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andDeliverable 3.4.3Demonstration and EvaluationApril 1999Abstra
tImplementations of the Measure CAC algorithms on a real lo
al ATM swit
h are des
ribed.A test and demonstration network environment for the algorithms is presented. The algo-rithems are evaluated with various traÆ
 sour
es with respe
t to a

ura
y and 
omputational
omplexity. The results show that the Measure CAC algorithms, used on the time s
ale of enduser 
onne
tions requests are implementable in real time, even with the prototype implementa-tions des
ribed here. While the tra
king of the arrival pro
ess of individual 
ows, as opposedto simple aggregate analysis, is pra
ti
al in the experiments we have performed, aggregateanalysis has proven to have a higher performan
e and be more easily implemented. Experi-ments whi
h 
ompare Measure with other approa
hes is shown, as are experiments whi
h useMeasure with aggregate traÆ
 but use a history me
hanism (to forget about performan
e fromthe distant past). The history me
hanisms used step outside our theoreti
al framework butmay provide a pra
ti
al way of using aggregates.Nonetheless, there are questions whi
h remain with respe
t to our implementation, notablythe time s
ale on whi
h estimations 
an and should be made. Results for high 
ell loss rates(1 in 1000) are sastisfa
tory, but we are not a
hieving good performan
e at lower loss rates.Our implementation is not mature and more investigation is required to explore the di�eren
esbetween theoreti
al and a
tual behaviour of the algorithms.1 Introdu
tionConne
tion Admission Control (CAC) denotes the set of a
tions taken by the network during the
onne
tion set-up phase in order to a

ept or reje
t an ATM 
onne
tion. A 
onne
tion requestis only a

epted when suÆ
ient resour
es are available to 
arry the new 
onne
tion through thenetwork at its requested Quality of Servi
e (QoS) while maintaining the agreed QoS of existing
onne
tions. During the 
onne
tion set-up phase the following information has to be de
lared,negotiated and agreed between the \user" and \network" to enable CAC to make a reliable
onne
tion a

eptan
e/reje
tion de
ision:� A Servi
e Category (su
h as Constant Bit Rate (CBR) or non-real-time-Variable Bit Rate(nrt-VBR)) 1



