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1. Introduction
Here we study the problem of pooling in the con-
text of graph classification.

Current approaches (Ying et al., 2018; Cangea
et al., 2018) require preset hyperparameters and
are not purely topological, unlike the pooling in
CNNs.

We show a purely non-parametric, topologi-
cal, static pooling method that has a clear corre-
spondence to regular graphs (images) and achieves
competitive performance in both regular and ir-
regular graphs.

4. Irregular Graphs
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The colored borders represent the maximal cliques, dotted arrows indicate the cliques to which the nodes
are assigned. Since the blue clique (2) is bigger (in terms of nodes), the node belonging to red (1) and
blue (2) maximal clique is assigned to the blue (2) cluster only. In the case of the node intersecting
the blue (2) and purple (3) maximal cliques, the node is assigned to both cliques since the cliques have
the same size. The grey maximal clique (6) is not represented in the new coarsened graph since the
nodes in that clique have already been assigned to larger cliques: the green (5) and blue (2) cliques. The
nodes is the coarsened graph are connected if any two nodes in the respective cliques are connected.

5. Regular Graphs - Images
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A) The use of 3-by-3 convolutions implies the graph structure as shown in the figure - pixels are connected
to their eight immediate neighbours. The first pool will be 2-by-2 with a stride of 1. The second pool
will then be 3-by-3 with a stride of 1.

rn =
n∑

i=1
2n−1 = 2n − 1.

B) In the right diagram we consider the reduction rn in nodes when the
pooling operation is applied n = 4 times to a 1D chain. Initially the cliques
are of size two and the chain reduces in length by one. After that the cliques
and reduction grow in size.

6. Results
Our non-parametric approach is competitive with the parametric approaches. The method outperforms
the Graphsage baseline and most of the kernel-based and gnn approaches. Moreover, because we do
not introduce any additional parameters our method is fast to train and does not suffer the instabilities
associated with DiffPool. It also outperforms the DiffPool with deterministic clustering on two
datasets.
The image investigation found a small, but significant (p = 0.02), reduction of in mean accuracy over the
2-by-2 pool baseline.

Datasets
Enzymes DD Collab Proteins

Graphlet 41.03 74.85 64.66 72.91
Shortest-path 42.32 78.86 59.10 76.43
1-WL 53.43 74.02 78.61 73.76
WL-QA 60.13 79.04 80.74 75.26
PatchySAN - 76.27 72.60 75.00
GraphSAGE 54.25 75.42 68.25 70.48
ECC 53.50 74.10 67.79 72.65
Set2Set 60.15 78.12 71.75 74.29
SortPool 57.12 79.37 73.76 75.54
DiffPool-Det 58.33 75.47 82.13 75.62
DiffPool-NoLP 62.67 79.98 75.63 77.42
DiffPool 64.23 81.15 75.50 78.10
Sparse HGC 64.17 78.59 74.54 75.46
CliquePool 60.71 79.03 73.30 74.21

Model Mean Std. Dev.
2-by-2 pool 92.4 0.3
Clique pool 92.0 0.5

Table 1: Results of benchmarking on irregular graphs (left), and CIFAR-10 for regular graphs (right).

2. Maximal Cliques Efficiency
The algorithm for finding maximal cliques pre-
sented by Bron and Kerbosch (1973) which was
later on adapted to an iterative procedure and even
parallelized (Zhang et al., 2005).

Eppstein et al. (2010) showed a method that can
find all maximal cliques in O(dn3d/3) where d is
the degeneracy of the graph.

The degeneracy is also known as width, k-core
number, linkeage of the graph, and is also one less
than the chromatic number of the graph which
is known to be small in practice. For instance, for
the planar graphs, d = 3 (at most) in which case
the method is linear. Conte et al. (2016) showed
that the maximal clique finding can be made effi-
cient even on large-scale social graphs.

3. Architecture
Irregular Graphs We use the mean option of
GraphSAGE as the convolution.
The readout function of the whole graph is the
max and sum. These readouts are then used in
a jumping knowledge style - concatenating all
the readouts after each layer and feeding them to
an MLP.
The general architecture is: (GCN-Pool)-
(GCN-Pool)-(GCN-Pool)-MLP.
Regular Graphs We use a VGG architecture
where all the pools have been substituted with the
analog clique pooling.
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