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Abstract—OS virtualization and cloud computing have radi-
cally changed the way Internet services are deployed: enterprises
share third-party datacenters, deploying existing applications
with minimal changes. Recent measurements reveal a lack of
traffic isolation capabilities within the datacenter with network
performance exhibiting high variability. We advocate addressing
this problem by allowing applications to express their own
forwarding logic using OpenFlow to achieve application specific
optimal performance. We present an OpenFlow implementation
within the Mirage application synthesis framework, in the form
of library implementations of a modular controller and an ex-
tensible OpenFlow-enabled switch, able to expose the underlying
network infrastructure to cloud applications. By linking into the
application, this provides a safe yet highly extensible framework
for programming network control that, although unoptimised,
still provides reasonable performance when compared with ex-
isting controllers.

I. INTRODUCTION

Recent technical advances have moved a large proportion
of locally hosted enterprise services from private, in-house
machine rooms to shared datacenters maintained by third party
providers. This shift was enabled by the introduction of cloud
computing and infrastructure virtualization. Hosting service
providers now have the capability to decouple system service
models from the underlying physical machine infrastructure.
This allows customers to multiplex datacenter infrastructure,
reducing their capital IT costs. Furthermore, cloud technolo-
gies permit fine grained control of resource allocation and
provide execution isolation while placing minimal restric-
tions on the development environment. Finally, abstracting
the service from the underlying resource allows developers
to scale applications dynamically via on-demand provision of
resources to running applications.

Current OS virtualization platforms such as Xen and Azure
allow very fine grained control of per-application resource al-
locations and provide strict guarantees over CPU, memory and
latency. Unfortunately however, network aspects of virtualized
infrastructures remain opaque and unpredictable to application
developers, a problem that manifests in two ways.

First, as recent measurement studies of cloud infrastructures
show, datacenter networks provide highly variable network
performance characteristics even though network resources
typically remain underutilised. For example, network traces
from an Azure-based datacenter show that frequent network
wide congestion events occur which severely impact task exe-
cution, even though 40% of links appear to be idle even during
congestion incidents [1]. Furthermore, network measurements

within popular cloud computing services show that network
throughput and latency exhibit high variability [2].

Second, the expressivity of current network APIs such as
Berkeley Sockets is limited. As a concrete example, consider
the case of a transcoding server deployed in the cloud. We
can separate network traffic for such an application into two
categories: flows fetching the original video and flows serving
transcoded video to clients. In this example, fetching flows
require minimum latency, to fetch the original video on time;
while serving flows require high bandwidth, to simultaneously
transmit transcoded video to multiple clients.1

The heart of the problem is the restricted ability to transfer
information across the divide that exists between the network
functionality required by datacenters and the capabilities of
commodity network devices. Network switches are designed
to function autonomously, with minimum administrative con-
figuration and intervention: dynamic management of traffic is
handled through relatively static link weight configuration and
similar mechanisms. Although datacenter networks are under a
single domain of control and could thus acquire a global view
of traffic matrices to globally optimise the forwarding process,
no standard mechanism exists to effectively and accurately
communicate this information to running applications.

Fortunately, this mismatch between expressivity for appli-
cations and the capabilities of switches is partially addressed
through OpenFlow,2 a recently introduced software-defined
network control protocol becoming widespread. OpenFlow
separates the forwarding and control planes of switching
devices, moving implementation of the control plane to highly
programmable commodity computing platforms. The Open-
Flow control plane exposes a set of network control primitives
via a simple protocol over which one can implement custom
forwarding logic appropriate to the demand and environment.

OpenFlow controllers are typically implemented as distinct
network control applications, with one controller running in
a given network. Although this has proved useful in contexts
such as single-owner enterprise, we believe it can be taken
further. Specifically, in multi-tenant datacenters,3 enabling
direct access to OpenFlow functionality by the application
can address the underlying problem of mismatch between
application control and network capability.

We present library implementations of an extensible Open-

1Clients may be spread across multiple network providers, so IP multicast
cannot be straightforwardly applied.

2http://openflow.org
3Or even datacenters from which a single tenant provides multiple appli-

cations and services.
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Flow switch implementation, and an event-driven OpenFlow
controller library built on the experimental Mirage platform.4

Using these libraries, Mirage application developers can de-
velop cloud applications able to customise and control the
flow forwarding process in real-time. We use Mirage simply
as a convenient framework within which to experiment: our
approach would be equally applicable using other implemen-
tation frameworks, e.g., as an OpenFlow support library with
suitable interfaces hosted on Xen via minios.