� a QoS 
lass expressed in terms of 
ell transfer delay, delay jitter and 
ell loss ratio (CLR),and� spe
i�
 limits on traÆ
 volume the network is expe
ted to 
arry.For a given 
onne
tion a
ross a network it is not ne
essary that all these aspe
ts of the CACde
ision be de
lared every time. Many of the parameters, su
h as (CLR) or 
ell delay transfermay be impli
it for the network on whi
h the 
onne
tion is being requested. As a result the a
tualinformation de
lared between a prospe
tive \user" and a \network" may be only the servi
e
ategory and a 
hara
terisation of the traÆ
 volume limits. An example of this would be that a
onne
tion is made on the assumption a 
ertain QoS is available in a network and when it makesits 
onne
tion it de
lares that it is a nrt-VBR 
onne
tion with a spe
i�
 Peak Cell Rate (PCR),Sustained Cell Rate (SCR) and Maximum Burst Size (MBS).It 
an be seen that the algorithm 
ontrolling the de
ision made during the CAC will 
ontrolthe poli
y of the network. This de
ision will attempt to balan
e the requirements of the \user"(a
hieve the desired QoS) versus the requirements of the \network" (do not violate the QoSguarantees made to other pre-existing 
onne
tions). As a result of this balan
e of \trade-o�s",a highly pessimisti
 CAC algorithm may always a
hieve the QoS by assuming the worst possible
hara
teristi
s about a new 
onne
tion. As a result this algorithm would allow few 
onne
tions intothe network; in return for always a
hieving the QoS 
ommitment, su
h a CAC algorithm wouldpotentially waste resour
es { leaving mu
h of the network under utilised. In 
omparison, a highlyoptimisti
 algorithm 
ould always assume the best possible 
hara
teristi
s about a new 
onne
tion.Su
h an algorithm would risk violating the QoS 
ontra
ts made to existing 
onne
tions for thesake of making maximal use of the available resour
es. An ideal CAC algorithm will a
hieve aneven balan
e between \user" and \network".During the development of su
h ideal CAC algorithms, substantial e�ort has been invested inmodelling and experimenting with the entire network situation. Models are made of all aspe
ts ofthe situation in
luding traÆ
 sour
es, network behaviour, the multiplexing of new 
onne
tions andthe variety of CAC algorithms available. However modelling alone does not satisfa
torily assessthe behaviour of real CAC algorithms implemented in real situations. Additionally, 
ommonmodelling te
hniques involve the use of simulated sour
es of traÆ
; these are used be
ause theyare well understood and easily generated. However due to the variety of sour
es and the 
ontinualdevelopment of new network users (and thus new types of traÆ
 sour
es), su
h simulated sour
esof traÆ
 do not represent adequately the range of behaviours su
h traÆ
 sour
es 
an have in anetwork.The inability to model the whole of a real-world CAC pro
ess and the inability to adequatelyrepresent real sour
es of traÆ
 mean it be
omes desirable to evaluate CAC algorithms in a 
on-trolled experimental situation using real traÆ
 sour
es in an a
tual network. Through the useof modelled traÆ
 sour
es a 
omparison 
an be 
ondu
ted between the theoreti
al models of theCAC situation and the implementation; this enables both the feedba
k to improve CAC algorithmsand a way to ensure realisti
 assumptions are made in the 
onstru
tion of CAC algorithms. Byusing real sour
es of traÆ
, su
h as video data streams or 
lient-server �le system traÆ
, the CACalgorithm 
an be tested against traÆ
 sour
es that are less easily modelled thereby ensuring theirusefulness in the real-world environment.This do
ument presents the realisation of the Measure estimator, des
ribing the performan
eevaluation of the LAN ATM estimator under 
ontrolled and live traÆ
. We present results eval-uating the behaviour of the Measure algorithm implemented as a prototype CAC me
hanismimplemented on an ATM based network. This implementation 
an be used with both modelledtraÆ
 sour
es and real sour
es of traÆ
 su
h as video data. We 
an obtain tra
es of ATM 
ellstreams of real traÆ
 whi
h 
an then be replayed in real time. This allows both realisti
 traÆ
to be used and for experiments to be repeatable. The Measure implementation has been used topredi
t the performan
e of various traÆ
 types and admission de
isions suÆ
iently that a workingCAC algorithm has been able to be demonstrated.Se
tion 2 establishes the terminology and presents the theoreti
al framework of Measure. InSe
tion 3 we des
ribe how the theoreti
al foundations of Measure 
an be applied to develop2



algorithms for 
onne
tion admission 
ontrol. Se
tion 4 details the experimental environment usedin the evaluation of the Measure CAC algorithm. The experimental environment has been designedto allow 
omparison of di�erent CAC algorithms under di�erent traÆ
 loads. The traÆ
 sour
esused for the experiments of this paper are dis
ussed in Se
tion 5Se
tion 6 des
ribes spe
i�
 implementation issues for the Measure and Hornet algorithms.Se
tion 7 reports results for the experiments we have 
ondu
ted. These experiments in
ludeinvestigations of the e�e
tives of Measure and Hornet in
luding a 
ontrast of these algorithmswith other CAC me
hanisms. Additionally, results that illustrate the behaviour of the Measureand Hornet algorithms as their parameters are varied are also presented here.2 TheoryTheoreti
al FrameworkWe �rst establish the terminology that we will use. Our 
entral 
on
ern is the loss of 
ellsdue to over
ow at a bu�er. Consider an ATM traÆ
 stream arriving at a bu�er whi
h has �nitestorage 
apa
ity b; here b may be sized a

