The quest for a logic for PTIME

Benedikt Pago ¹ ESSLLI 2025, Bochum

¹University of Cambridge

References

Comprehensive texts:

- **Lectures 1-3:** textbook *Finite Model Theory and its Applications* by Grädel et al. (mainly this chapter: https://www.logic.rwth-aachen.de/pub/graedel/FMTbook-Chapter3.pdf).
- Lectures 4-5: Survey article A Logic for P: Are we nearly there yet? by Dawar and P. in ACM SIGLOG News 11.2 (https://dl.acm.org/doi/10.1145/3665453.3665459).

See also list of references at the end of each set of slides.

Course overview

- 1. What is a logic for polynomial time?
- 2. Fixed-point logics
- 3. The Cai-Fürer-Immerman construction
- 4. Linear-algebraic logics
- 5. Choiceless Polynomial Time

Preliminaries: First-order Logic

Let τ be a relational vocabulary. Inductive definition of FO[τ]:

- Atomic formulas:
 - $Rx_1 \dots x_r$, where $R \in \tau$ is an r-ary relation symbol, and $x_1, \dots x_r$ are first-order variables.
 - x = y for first-order variables x, y.
- **Logical connectives:** If φ, ψ are formulas, then so are $\varphi \wedge \psi$, $\varphi \vee \psi$ and $\neg \varphi$.
- **First-order quantifiers:** If $\varphi(x)$ is a formula and x a free first-order variable, then $\exists x \varphi(x)$ and $\forall x \varphi(x)$ are formulas.

A τ -structure $\mathfrak{A} = (A, R_1^{\mathfrak{A}}, \dots, R_m^{\mathfrak{A}})$ consists of a (finite) universe A and relations $R_i^{\mathfrak{A}} \subseteq A^{\operatorname{ar} R_i}$.

Write $\mathfrak{A} \models \psi$ if a sentence $\psi \in \mathsf{FO}[\tau]$ holds in \mathfrak{A} .

Why descriptive complexity?

- **Big goal in TCS:** Algorithmic complexity lower bounds, e.g. showing a problem is not in LOGSPACE, not in PTIME, etc.
- Problem: Lower bounds against Turing machines hard to prove.
- **Solution:** Characterise the complexity class C by a logic L and prove lower bounds against L.

Why descriptive complexity?

Proving a problem is not in a complexity class C:

- Suppose there is a logic $\mathcal L$ that defines precisely those classes of finite structures that are decidable in $\mathcal C$.
- (Ideally) there is a model-comparison game for \mathcal{L} such that: $\mathfrak{A} \equiv_{\mathcal{L}} \mathfrak{B} \iff \mathsf{Duplicator}$ has a winning strategy in the game played on $(\mathfrak{A},\mathfrak{B})$.
- Proving that a class $\mathcal K$ of structures is not in $\mathcal C$: Define $\mathfrak A$ and $\mathfrak B$ such that $\mathfrak A \equiv_{\mathcal L} \mathfrak B$ and $\mathfrak A \in \mathcal K$ but $\mathfrak B \notin \mathcal K$.

Example: The Ehrenfeucht-Fraïssé Game

Definition

Let $\mathfrak{A}, \mathfrak{B}$ two structures, $k \in \mathbb{N}$ the number of rounds.

The **position** after round $r \le k$ is $(\bar{a} \in A^r, \bar{b} \in B^r)$. In each round r,

- Spoiler places a pebble $a_r \in A$ or $b_r \in B$.
- Duplicator places the r-th pebble on an element of the other structure.
- If $\bar{a} \to \bar{b}$ does not define a local isomorphism $\mathfrak{A}[\bar{a}] \to \mathfrak{B}[\bar{b}]$, then Spoiler wins.

Duplicator wins if Spoiler has not won after k rounds.

Theorem

Duplicator wins the k-round EF-game on $(\mathfrak{A},\mathfrak{B})$ if and only if no FO-sentence with quantifier rank $\leq k$ distinguishes \mathfrak{A} and \mathfrak{B} .