We begin by briefly describing the current network control
mechanisms in datacenters along with related work in pro-
viding guarantees and programmability in the network (§II).
We then outline Mirage and describe the architecture of the
OpenFlow libraries within Mirage (§III). Finally, we present
a preliminary performance evaluation of our controller and
switch implementations (§IV), and conclude by discussing
open issues that must be addressed before our approach can
be directly applied in datacenters (§V).

II. DATACENTER NETWORK VIRTUALIZATION

A primary goal of datacenter networks is to minimise
deployment cost. Thus, such networks are built using off-the-
shelf gear, highly effective in terms of cost/performance, with
upgrades usually localised and backward compatibility with
existing infrastructure retained. Commodity switches sustain
low prices by using general purpose, mass production silicon
that provides only minimal extensibility. As a result the basic
design of network switches has remained rather static through
the years, generally receiving minimal incremental updates.
The primary design goal for network switches remains pro-
vision of collision-free layer-2 connectivity with minimal
broadcast traffic. Routers provide more hooks for control and
a richer set of software protocols and interfaces, but remain
expensive and relatively scarce in the datacenter.

The main mechanism currently used to provide network vir-
tualization in datacenters is VLAN tagging [3]. This gives very
good traffic isolation properties but cannot control allocation
of resources such as bandwidth and latency. Furthermore, the
tag field size is small and unable to scale as required in large
datacenters. A more complete layer-2 virtualization solution is
MPLS [4] which uses hop-by-hop labels to forward packets,
strongly resembling traditional circuit switched networks with
their fine-grained resource scheduling capabilities. The main
drawback of MPLS is its requirement for manual configuration
of paths in switches, a poor fit to the dynamic modern
datacenter which must support not only largely autonomous
operation, but also highly dynamic traffic patterns driven by
features such as virtual machine migration.

In recent years, motivated in large part by developments
in cloud computing, several authors have tried to address
shortcomings in datacenter networking. For example, MPLS
has been used to develop a mechanism to establish and
dynamically manage paths in datacenter networks [5]. Alter-
natively, CamCube [6] tries to address the problem of network
control by removing all network devices, providing network-
wide connectivity through direct server interconnection using

4http://openmirage.org

multi-port NICs. By implementing routing in servers, such
designs provide fine level network programmability and enable
development and deployment of clean slate network protocols.

Another approach that also pushes functionality to the
network’s edge is Multipath TCP [7]. This takes advantage of
widely deployed Equal Cost Multi-Path technology to load-
balance traffic over redundant links. The authors describe
a deployment scenario using multipath TCP in datacenters,
and present a series of experiments where the system is able
to achieve higher overall throughput. Additionally, the IETF
ALTO workgroup5 is focused on the definition of a new
network service, to enable application and ISP collaboration
and allow optimal peer choice in P2P and CDN networks. The
workgroup aim is to provide richer information to applications
regarding the state and topology of the ISP network. Finally,
others have proposed use of OpenFlow in the datacenter
context. For example, Hedera [8] uses the OpenFlow protocol
to monitor the link load of the network and dynamically
reassign flows to links, using a centralised controller that
spreads flows dynamically over redundant links to reduce the
average load.

III. MIRAGE OPENFLOW IMPLEMENTATION

We now present the details of our framework in two parts:
an outline of the design goals and capabilities of the Mirage
application synthesis framework (§III-A), followed by more
details concerning design of the OpenFlow extension (§III-B).

A. Mirage

A key property that enabled widespread adoption of virtu-
alization in shared infrastructures was the backward compat-
ibility provided to existing applications. In-house maintained
services could be easily migrated to the virtualized environ-
ment with a few simple configuration changes. System admin-
istrators needed only replicate data and configuration of their
servers to their virtualized counterparts to embrace the rev-
olution. Unfortunately however, as with most incrementally-
deployed backward-compatible technologies, the resultant lay-
ering contains numerous redundant software components that
replicate existing functionality.

