
The quest for a logic for Ptime

Benedikt Pago 1

ESSLLI 2025, Bochum
1University of Cambridge

References

Comprehensive texts:

• Lectures 1-3: textbook Finite Model Theory and its Applications by Grädel et al. (mainly this
chapter: https://www.logic.rwth-aachen.de/pub/graedel/FMTbook-Chapter3.pdf).

• Lectures 4-5: Survey article A Logic for P: Are we nearly there yet? by Dawar and P. in ACM
SIGLOG News 11.2 (https://dl.acm.org/doi/10.1145/3665453.3665459).

See also list of references at the end of each set of slides.

Benedikt Pago (University of Cambridge) 2

https://www.logic.rwth-aachen.de/pub/graedel/FMTbook-Chapter3.pdf
https://dl.acm.org/doi/10.1145/3665453.3665459

Course overview

1. What is a logic for polynomial time?
2. Fixed-point logics
3. The Cai-Fürer-Immerman construction
4. Linear-algebraic logics
5. Choiceless Polynomial Time

Benedikt Pago (University of Cambridge) 3

Preliminaries: First-order Logic

Let τ be a relational vocabulary. Inductive definition of FO[τ]:

• Atomic formulas:
• Rx1 . . . xr , where R ∈ τ is an r-ary relation symbol, and x1, . . . xr are first-order variables.
• x = y for first-order variables x, y.

• Logical connectives: If ϕ,ψ are formulas, then so are ϕ ∧ ψ, ϕ ∨ ψ and ¬ϕ.
• First-order quantifiers: If ϕ(x) is a formula and x a free first-order variable, then ∃xϕ(x) and
∀xϕ(x) are formulas.

A τ-structure A = (A,RA1 , . . . ,RAm) consists of a (finite) universe A and relations RAi ⊆ Aar Ri .

Write A |= ψ if a sentence ψ ∈ FO[τ] holds in A.

Benedikt Pago (University of Cambridge) 4

Why descriptive complexity?

• Big goal in TCS: Algorithmic complexity lower bounds, e.g. showing a problem is not in
Logspace, not in Ptime, etc.

• Problem: Lower bounds against Turing machines hard to prove.
• Solution: Characterise the complexity class C by a logic L and prove lower bounds against L.

Benedikt Pago (University of Cambridge) 5

Why descriptive complexity?

Proving a problem is not in a complexity class C:

• Suppose there is a logic L that defines precisely those classes of finite structures that are
decidable in C.

• (Ideally) there is a model-comparison game for L such that:
A ≡L B ⇐⇒ Duplicator has a winning strategy in the game played on (A,B).

• Proving that a class K of structures is not in C: Define A andB such that A ≡L B and A ∈ K
butB /∈ K.

Benedikt Pago (University of Cambridge) 6

Example: The Ehrenfeucht-Fraïssé Game

Definition
Let A,B two structures, k ∈ N the number of rounds.
The position after round r ≤ k is (ā ∈ Ar, b̄ ∈ Br). In each round r,

• Spoiler places a pebble ar ∈ A or br ∈ B.
• Duplicator places the r-th pebble on an element of the other structure.
• If ā→ b̄ does not define a local isomorphism A[ā] → B[b̄], then Spoiler wins.

Duplicator wins if Spoiler has not won after k rounds.

Theorem
Duplicator wins the k-round EF-game on (A,B) if and only if no FO-sentence with quantifier rank
≤ k distinguishes A andB.

Benedikt Pago (University of Cambridge) 7

An inexpressibility result for FO

Theorem
There is no FO-sentence that expresses whether a graph is connected.

Benedikt Pago (University of Cambridge) 8

Capturing complexity classes with logics

Suppose we agree on what a “logic” is.

Definition (Capturing complexity classes with logics)
A logic L captures a complexity class C if:

1. For every sentence ψ ∈ L, the model-checking problem (on finite structures)MCψ is in C.
2. For every isomorphism-closed class K of finite τ-structures whose membership problem is in

C, there is a sentence ψK ∈ L such that

K = {A a finite structure with vocabulary τ | A |= ψK}.

Benedikt Pago (University of Cambridge) 9

What is a logic?

Consider the following “logic” L = {(M,p) | M a deterministic TM with time bound p(n)}.