An inexpressibility result for FO

Theorem

There is no FO-sentence that expresses whether a graph is connected.

Capturing complexity classes with logics

Suppose we agree on what a "logic" is.

Definition (Capturing complexity classes with logics)

A logic \mathcal{L} captures a complexity class \mathcal{C} if:

- 1. For every sentence $\psi \in \mathcal{L}$, the model-checking problem (on finite structures) \mathcal{MC}_{ψ} is in \mathcal{C} .
- 2. For every isomorphism-closed class $\mathcal K$ of finite au-structures whose membership problem is in $\mathcal C$, there is a sentence $\psi_{\mathcal K}\in\mathcal L$ such that

 $\mathcal{K} = \{\mathfrak{A} \text{ a finite structure with vocabulary } \tau \mid \mathfrak{A} \models \psi_{\mathcal{K}}\}.$

What is a logic?

Consider the following "logic" $\mathcal{L} = \{(M, p) \mid M \text{ a deterministic TM with time bound } p(n)\}$.

Say
$$\mathfrak{A} \models (M,p) \iff M$$
 accepts $\mathfrak{A} \not \cong (M,p) \iff M$ accepts $\operatorname{code}(\mathfrak{A})$.

Problem: "M accepts \mathfrak{A} " is not well-defined because we cannot input \mathfrak{A} itself into a TM.

Problem: $code(\mathfrak{A})$ is not well-defined (e.g. a graph has up to n! different adjacency matrices), and the acceptance behaviour of M depends on $code(\mathfrak{A})$, rather than on \mathfrak{A} .

What is a logic?

Definition

A **logic** \mathcal{L} is a set of sentences with a satisfaction relation \models such that:

- 1. \mathcal{L} is isomorphism-invariant: Whenever $\mathfrak{A} \cong \mathfrak{B}$, then $\mathfrak{A} \models \psi \iff \mathfrak{B} \models \psi$ for all $\psi \in \mathcal{L}$.
- 2. \mathcal{L} is decidable.

This is not restrictive enough to meaningfully talk about \mathcal{L} capturing a complexity class such as PTIME. For example, consider $\mathcal{L}=\mathbb{N}$ with

$$\mathfrak{A} \models n$$

 \iff $\mathfrak A$ is in the n-th isomorphism-closed polynomial time decidable class of finite structures.

Gurevich's definition

Definition (Gurevich, 1988)

A **logic capturing PTIME** is a set \mathcal{L} of sentences with a satisfaction relation \models such that:

- 1. \mathcal{L} is isomorphism-invariant.
- 2. \mathcal{L} is decidable.
- 3. \mathcal{L} is *effective*: There exists a TM M that takes as input $\psi \in \mathcal{L}$ and produces $(M_{\psi}, p(n))$ such that the machine M_{ψ} , time-bounded by the polynomial p(n), decides \mathcal{MC}_{ψ} .
- 4. \mathcal{L} defines precisely the isomorphism-closed classes of finite structures that are PTIME-decidable.

We might also want: \mathcal{L} should admit a useful tool for proving inexpressibility results.

Gurevich's conjecture: There is *no logic* that captures PTIME.

Alternative views

Is isomorphism-invariant PTIME syntactic?

- Informally, a complexity class C is called syntactic if it is recursively enumerable.
- There is a logic capturing PTIME if and only if the isomorphism-invariant fragment of PTIME is syntactic.

Theorem (Dawar, 1995)

There is a logic capturing PTIME if and only if PTIME has a complete problem under FO-reductions.

Consequences of the (non-)existence of a logic for PTIME

If there is a logic for PTIME, then

- There is a universal algorithm for all problems in PTIME, up to very simple symmetry-preserving preprocessing.
- Both $P \neq NP$ and P = NP are possible.

If there is no logic for PTIME, then

- PTIME is not enumerable and no algorithmic technique solves all problems in P.
- $P \neq NP$, because NP is captured by a logic.