For example, consider the software stack of a single appli-
cation in a virtualized environment. During execution it will
likely have several execution layers: the hypervisor, the guest
OS, the process execution environment (typically POSIX but
often also a Java VM or other relatively heavyweight language
runtime), and the thread execution environment. These all
provide overlapping functionality in different ways to ensure
execution isolation for application code. This redundancy in
functionality has two important implications.

a) Security: An important concern for the cloud appli-
cations and a commonly cited reason against wider cloud
deployment: as services and software migrate to the cloud,
they become vulnerable to attack by all-comers. At the same
time, the increase in layers due to the cloud’s architecture in-
creases system complexity, making security evaluation harder.

5https://datatracker.ietf.org/wg/alto/charter/
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Fig. 1. Depiction of an application built to target different Mirage backends.

A growing number of current system security exploits are
caused by layer complexity6 and thus this poses a direct threat
to further deployment of cloud infrastructure.

b) Efficiency: Support for legacy functionality in the
OS generally wastes energy and CPU, resulting in increased
cost without benefit for the hosted services. Additionally,
complexity in layering means that latency due to buffering
and processing may be accidentally introduced, as has already
been observed to cause problems in other arenas [9].

In Mirage we address both problems through layer collapse
via compile-time specialisation. For most services migrated
to the cloud, the functionality required by lower layers is
relatively simple (e.g., network support, filesystem access API)
and can be modelled as a single generic layer of abstraction,
far more simply than standard APIs such as POSIX. On the
other hand, a service can be optimised during compilation,
to generate binary-code that takes advantage of the specific
attributes of its execution environment.

Mirage [10] implements these ideas, depicted in Figure 1,
by enabling transparent generation of binaries for backends
ranging from standalone microkernels that run directly on the
Xen hypervisor, to UNIX binaries, and even JavaScript code
suitable for node.js7 or a web browser, from a single high-
level source code. Applications built using Mirage become
application-specific operating systems, managing their own
resources either explicitly, as when running on the Xen hy-
pervisor, or implicitly as when targeted to a UNIX process.
The ability to rebuild the same code for multiple backend
systems allows easy development and testing of applications:
a developer builds, runs and tests his code using his standard
local development environment, and then deploys to the cloud
by simply compiling to the appropriate binary.

B. OpenFlow

As noted in §I, datacenter networks are currently under-
utilised while still providing highly variable and often low
performance to flows. The core problem can be traced to
the lack of a bi-directional signalling channel between the
application layer and the intermediary devices in the network.

6E.g., http://technet.microsoft.com/en-us/security/bulletin/ms11-083
7http://nodejs.org

1 type mac swi tch = {
2 add r : OP . e a d d r ;
3 s w i t c h : OP . d a t a p a t h i d ;
4 }
5

6 type s w i t c h s t a t e = {
7 mutable mac cache :
8 ( mac switch , OP . P o r t . t ) H a s h t b l . t ;
9 mutable dp id : OP . d a t a p a t h i d l i s t

10 }
11

12 l e t s w i t c h d a t a = {
13 mac cache = H a s h t b l . c r e a t e 7 ;
14 dp id = [ ] ;
15 }
16

17 l e t j o i n c b c o n t r o l l e r dp id e v t =
18 l e t dp = match e v t with
19 | OE . D a t a p a t h j o i n c −> c
20 | −> i n v a l i d a r g ” bogus d a t a p a t h j o i n ”
21 in
22 s w i t c h d a t a . dp id <− s w i t c h d a t a . dp id @ [ dp ]
23

24 l e t p a c k e t i n c b c o n t r o l l e r dp id e v t =
25 (∗ a l g o r i t h m d e t a i l s o m i t t e d f o r space ∗ )
26

27 l e t i n i t c t r l =
28 OC. r e g i s t e r c b c t r l OE . DATAPATH JOIN j o i n c b ;
29 OC. r e g i s t e r c b c t r l OE . PACKET IN p a c k e t i n c b
30

31 l e t main ( ) =
32 Net . Manager . c r e a t e ( fun mgr i n t e r f a c e i d −>
33 l e t p o r t = 6633 in
34 OC. l i s t e n mgr ( None , p o r t ) i n i t
35 )

Fig. 2. Sample Mirage learning switch implementation.

Such a channel could convey fine-grained information regard-
ing path load to applications, and the per-flow requirements
of applications to the network devices in return. To bridge
this gap we advocate direct integration of a controller into
the application. Research in the field of clean-slate design has
already introduced a number of systems that take advantage
of OpenFlow, optimising network performance while keeping
hosts unaware of the changes. Integration of the controller
in the application can be considered an extension to the
specialisation process at the core of Mirage.

