

Probabilistic Graphical Models for Semi-Supervised Traffic Classification

Rotsos Charalampos, Jurgen Van Gael, Andrew W. Moore, Zoubin Ghahramani

Computer Laboratory and Engineering Department, University of Cambridge

Traffic classification

- Traffic classification is the problem of defining the application class of a network flow by inspecting its packets.
- port-based \rightarrow pattern match \rightarrow statistical analysis.
- Useful in order to perform other network functions:
 - Security: Fine grain access control, valuable dimension for analysis
 - Network Management: network planning, QoS
 - Performance measurement: Performance dependence on traffic class

Problem Space

- So far research focuses on packet-level measurement with good results.
- But no systems implementations, because...
 - Required measurements are difficult
 - ✓ Focus on flow records.
 - ✓ Existing research exhibit encouraging results.
 - Inflexible and generic models
 - use modern ML techniques (Bayesian Modeling, Probabilistic graphical models)
 - ✓ Develop a problem specific ML-model with well defined parameters
 - Since records are sensitive to minor network changes, use semisupervised learning

- Model Presentation
- Results
- Related work
- Further Development

Problem definition

- *N* flows extracted from a router each having *M* feauture.
- Each flow is represented by a vector x_i that has set of features x_{ij} with 0
 < j ≤ M and 0< I ≤ N.
- Each flow has an application class c_{i} .
- Assume that we have L flows labeled and U flow unlabeled with L+U = N.
- <u>Define</u> f(.) such as , If $X_i \in U$, $f(X_i \mid C_L, L) = c_i$
- Assume that flow records are generated without any sampling applied and x_{ii} are independent.

Probabilistic Graphical Models

- Diagrammatic representations of probability distributions
- Directed acyclic graphs represent conditional dependence among R.V.

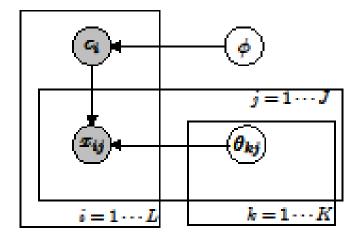
 $v \in V$

• Easy to perform inference $p(x) = \prod p(x_v | x_{pa(v)})$

P(a,b,c) = P(a) P(b | a) P(c | a,b)

- Simple graph manipulation can give us complex distributions.
- Advantages:
 - Modularity
 - Iterative design
 - Unifying framework

Generative model



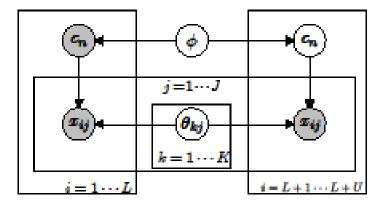
$$p(C_X, X, C_Y, Y | \phi, \theta) = \prod_{i=1}^{L+U} \left(p(c_i | \phi) \prod_j p(x_{ij} | \theta, c_i) \right)$$

- ϕ is the parameter of the class distribution and θ_{kj} is the parameter of the distribution of feature j for class k.
- Graph model similar to supervised Naïve Bayes Model.
- Assume $\theta_{kj} \sim \text{Dir}(\alpha_{\theta})$ and $\phi \sim \text{Dir}(\alpha_{\phi})$.
- Use bayesian approach to calculate parameter distribution.

Semi supervised learning

- Hybrid approach of supervised and unsupervised learning
- Train using a labeled dataset and extend model by integrating newly labelled datapoints.
- Advantages:
 - ✓ Reduced training dataset.
 - ✓ Increased accuracy when the model is correct.
 - ✓ Highly configurable when used with Bayesian modeling.
- Disadvantages
 - ✓ Computationally complex.

Semi supervised graphical model



- Calculating parameter increases exponentially as new unlabled datapoint are added. $p(\phi, \theta|X, Y, C_X) \propto \sum_{n} p(C_X, X, C_Y, Y|\phi, \theta) p(\phi) p(\theta)$
- Hard assignment: Add newly labelled datapoint to the Cx with the highest posterior probability.
- **Soft assignment:** update the posterior for each parameter according to the predicted weight of the datapoint.
- Define class using: $f(x^*) = max_c(p(c|x^*))$

- Model Presentation
- Results
- Related work
- Further Development

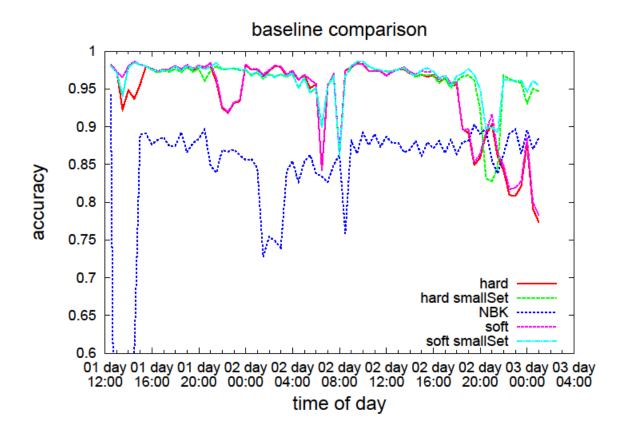
- 2 day trace from research facility [Li09]. Appr. 6 million tcp flows.
- Ground-truth using GTVS tool.
- Netflow records exported using nProbe. Settings similar to a Tier-1 ISP.
- Model implemented in C#. Also used the Naïve Bayes with kernel estimation implementation from the Weka Platform.
- Feature set:

srcIp/dstIP	srcPort/dstPort	ip tos	start/end time
tcpFlags	bytes	# packets	time length
avg. packet size	byte rate	packet rate	tcpF* (uniq. flag)