Say A |= (M,p) ⇐⇒ M accepts A A |= (M,p) ⇐⇒ M accepts code(A).

Problem: “M accepts A” is not well-defined because we cannot input A itself into a TM.

Problem: code(A) is not well-defined (e.g. a graph has up to n! different adjacency matrices), and
the acceptance behaviour of M depends on code(A), rather than on A.

Benedikt Pago (University of Cambridge) 10

What is a logic?

Definition
A logic L is a set of sentences with a satisfaction relation |= such that:

1. L is isomorphism-invariant: Whenever A ∼= B, then A |= ψ ⇐⇒ B |= ψ for all ψ ∈ L.
2. L is decidable.

This is not restrictive enough to meaningfully talk about L
capturing a complexity class such as Ptime. For example, consider L = N with

A |= n
⇐⇒ A is in the n-th isomorphism-closed polynomial time decidable class of finite structures.

Benedikt Pago (University of Cambridge) 11

Gurevich’s definition

Definition (Gurevich, 1988)
A logic capturing Ptime is a set L of sentences with a satisfaction relation |= such that:

1. L is isomorphism-invariant.
2. L is decidable.
3. L is effective: There exists a TM M that takes as input ψ ∈ L and produces (Mψ,p(n)) such that
the machine Mψ, time-bounded by the polynomial p(n), decidesMCψ.

4. L defines precisely the isomorphism-closed classes of finite structures that are
Ptime-decidable.

We might also want: L should admit a useful tool for proving inexpressibility results.

Gurevich’s conjecture: There is no logic that captures Ptime.

Benedikt Pago (University of Cambridge) 12

Alternative views

Is isomorphism-invariant Ptime
syntactic?
• Informally, a complexity class C is
called syntactic if it is recursively
enumerable.

• There is a logic capturing Ptime if
and only if the
isomorphism-invariant fragment
of Ptime is syntactic.

Theorem (Dawar, 1995)
There is a logic capturing Ptime if and only if Ptime has a
complete problem under FO-reductions.

Benedikt Pago (University of Cambridge) 13

Consequences of the (non-)existence of a logic for Ptime

If there is a logic for Ptime, then
• There is a universal algorithm for all
problems in Ptime, up to very simple
symmetry-preserving preprocessing.

• Both P 6= NP and P = NP are possible.

If there is no logic for Ptime, then
• Ptime is not enumerable and no algorithmic
technique solves all problems in P.

• P 6= NP, because NP is captured by a logic.

Benedikt Pago (University of Cambridge) 14

A Logic for NP

The start of descriptive complexity: Fagin’s Theorem

Theorem (Fagin, 1974)
An isomorphism-closed class of finite structures K is in NP if and only if K is definable by an
existential second-order sentence.

Benedikt Pago (University of Cambridge) 15

Existential Second-Order Logic

The set ∃SO of existential second-order formulas over a relational vocabulary τ consists of all
formulas of the form ∃X1 . . . ∃Xmϕ(X1, . . . , Xm), where ϕ ∈ FO[τ ∪ {X1, . . . , Xm}].

Note:

1. ∃SO is isomorphism-invariant.
2. ∃SO has a decidable syntax.
3. If P = NP, then ∃SO would be effective for P in the sense that ∃SO-sentences could be
compiled into polynomial time Turing machines.

=⇒ If P = NP, then ∃SO is a logic capturing P.

Benedikt Pago (University of Cambridge) 16

Defining NP-complete problems in ∃SO

Example (3-colourability)

A graph G is 3-colourable if and only if

G |= ∃X∃Y∃Z(∀x(X x ∨ Y x ∨ Z x)
∧ ∀x(¬(X x ∧ Y x) ∧ ¬(X x ∧ Z x) ∧ ¬(Y x ∧ Z x))
∧ ∀x∀y(Exy → (¬(X x ∧ X y) ∧ ¬(Y x ∧ Y y) ∧ ¬(Z x ∧ Z y))

Benedikt Pago (University of Cambridge) 17

Proving Fagin’s Theorem: The easy direction.

Theorem (Fagin, 1974)
An isomorphism-closed class of finite structures K is in NP if and only if K is definable by an
∃SO-sentence.