As part of Mirage we have developed a basic OpenFlow
controller library and an extensible OpenFlow-enabled switch,
supporting version 1.0 of the protocol. The controller provides
an event driven API inspired by NOX [11]. A sample Mirage
application using the API to implement a simple learning
Ethernet switch is shown in Figure 2.

In short, the main function (l.31) initialises a listening
OpenFlow controller on the standard port 6633 (l.33) which
calls the init function to initialise the switch details. This
registers two event handlers: one for datapath join events
(join cb) and one for packet-in events (packet in cb). Each
event handler is called with an event structure specific to
the handled event. The current implementation supports all
elementary OpenFlow messages sent from the switch to the
controller. We are aware that this provides only a very low-
level abstraction and we are working on developing suitable
higher level events representing, e.g., link discovery or routing
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protocol specific events, as provided by more mature con-
trollers such as NOX [11].

We also provide an OpenFlow switch implementation able
to operate as a guest domain bridging traffic either between
virtual machines or to outgoing links. The main strength of the
switch implementation is that it provides code hooks for appli-
cations to control and modify default switching functionality.
This allows them to easily extend the basic OpenFlow proto-
col, e.g., by introducing application specific enhancements as
OpenFlow vendor-specific messages, or extending the default
flow matching tuple to include additional fields.

IV. PERFORMANCE

A. Controller

We first benchmark our controller library’s performance
through a simple baseline comparison against two existing
OpenFlow controllers, NOX and Maestro. NOX [11] is one
of the first and most mature publicly available OpenFlow
controllers; in its original form it provides programmability
through a set of Python modules. In our evaluation we compare
against both the master branch and the destiny-fast branch,
a highly optimised version that sacrifices Python integration
for better performance. Maestro [12] is an optimised Java-
based controller that aims to achieve fairness among switches.
We compare these against the Mirage controller targeting two
different network backends: mirage-unix targets the UNIX
Sockets backend and so uses the existing Linux TCP/IP stack,
while mirage-xen targets the Xen hypervisor and runs as a
domU virtual machine using the Mirage TCP/IP stack.

Our benchmark setup uses the cbench application from
the Oflops benchmarking platform.8 Each emulated switch
simultaneously generates packet-in messages and the program
measures the throughput of the controller in processing these
requests. It provides two modes of operation, both measured
in terms of packet-in requests processed per second: latency,
where only a single packet-in message is allowed in flight from
each switch; and throughput, where each switch maintains
a full 64 kB buffer of outgoing packet-in messages. The
first measures the throughput of the controller when serving
connected switches fairly, while the second measures absolute
throughput when servicing requests.

We emulate 16 switches concurrently connected to the
controller, each serving 100 distinct MAC addresses. We run
our experiments on a 16-core AMD server running Debian
Wheezy with 40 GB of RAM and each controller configured
to use a single thread of execution. We restrict our analysis
to the single-threaded case as Mirage does not yet support
multi-threading. For each controller we run the experiment
for 120 seconds and measure the per-second rate of successful
interactions. Table I reports the average and standard deviation
of requests serviced per second.

Unsurprisingly, due to mature, highly optimised code, NOX
fast shows the highest performance for both experiments.
However, we note that the controller exhibits extreme short-
term unfairness in the throughput test. NOX provides greater

8http://www.openflow.org/wk/index.php/Oflops

Controller Throughput (kreq/sec) Latency (kreq/sec)
avg std. dev. avg std. dev.

NOX fast 122.6 44.8 27.4 1.4
NOX 13.6 1.2 26.9 5.6
Maestro 13.9 2.8 9.8 2.4
Mirage UNIX 68.1 11.7 21.1 0.2
Mirage Xen 86.5 4.4 20.5 0.0

TABLE I
OPENFLOW CONTROLLER PERFORMANCE.

fairness in the throughput test, at the cost of significantly
reduced performance. Maestro performs as well as NOX for
throughput but significantly worse for latency, probably due to
the overheads of the Java VM. Finally, Mirage throughput is
somewhat reduced from NOX fast but substantially better than
both NOX and Maestro with both backends; the Xen backend
wins out over the UNIX backend due to reduction of layers
in the network stack. In addition, Mirage Xen achieves the
best product of performance and fairness among all tested
controllers in the throughput test. Comparing latency, both
Mirage backends perform much better than Maestro but suffer
somewhat in comparison to NOX: we believe this is due to
the lack of optimisation in the Mirage TCP/IP stack.