Application statistics

Арр	%	Арр	%	Арр	%
database	4.3	services	0.03	peer-to-peer	11.47
mail	2.5	Spam filter	0.48	web	72.33
ftp	6.25	streaming	0.31	vpn	0.1
im	0.6	voip	0.16	Remote access	0.61

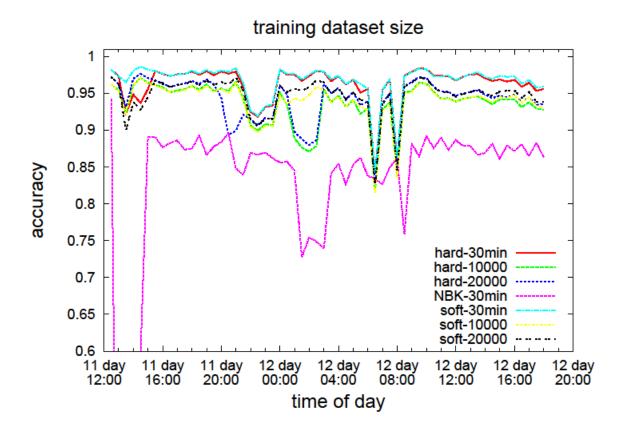
Baseline comparison



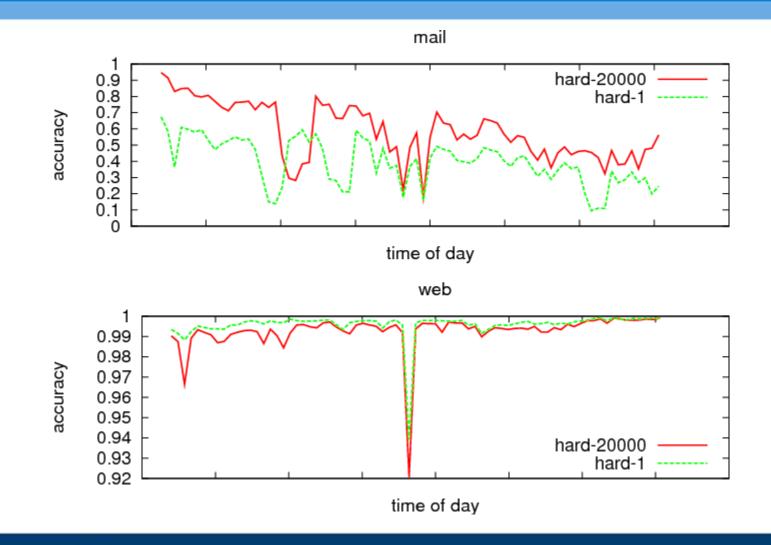
Baseline comparison – Class accuracy

					DoD	L C C D C C
	DB	MAIL	FTP	IM	P2P	ACCESS
Hard	1	0.58	1	0.39	1	0.95
Hard-ss	1	0.59	1	0.82	1	0.77
Soft	1	0.55	1	0.42	1	0.96
Soft-ss	1	0.61	1	0.42	1	0.81
NBK	0.84	0.26	0.42	0.76	0.91	0.11
·						
	SERV	SPAM	STREAM	WEB	VPN	VOIP
Hard	SERV 0	SPAM 1	STREAM 0.97	WEB 0.99	VPN 0.82	VOIP 0.24
Hard Hard-ss		SPAM 1 1				
	0	SPAM 1 1 1	0.97	0.99	0.82	0.24
Hard-ss	0 0	SPAM 1 1 1 1	$\begin{array}{c} 0.97 \\ 0.91 \end{array}$	$0.99 \\ 0.99$	0.82	$\begin{array}{c} 0.24 \\ 0.44 \end{array}$

Dataset size



Model parameters



- Model Presentation
- Results
- Related work
- Further Development

Related work

- Lots of work on traffic classification using machine learning
 - Survey paper [Ngyen et al, IEEE CST 2008] and method comparison [Kim et al, Connext08]
- Semi-supervised learning used on packet-level measurements in [Erman et al, Sigmetrics07]
- Traffic classification using NetFlow data is quite recent
 - First attempt using a Naïve Bayes classifier introduced in [Jiang et al, INM07]
 - Approach to the problem using C4.5 classifier in [Carela-Espanol et al, Technical report 09]

- Model Presentation
- Results
- Related work
- Further Development

Further development

- Packet sampling
 - Difficult problem multi view points could simplify the problem
- Adapt model for host characterization problem
 - Aggregate traffic on the host level and enrich data dimensions
- Incorporate graph level information in the model
 - Computer networks bares similarities with social networks

Conclusion

- Flow records may be a good data primitive for traffic classification.
- Modeling using probabilistic graphical model is not very difficult. •
- Semi supervised learning is an effective concept, but is not a one-• solves-all solution.
- Our model achieves 5-10% better performance than generic classifier and exhibits a good stability in short scale.
- Bayesian modeling and graphical models allow easy integration of Thank you!!!!! domain knowledge and adaptation to the requirements of the user.
- Model can be extended to achieve better results.