ording to the delay 
onstraint of the traÆ
. Cells areremoved from the bu�er at �xed rate s, the line-rate. Ea
h traÆ
 stream has a �nite duration, asmight be expe
ted for 
alls of �nite length. We refer to a traÆ
 stream as a tra
e. Asso
iated withea
h tra
e is a 
ell-loss ratio between zero and one; we denote the 
ell-loss ratio for a bu�er-sizeb and a line-rate s by CLR(b; s). Experien
e with a wide variety of traÆ
-sour
es shows that thethe logarithm of CLR(b; s) is asymptoti
ally linear in the bu�er-size b for pra
ti
al bu�er sizes1,and for �xed line-rate s. A typi
al example is shown in Figure 2 whi
h plots, for a set of motionJPEG sour
es and �xed line-rate s on the Fairisle ATM network at Cambridge [3℄, the logarithmof the observed 
ell-loss ratio2 against bu�er-size b.
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Figure 1: Empiri
al loss probability for 18 streams of JPEG 
oded videoWe de�ne the bandwidth requirement of a tra
e to be the minimum line-rate at whi
h a target
ell-loss ratio 
 is not ex
eeded in a bu�er of storage 
apa
ity b:BWR(b; 
) := minfs : CLR(b; s) � 
g: (1)Noti
e that this is an operational de�nition whi
h does not involve any statisti
al theory; fora given tra
e, it 
an be determined empiri
ally by trial and error. In pra
ti
e of 
ourse it isne

essary to estimate the bandwidth requirement of a tra
e rapidly.1We do not intend to fuel the self-similarity debate [1, 2℄ further { we simply report our observations based onexperien
e with real ATM traÆ
 using pra
ti
al bu�er sizes and time-s
ales.2Observe that the sharp drop-o� at the tail of the distribution is due to the �nite observation period of theexperiment. 3



The general features of a plot of the logarithm of 
ell-loss ratio against bu�er-size for �xedline-rate are explained by queuing-theory. The tra
e is identi�ed with a portion of a sample-pathof a stationary sto
hasti
 pro
ess fAtg, the arrivals pro
ess ; here At denotes the total number of
ells whi
h have arrived up to time t. It 
an be shown, using large deviation theory, that if thearrivals pro
ess has a rate-fun
tion I(a) on the s
ale of t, su
h thatIP(At=t > a) � exp(�tI(a));then the 
ell-loss ratio in a bu�er of size b with �xed line-rate s de
ays exponentially in b when bis large: CLR(b; s) � exp(�bÆ):Furthermore, the de
ay-rate Æ is determined by the rate-fun
tion I(a):Æ = minfI(a+ s)=a : a > 0g:What we refer to as the thermodynami
 entropy of a traÆ
 stream is just the rate fun
tion I(a).These theoreti
al results, valid for a wide 
lass of sto
hasti
 pro
esses, o�er an explanation of theobserved asymptoti
 behaviour of the logarithm of the 
ell-loss ratio as a fun
tion of bu�er-sizeand relate the slope of its linear asymptote to the rate-fun
tion of a sto
hasti
 pro
ess representingthe traÆ
.The behaviour of the 
ell-loss ratio for small bu�er sizes is less well understood, but theoreti
alstudies of model sto
hasti
 pro
esses have thrown some light on this. A simple two-state Markovmodel is 
apable of 
apturing the general features of ATM traÆ
 in a 
rude way. For su
h models,Bu�et and DuÆeld [4℄ showed that the large deviation estimate IP(Q > q) � exp(�qÆ) 
an beimproved by the introdu
tion of a prefa
tor e�' so that we have a bound valid for all values of q:IP(Q > q) � exp(�'� qÆ):This has motivated us to use a straight-line upper bound to the graph of the logarithm of the
ell-loss ratio against bu�er-size: logCLR(b; s) � ��(s)� Æ(s)b; (2)at least for bu�er sizes above a small threshold b0. The parameters �(s) and Æ(s) are fun
tionsof the line-rate s. Suppose we have estimates �̂(s) and Æ̂(s) of the parameters; we de�ne theestimated bandwidth requirement by\BWR(b; 
) := minfs : ��̂(s)� Æ̂(s)b � log 
g: (3)This is used in two ways in our CAC algorithms: for the existing multiplexed traÆ
, we use on-lineestimation of the parameters � and Æ to determine its estimated bandwidth requirement; for aproposed new 
onne
tion, we set � equal to zero and estimate Æ using de
lared parameters.The on-line estimation of the slope parameter Æ for multiplexed traÆ
 is the 
hara
teristi
feature of the CAC algorithms introdu
ed in this do
ument. The on-line estimation of the inter
eptparameter � is 
omparatively straight-forward, and based on the frequen
y of o