B. Switch

We also use the Oflops benchmark platform [13] to evaluate
performance of the Mirage switch implementation. We com-
pare against the Open vSwitch9 (OVS) kernel implementation,
an OpenFlow-enabled software switch implemented as a Linux
kernel module. OVS is currently used by many datacenter
service providers to enable virtual machines to be bridged in
dom0, while its OpenFlow functionality is used by vendors to
implement OpenFlow firmware.

For this experiment we use two virtual machines, one
running the Oflops code, the other running the OpenFlow
switch configured with three interfaces bridged separately in
dom0. One interface provides a control channel for the switch,
while the other two are used as the switch’s data channels. This
represents a setup that might be used to enable an application
to modify switch functionality without affecting the network
functionality in dom0. Using Oflops, we generate packets on
one of the data channels and receive traffic on the other,
having inserted appropriate flow table entries at the beginning
of the test. We run the test for 30 seconds using small packets
(100 bytes) and varying the data rate.

Figure 3 plots as error boxes the min, median and max of the
median processing latency of ten test runs of the experiment.
We can see that the Mirage switch’s forwarding performance
is very close to that of Open vSwitch, even mirroring the high
per-packet processing latency with a probe rate of 1 Mb/s; we
believe this is due to a performance artefact of the underlying
dom0 network stack. We omit packet loss due to space
constraints, but can report that both implementations suffer
similar levels of packet loss. However, the Mirage switch has
a memory footprint of just 32 MB compared with the Open
vSwitch virtual machine requirement of at least 128 MB. We
are currently working toward better integration of the Mirage

9http://openvswitch.org
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Fig. 3. Min/max/median delay when switching small (100 byte) packets using
the Mirage switch and the Open vSwitch kernel module when both run as
domU virtual machines.

switch functionality with the Xen network stack to achieve
lower switching latency.

V. DISCUSSION & FUTURE WORK

In this paper we have discussed the problem of network vir-
tualization in current cloud-provider infrastructures. Motivated
by existing measurements of datacenter traffic and a number of
problems stemming from the current monolithic design of the
underlying network, we implemented the OpenFlow protocol
within the Mirage application synthesis framework to provide
a network programming API integrating network control with
application logic. This allows applications to exercise flow
level control of their traffic through the OpenFlow protocol
and so better understand and respond to the current condition
of the underlying infrastructure to achieve higher, but more
importantly specifically appropriate, network performance.

One critical key issue must be addressed before the pro-
posed API can become a truly viable solution for datacenter
networking: the direct exposure of network control to applica-
tions effectively distributes control among all entities sharing
the network infrastructure. This is in direct conflict with the
standard datacenter model where the service provider is firmly
in charge of the control hierarchy. To address this we must
extend our platform to provide a series of control mechanisms
that enforce both fair use of the network by applications and
symbiotic coexistence of application forwarding logic with
the control policies of the service provider. We are currently
examining how such features can be implemented through
OpenFlow-aware software filters, and can thus potentially
offer a richer economical model able to increase the cost for
applications that want to utilize more network resources such
as flow table entries.

Another area of ongoing work is in the abstraction provided
by our API. In its current form it directly replicates all the
semantically important OpenFlow messages, which provides
a rather low level API. We believe most applications could
benefit from transformation of the information provided by
the OpenFlow protocol into higher level semantics. Frame-
works like NetCore [14] or SFNet [15] describe novel control
frameworks that use the OpenFlow protocol directly, but pro-
vide higher level functionality. For example, NetCore enables

administrators to deploy policies while the NetCore language
ensures that the policy is effective at any given point in time.
Similarly, more advanced language integration provided in
systems such as Nettle [16] and Frenetic [17] brings significant
benefits in terms of the ease with which controller code can
be composed and reasoned about.

To conclude, the current socket API remains a basically
useful abstraction for cloud computing application develop-
ment, as it is widely used and understood. However, we believe
that future datacenter network APIs should provide extended
semantics to developers so that they may characterise the
expected performance of flows in more detail. This informa-
tion could then be translated in real-time by the underlying
OpenFlow library into the required OpenFlow commands.
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