A Logic for NP

The start of descriptive complexity: Fagin's Theorem

Theorem (Fagin, 1974)

An isomorphism-closed class of finite structures K is in NP if and only if K is definable by an existential second-order sentence.

Existential Second-Order Logic

The set $\exists \mathbf{SO}$ of existential second-order formulas over a relational vocabulary τ consists of all formulas of the form $\exists X_1 \ldots \exists X_m \varphi(X_1, \ldots, X_m)$, where $\varphi \in \mathsf{FO}[\tau \cup \{X_1, \ldots, X_m\}]$.

Note:

- 1. \exists SO is isomorphism-invariant.
- 2. ∃SO has a decidable syntax.
- 3. If P = NP, then $\exists SO$ would be *effective* for P in the sense that $\exists SO$ -sentences could be compiled into polynomial time Turing machines.
- \implies If P = NP, then \exists SO is a logic capturing P.

Defining NP-complete problems in ∃SO

Example (3-colourability)

A graph G is 3-colourable if and only if

$$\mathcal{G} \models \exists X \exists Y \exists Z (\forall x (X \ X \lor Y \ X \lor Z \ X)$$

$$\land \forall x (\neg (X \ X \land Y \ X) \land \neg (X \ X \land Z \ X) \land \neg (Y \ X \land Z \ X))$$

$$\land \forall x \forall y (Exy \rightarrow (\neg (X \ X \land X \ y) \land \neg (Y \ X \land Y \ y) \land \neg (Z \ X \land Z \ y))$$

Proving Fagin's Theorem: The easy direction.

Theorem (Fagin, 1974)

An isomorphism-closed class of finite structures K is in NP if and only if K is definable by an \exists SO-sentence.

 $\mathcal{K} \in \exists SO \implies \mathcal{K} \in NP$:

Lemma

For every sentence $\psi \in \exists SO$, the model-checking problem \mathcal{MC}_{ψ} is in NP.

Proof.

Let $\psi = \exists X_1 \dots \exists X_m \varphi(X_1, \dots, X_m)$. Given a structure \mathfrak{A} , guess relations R_1, \dots, R_m over A. Check whether $\mathfrak{A} \models \varphi(R_1, \dots, R_m)$ in deterministic polynomial time.

Proving Fagin's Theorem: The hard direction.

Ingredients for proving $K \in NP \implies K \in \exists SO$:

- 1. If a structure $\mathfrak A$ has a relation < that defines a linear order on its universe, then an encoding $code(\mathfrak A,<)\in\{0,1\}^*$ is FO-definable in $\mathfrak A$.
- 2. Given $code(\mathfrak{A}, <)$, $\exists SO$ can simulate the run of a non-deterministic polynomial-time TM.
- 3. Use second-order existential quantifiers to guess a linear order in \exists SO.

Inputting a structure to a Turing machine

Logically definable string encodings

- In a linearly ordered τ -structure $(\mathfrak{A},<)$ with |A|=n,< induces a lexicographic order on A^k , for every $k\in\mathbb{N}$. Hence there is a canonical bijection $\iota_\#\colon A^k\to\{0,\ldots,n^k-1\}$.
- For every r-ary $R \in \tau$, the relation $R^{\mathfrak{A}} \subseteq A^r$ can be encoded with the string $\chi(R^{\mathfrak{A}}) = b_1 \dots b_{n^r}$ where:

$$b_i = egin{cases} 1 & ext{ the tuple } ar{a} \in A^r ext{ with } \iota_\#(ar{a}) = i ext{ is in } R^\mathfrak{A} \ 0 & ext{else} \end{cases}$$

• For each $R \in \tau$, $\chi(R^{\mathfrak{A}})$ is FO-definable in $(\mathfrak{A},<)$: For every $\sigma \in \{0,1\}$, there is a formula $\beta_{\sigma}^{R}(x_{1},\ldots,x_{r})$ such that

$$(\mathfrak{A},<)\models\beta_{\sigma}^{\mathsf{R}}(\bar{a})\iff\chi(\mathsf{R}^{\mathfrak{A}})\text{ has }\sigma\text{ at position }\iota_{\#}(\bar{a}).$$