urren
e of smallinterarrival times; we des
ribe it in more detail in [5℄. The estimation of Æ is based on the formulaÆ(s) = minfI(a+ s)=a : a � 0g;relating it to the large deviation rate-fun
tion I(a) of the arrivals pro
ess. This formula has anequivalent version whi
h is more suited to estimation:Æ(s) = maxf� > 0 : �(�) < s�g;where �(�) is the s
aled 
umulant generating fun
tion (SCGF) of the arrivals pro
ess, de�ned by�(�) = limt!1(1=t) log IE(exp(�At)): (4)4



It is of 
ru
ial importan
e to observe that the SCGF is automati
ally 
onvex.A Note on E�e
tive Bandwidth. Before des
ribing the CAC algorithms, we brie
y 
larifyour use of the term e�e
tive bandwidth, or equivalent 
apa
ity. The de�nition whi
h most 
losely�ts our approa
h originates with Hui [6℄, and is the value of s in equation (2), whi
h des
ribes astraight line of slope Æ through the origin in the graph of the empiri
al CLR of Figure 2. Thisgives rise dire
tly to the e�e
tive bandwidth approximation, whi
h is the fun
tionŝ(b; 
) = �b�(� log 
=b)log(
) : (5)The e�e
tive bandwidth approximation is an upper bound on the rate at whi
h a bu�er of size bmust be drained in order to meet the target CLR 
onstraint 
. It does not in
lude any re�nementinvolving the inter
ept �, shown in Figure 2. We have termed our re�ned approximation theestimated bandwidth requirement, as de�ned in equation (3). However, we shall make use of thee�e
tive bandwidth approximation of equation (5) in situations where we have no way to estimate�, for example, when presented with a new 
all attempt for whi
h we have no measurements.3 The Measure CAC AlgorithmsIn this se
tion we show how the theoreti
al foundations of Measure 
an be applied to developalgorithms for 
onne
tion admission 
ontrol. The algorithms work by estimating s
aled 
umulantgenerating fun
tions (SCGFs) of arrival pro
esses. The relevant arrival pro
esses are those of thetraÆ
 whi
h is 
urrently being 
arried (whi
h Measure estimates) and of the traÆ
 for whi
hadmission is requested.Parameters supplied by a new 
onne
tion request are passed to the predi
tor whi
h attemptsto predi
t the SCGF, and then
e the bandwidth requirement, of the new 
onne
tion. This is
ombined with the estimated bandwidth requirement of the 
urrent multiplex, produ
ed by theestimator, to de
ide whether or not to admit the 
onne
tion.Figure 2 shows the behaviour of the Measure CAC algorithm. Given a 
urrent multiplex of
onne
tions, the system estimates the bandwidth requirement of the multiplex from the estimatedSCGF using the entropy estimator (depi
ted here by a thermometer). The predi
tor used in theMeasure algorithm requires a new 
onne
tion attempt to de
lare only its peak rate P ; this is usedas a pessimisti
 assessment of the 
onne
tion's bandwidth requirement. The CAC algorithm sumsthe peak rate P , and the estimated bandwidth requirement of the multiplex; if the total is lessthan the link 
apa
ity, then the 
onne
tion 
an be a