K ∈ ∃SO =⇒ K ∈ NP:

Lemma
For every sentence ψ ∈ ∃SO, the model-checking problemMCψ is in NP.

Proof.

Let ψ = ∃X1 . . . ∃Xmϕ(X1, . . . , Xm). Given a structure A, guess relations R1, . . . ,Rm over A.
Check whether A |= ϕ(R1, . . . ,Rm) in deterministic polynomial time.

Benedikt Pago (University of Cambridge) 18

Proving Fagin’s Theorem: The hard direction.

Ingredients for proving K ∈ NP =⇒ K ∈ ∃SO:

1. If a structure A has a relation < that defines a linear order on its universe, then an encoding
code(A, <) ∈ {0, 1}∗ is FO-definable in A.

2. Given code(A, <), ∃SO can simulate the run of a non-deterministic polynomial-time TM.
3. Use second-order existential quantifiers to guess a linear order in ∃SO.

Benedikt Pago (University of Cambridge) 19

Inputting a structure to a Turing machine

1

2

3

4

5

(A,<)

1 0 1 0 1 0 1

code(A,<)

Benedikt Pago (University of Cambridge) 20

Logically definable string encodings

• In a linearly ordered τ-structure (A, <) with |A| = n, < induces a lexicographic order on Ak, for
every k ∈ N. Hence there is a canonical bijection ι# : Ak → {0, . . . ,nk − 1}.

• For every r-ary R ∈ τ , the relation RA ⊆ Ar can be encoded with the string χ(RA) = b1 . . .bnr
where:

bi =

1 the tuple ā ∈ Ar with ι#(ā) = i is in RA

0 else

• For each R ∈ τ , χ(RA) is FO-definable in (A, <): For every σ ∈ {0, 1}, there is a formula
βRσ(x1, . . . , xr) such that

(A, <) |= βRσ(ā) ⇐⇒ χ(RA) has σ at position ι#(ā).

Benedikt Pago (University of Cambridge) 21

Logically definable string encodings

• code(A, <) := 1|A|χ(RA1) . . . χ(RAm).
• The word structure ({1, . . . , len(code(A, <))},P0,P1, <) that represents the string “code(A, <)”
is FO-interpretable in (A, <).

Definition (FO-interpretation)
A σ-structureB is FO-interpretable in a τ-structure A if there exist formulas ϕδ(x̄), (ϕR)R∈σ and a
k ∈ N such that

• B = {ā ∈ Ak | A |= ϕδ(ā)}
• For each r-ary R ∈ σ, RB = {(ā1, . . . , ār) | A |= ϕR(ā1, . . . , ār)}.

Benedikt Pago (University of Cambridge) 22

Proving Fagin’s Theorem: The hard direction.

Ingredients for proving K ∈ NP =⇒ K ∈ ∃SO:

1. If a structure A has a relation < that defines a linear order on its universe, then an encoding
code(A), <) ∈ {0, 1}∗ is FO-definable in A. "

2. Given code(A, <), ∃SO can simulate the run of a non-deterministic polynomial-time TM.
3. Use second-order existential quantifiers to guess a linear order in ∃SO.

Benedikt Pago (University of Cambridge) 23

Simulating Turing machines in ∃SO

• Goal: Given a polynomial time NTM M, define a sentence ψM ∈ ∃SO such that

code(A, <) |= ψM ⇐⇒ M has an accepting run on the input string code(A, <).

• Subgoal: Define a sentence ϕM(X) such that, for any run of M, encoded as a tuple X of relations,

(code(A, <), X) |= ϕM(X) ⇐⇒ the run encoded by X is accepting.

• Then ψM := ∃Xϕ(X).

Benedikt Pago (University of Cambridge) 24

Simulating Turing machines in ∃SO

There is a k ∈ N such that every run of M on an input string of length n takes at most nk steps.
Encode a run using relations over code(A, <):

• For every state q of M, a relation

Xq := {t̄ ∈ [n]k | in step t̄,M is in state q}.

• For each tape symbol σ ∈ {0, 1}, a relation

Yσ := {(̄t, ā) ∈ [n]k × [n]k | in step t̄, the ā-th tape cells contains symbol σ}.

• The head position relation

Z := {(̄t, ā) ∈ [n]k × [n]k | in step t̄, the head is at the ā-th tape cell}.