Logically definable string encodings

- code($\mathfrak{A},<$) := $1^{|A|}\chi(R_1^{\mathfrak{A}})\dots\chi(R_m^{\mathfrak{A}})$.
- The word structure $(\{1, \ldots, \text{len}(\text{code}(\mathfrak{A}, <))\}, P_0, P_1, <)$ that represents the string "code($\mathfrak{A}, <$)" is FO-interpretable in $(\mathfrak{A}, <)$.

Definition (FO-interpretation)

A σ -structure $\mathfrak B$ is FO-interpretable in a τ -structure $\mathfrak A$ if there exist formulas $\varphi_{\delta}(\bar{\mathsf x}), (\varphi_R)_{R \in \sigma}$ and a $k \in \mathbb N$ such that

- $B = {\bar{a} \in A^k \mid \mathfrak{A} \models \varphi_{\delta}(\bar{a})}$
- For each r-ary $R \in \sigma$, $R^{\mathfrak{B}} = \{(\bar{a}_1, \ldots, \bar{a}_r) \mid \mathfrak{A} \models \varphi_R(\bar{a}_1, \ldots, \bar{a}_r)\}$.

Proving Fagin's Theorem: The hard direction.

Ingredients for proving $K \in NP \implies K \in \exists SO$:

- 1. If a structure $\mathfrak A$ has a relation < that defines a linear order on its universe, then an encoding $code(\mathfrak A),<)\in\{0,1\}^*$ is FO-definable in $\mathfrak A$.
- 2. Given $code(\mathfrak{A},<)$, $\exists SO$ can simulate the run of a non-deterministic polynomial-time TM.
- 3. Use second-order existential quantifiers to guess a linear order in \exists SO.

Simulating Turing machines in ∃SO

- **Goal:** Given a polynomial time NTM M, define a sentence $\psi_{\mathrm{M}} \in \exists \mathrm{SO}$ such that

 $code(\mathfrak{A},<)\models\psi_{\mathsf{M}}\iff\mathsf{M}$ has an accepting run on the input string $code(\mathfrak{A},<)$.

- **Subgoal:** Define a sentence $\varphi_M(\overline{X})$ such that, for any run of M, encoded as a tuple \overline{X} of relations, $(\operatorname{code}(\mathfrak{A},<),\overline{X})\models\varphi_M(\overline{X})\iff \text{the run encoded by }\overline{X} \text{ is accepting.}$
- Then $\psi_{\mathsf{M}} := \exists \overline{\mathsf{X}} \varphi(\overline{\mathsf{X}}).$

Simulating Turing machines in ∃SO

There is a $k \in \mathbb{N}$ such that every run of M on an input string of length n takes at most n^k steps. Encode a run using relations over $code(\mathfrak{A},<)$:

• For every **state** q of M, a relation

$$X_q := \{\overline{t} \in [n]^k \mid \text{ in step } \overline{t}, M \text{ is in state } q\}.$$

• For each **tape symbol** $\sigma \in \{0,1\}$, a relation

$$Y_{\sigma} := \{(\bar{t}, \bar{a}) \in [n]^k \times [n]^k \mid \text{ in step } \bar{t}, \text{ the } \bar{a}\text{-th tape cells contains symbol } \sigma\}.$$

• The **head position** relation

$$Z := \{(\bar{t}, \bar{a}) \in [n]^k \times [n]^k \mid \text{ in step } \bar{t}, \text{ the head is at the } \bar{a}\text{-th tape cell}\}.$$

Simulating Turing machines in ∃SO

• **Goal:** Given a polynomial time NTM M, define a sentence $\psi_{M} \in \exists SO$ such that

 $code(\mathfrak{A},<) \models \psi_{M} \iff M$ has an accepting run on the input string $code(\mathfrak{A},<)$.

