H.

• Isomorphism is homomorphism-indistinguishability over all graphs [Lovász, 1967].
• Ck-equivalence is homomorphism-indistinguishability over all graphs of treewidth ≤ k
[Dvořák, 2010].

• Cospectrality is homomorphism-indistinguishability over all cycles.
• ...

Benedikt Pago (University of Cambridge) 30

Homomorphism indistinguishability

Roberson showed how to use the CFI construction to generate, given G, two graphs G0,G1 such that

hom(G,G0) 6= hom(G,G1).

This idea has numerous applications, such as:

Theorem (Roberson, 2022)
Homomorphism indistinguishability over graphs of bounded degree is not isomorphism.

Theorem (Lichter, P., Seppelt, 2024)
Equivalence in linear-algebraic logic is not captured by any homomorphism indistinguishability
relation.

Benedikt Pago (University of Cambridge) 31

Homomorphism indistinguishability

Roberson showed how to use the CFI construction to generate, given G, two graphs G0,G1 such that

hom(G,G0) 6= hom(G,G1).

This idea has numerous applications, such as:

Theorem (Roberson, 2022)
Homomorphism indistinguishability over graphs of bounded degree is not isomorphism.

Theorem (Lichter, P., Seppelt, 2024)
Equivalence in linear-algebraic logic is not captured by any homomorphism indistinguishability
relation.

Benedikt Pago (University of Cambridge) 31

References i

[1] Albert Atserias, Andrei Bulatov, and Anuj Dawar. “Affine systems of equations and counting
infinitary logic”. In: Theoretical Computer Science 410.18 (2009), pp. 1666–1683.

[2] Albert Atserias, Andrei A. Bulatov, and Víctor Dalmau. “On the Power of k-Consistency”. In:
Automata, Languages and Programming, 34th International Colloquium, ICALP 2007, Wroclaw, Poland,
July 9-13, 2007, Proceedings. Ed. by Lars Arge et al. 4596. Lecture Notes in Computer Science. Springer,
2007, pp. 279–290. 10.1007/978-3-540-73420-8_26.

[3] Christoph Berkholz and Martin Grohe. “Limitations of algebraic approaches to graph
isomorphism testing”. In: International Colloquium on Automata, Languages, and Programming.
Springer. 2015, pp. 155–166.

[4] Christoph Berkholz and Martin Grohe. “Linear Diophantine Equations, Group CSPs, and Graph
Isomorphism”. In: Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2017, Barcelona, Spain, Hotel Porta Fira, January 16-19. Ed. by Philip N. Klein. SIAM,
2017, pp. 327–339. 10.1137/1.9781611974782.21.

Benedikt Pago (University of Cambridge) 32

References ii

[5] Jin-yi Cai, Martin Fürer, and Neil Immerman. “An optimal lower bound on the number of
variables for graph identification”. In: Combinatorica 12 (1992), pp. 389–410.

[6] Zdeněk Dvořák. “On recognizing graphs by numbers of homomorphisms”. In: Journal of Graph
Theory 64.4 (2010), pp. 330–342.

[7] Yuri Gurevich and Saharon Shelah. “On finite rigid structures”. In: The Journal of Symbolic Logic
61.2 (1996), pp. 549–562.

[8] L. Hella. “Logical Hierarchies in PTIME”. In: Information and Computation 129 (1996), pp. 1–19.

[9] M. Lichter and B. Pago. Limitations of Affine Integer Relaxations for Solving Constraint
Satisfaction Problems. Ed. by Keren Censor-Hillel et al. Dagstuhl, Germany, 2025.
10.4230/LIPIcs.ICALP.2025.166.
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2025.166.

Benedikt Pago (University of Cambridge) 33

References iii

[10] M. Lichter, B. Pago, and T. Seppelt. “Limitations of Game Comonads for Invertible-Map
Equivalence via Homomorphism Indistinguishability”. In: 32nd EACSL Annual Conference on
Computer Science Logic (CSL 2024). Ed. by Aniello Murano and Alexandra Silva. 288. Leibniz
International Proceedings in Informatics (LIPIcs). Dagstuhl, Germany: Schloss Dagstuhl –
Leibniz-Zentrum für Informatik, 2024, 36:1–36:19. isbn: 978-3-95977-310-2. 10.4230/LIPIcs.CSL.2024.36.
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CSL.2024.36.

[11] László Lovász. “Operations with structures”. In: Acta Mathematica Hungarica 18.3-4 (1967),
pp. 321–328.

[12] Daniel Neuen and Pascal Schweitzer. “An exponential lower bound for
Individualization-Refinement algorithms for Graph Isomorphism”. In: CoRR abs/1705.03283
(2017). arXiv: 1705.03283. http://arxiv.org/abs/1705.03283.

[13] David E. Roberson. Oddomorphisms and homomorphism indistinguishability over graphs of
bounded degree. 2022. arXiv: 2206.10321 [math.CO]. https://arxiv.org/abs/2206.10321.

Benedikt Pago (University of Cambridge) 34

https://arxiv.org/abs/1705.03283
https://arxiv.org/abs/2206.10321

	Applications of the CFI construction