Benedikt Pago (University of Cambridge) 25

Simulating Turing machines in ∃SO

• Goal: Given a polynomial time NTM M, define a sentence ψM ∈ ∃SO such that

code(A, <) |= ψM ⇐⇒ M has an accepting run on the input string code(A, <).

• Subgoal: Define a sentence ϕM(X) such that, for any run of M, encoded as a tuple X of relations,

(code(A, <), X) |= ϕM(X) ⇐⇒ the run encoded by X is accepting.

• Then ψM := ∃Xϕ(X).
• Final step: ψM is evaluated in code(A, <). Combine it with the FO-interpretation of code(A, <)
in (A, <) to obtain a sentence ψ′

M to be evaluated in (A, <).ϕM expresses that the relations X encode a valid run.
The order < is used to compare each time step
and its successor.

Benedikt Pago (University of Cambridge) 26

Proving Fagin’s Theorem: The hard direction.

Ingredients for proving K ∈ NP =⇒ K ∈ ∃SO:

1. If a structure A has a relation < that defines a linear order on its universe, then an encoding
code(A), <) ∈ {0, 1}∗ is FO-definable in A. "

2. Given code(A, <), ∃SO can simulate the run of a non-deterministic polynomial-time TM."
3. Use second-order existential quantifiers to guess a linear order in ∃SO. "

Benedikt Pago (University of Cambridge) 27

Wrap-up: Fagin’s Theorem

Theorem (Fagin, 1974)
An isomorphism-closed class of finite structures K is in NP if and only if K is definable by an
∃SO-sentence.

This requires guessing a linear order < on the input structure A so that code(A, <) ∈ {0, 1}∗

becomes definable in (A, <).

Benedikt Pago (University of Cambridge) 28

L

P

L

FO

P

NP = ∃SO

Benedikt Pago (University of Cambridge) 29

References i

[1] Ashok Chandra and David Harel. “Structure and complexity of relational queries”. In: 21st
Annual Symposium on Foundations of Computer Science (sfcs 1980). IEEE. 1980, pp. 333–347.
10.1109/SFCS.1980.41.

[2] Anuj Dawar. “Generalized Quantifiers and Logical Reducibilities”. In: Journal of Logic and
Computation 5.2 (Apr. 1995), pp. 213–226. issn: 0955-792X. 10.1093/logcom/5.2.213.
https://academic.oup.com/logcom/article-pdf/5/2/213/6244716/5-2-213.pdf.
https://doi.org/10.1093/logcom/5.2.213.

[3] Anuj Dawar and Benedikt Pago. “A Logic for P: Are we Nearly There Yet?” In: ACM SIGLOG News
11.2 (2024), pp. 35–60. 10.1145/3665453.3665459. https://doi.org/10.1145/3665453.3665459.

[4] Heinz-Dieter Ebbinghaus and Jörg Flum. Finite Model Theory. Springer, 1999.

[5] Ronald Fagin. “Generalized first-order spectra and polynomial-time recognizable sets”. In:
Complexity of computation 7 (1974), pp. 43–73.

Benedikt Pago (University of Cambridge) 30

References ii

[6] Erich Grädel et al. Finite Model Theory and Its Applications. Texts in Theoretical Computer
Science. An EATCS Series. Springer, 2007. isbn: 978-3-540-00428-8. 10.1007/3-540-68804-8.
https://doi.org/10.1007/3-540-68804-8.

[7] Martin Grohe. “The quest for a logic capturing PTIME”. In: 2008 23rd Annual IEEE Symposium on
Logic in Computer Science. IEEE. 2008, pp. 267–271. 10.1109/LICS.2008.11.

[8] Yuri Gurevich. “From invariants to canonization”. In: Bulletin of the European Association of
Theoretical Computer Science (BEATCS) 63 (1997), pp. 115–119.

[9] Yuri Gurevich. “Logic and the Challenge of Computer Science”. In: Current Trends in Theoretical
Computer Science. Computer Science Press, 1988.

[10] Neil Immerman. Descriptive Complexity. Springer Science, 2012.

[11] Leonid Libkin. Elements of Finite Model Theory. Springer, 2004.

Benedikt Pago (University of Cambridge) 31

	A Logic for NP