• **Subgoal:** Define a sentence $\varphi_M(\overline{X})$ such that, for any run of M, encoded as a tuple \overline{X} of relations,

$$(\operatorname{code}(\mathfrak{A},<),\overline{X})\models \varphi_{\mathtt{M}}(\overline{X})\iff \operatorname{the run encoded by }\overline{X} \operatorname{ is accepting.}$$

- Then $\psi_{\mathsf{M}} := \exists \overline{\mathsf{X}} \varphi(\overline{\mathsf{X}}).$
- Final step: $\psi_{\rm M}$ is evaluated in code(\mathfrak{A}), in $(\mathfrak{A},<)$ to obtain a sentence $\psi_{\rm M}'$ to be

 $\varphi_{\rm M}$ expresses that the relations \overline{X} encode a valid run. The order < is used to compare each time step and its successor.

Proving Fagin's Theorem: The hard direction.

Ingredients for proving $K \in NP \implies K \in \exists SO$:

- 1. If a structure $\mathfrak A$ has a relation < that defines a linear order on its universe, then an encoding $code(\mathfrak A),<)\in\{0,1\}^*$ is FO-definable in $\mathfrak A$.
- 2. Given $code(\mathfrak{A},<)$, $\exists SO$ can simulate the run of a non-deterministic polynomial-time TM. \checkmark
- 3. Use second-order existential quantifiers to guess a linear order in ∃SO. ✓

Wrap-up: Fagin's Theorem

Theorem (Fagin, 1974)

An isomorphism-closed class of finite structures K is in NP if and only if K is definable by an \exists SO-sentence.

This requires **guessing a linear order** < on the input structure $\mathfrak A$ so that $code(\mathfrak A,<)\in\{0,1\}^*$ becomes definable in $(\mathfrak A,<)$.

References i

- [1] Ashok Chandra and David Harel. "Structure and complexity of relational queries". In: 21st Annual Symposium on Foundations of Computer Science (sfcs 1980). IEEE. 1980, pp. 333–347. 10.1109/SFCS.1980.41.
- [2] Anuj Dawar. "Generalized Quantifiers and Logical Reducibilities". In: Journal of Logic and Computation 5.2 (Apr. 1995), pp. 213–226. ISSN: 0955-792X. 10.1093/logcom/5.2.213. https://academic.oup.com/logcom/article-pdf/5/2/213/6244716/5-2-213.pdf. https://doi.org/10.1093/logcom/5.2.213.
- [3] Anuj Dawar and Benedikt Pago. "A Logic for P: Are we Nearly There Yet?" In: ACM SIGLOG News 11.2 (2024), pp. 35–60. 10.1145/3665453.3665459. https://doi.org/10.1145/3665453.3665459.
- [4] Heinz-Dieter Ebbinghaus and Jörg Flum. Finite Model Theory. Springer, 1999.
- [5] Ronald Fagin. "Generalized first-order spectra and polynomial-time recognizable sets". In: Complexity of computation 7 (1974), pp. 43–73.

References ii

- [6] Erich Grädel et al. Finite Model Theory and Its Applications. Texts in Theoretical Computer Science. An EATCS Series. Springer, 2007. ISBN: 978-3-540-00428-8. 10.1007/3-540-68804-8. https://doi.org/10.1007/3-540-68804-8.
- [7] Martin Grohe. "The quest for a logic capturing PTIME". In: 2008 23rd Annual IEEE Symposium on Logic in Computer Science. IEEE. 2008, pp. 267–271. 10.1109/LICS.2008.11.
- [8] Yuri Gurevich. "From invariants to canonization". In: Bulletin of the European Association of Theoretical Computer Science (BEATCS) 63 (1997), pp. 115–119.
- [9] Yuri Gurevich. "Logic and the Challenge of Computer Science". In: Current Trends in Theoretical Computer Science. Computer Science Press, 1988.
- [10] Neil Immerman. **Descriptive Complexity.** Springer Science, 2012.
- [11] Leonid Libkin. **Elements of Finite Model Theory.** Springer, 2004.