epted without violating the QoS of any
onne
tions. As soon as the new 
onne
tion 
ommen
es, the estimator uses measurements of thenew multiplex to revise its estimate of the 
urrent bandwidth requirement. When the next 
on-ne
tion attempt arrives, the pro
edure is repeated, as shown. If a new 
onne
tion attempt arrivesbefore the algorithm has developed an a

urate estimate of the new bandwidth requirement, asshown in Figure 3, the algorithm a
ts 
onservatively. It uses the most re
ent stable estimate of thebandwidth requirement, plus the sum of the peak rates of all subsequently admitted 
onne
tions.Thus, in Figure 3, the se
ond 
onne
tion will be reje
ted, be
ause the sum of the two peaks P +P 0and the �rst bandwidth requirement estimate ex
eeds the link 
apa
ity.3.1 Measure AlgorithmThe Measure algorithm uses the following formulation as the estimator for the SCGF � of the
urrent multiplex: �(�) := limt!1 1t log IE(e�At); (6)An obvious way of estimating the SCGF from observations of At over a �nite time interval T isto use empiri
al averages to estimate the expe
tation: we break the observations into K blo
ks5



of length B in time and let ~Xk be the total arrivals in the kth blo
k. The SCGF is then readilyestimated as follows: �̂(�) := 1B log 1K KXk=1 e� ~Xk : (7)3.2 HornetThe Hornet algorithm di�ers from the Measure algorithm only in that it allows more informationabout a new 
onne
tion to be supplied. (In fa
t Hornet 
an be seen as a superset of Measure.)The over 
onservative behaviour of Measure 
an be moderated by using more information aboutthe 
onne
tion.Arriving traÆ
 is often des
ribed by 
rude parameters, possibly just the peak rate, or possiblyby the ITU (and ATM Forum) de�ned Generi
 Cell Rate Algorithm (GCRA). TraÆ
 
onforming toGCRA(T ,�), if passed through a queue of size �=T served at at rate 1=T , will not 
ause over
ow.TraÆ
 may be for
ed to 
onform to several GCRA 
onstraints. Note that GCRA 
onstraintsappear in both ITU and ATM Forum standards for traÆ
 
ontrol in ATM networks, and thatpoli
ing a sour
e to ensure that it obeys a set of GCRA 
onstraints is simple and is 
urrentlyperformed in many swit
hes.The CAC algorithm works as follows. At all times an estimate of the e�e
tive bandwidthof the streams passing through a queueing point in the network is available. Let the di�eren
ebetween the total 
apa
ity and the estimate, that is the available 
apa
ity, be 
. Let the totalbu�er available be b. Then a bound may be produ
ed on the required bandwidth of the in
omingstream and 
ompared with 
. Several possibilities then arise:1. if only the peak rate (sometimes referred to as peak 
ell rate, PCR) of the new stream isavailable, then set the required bandwidth estimate to the PCR:A

ept the 
onne
tion if 
 � PCR; otherwise,Reje
t the 
onne
tion.2. if a single GCRA 
onstraint, GCRA(T ,�) is given, then set the e�e
tive bandwidth to1=T if b � �=T;otherwise set the e�e
tive bandwidth to the line rate at the sour
e.A

ept the 
onne
tion if 
 � 1=T and b � �=T ; otherwise,A

ept the 
onne
tion if 
 � sour
e line rate; otherwise,Reje
t the 
onne
tion.3. when the ATM Forum parameters PCR, SCR and IBT (peak 
ell rate, sustained 
ell rate andinter burst toleran
e) are given, the traÆ
 
onforms to the GCRA 
onstraints GCRA(T ,�)and GCRA(T 0,0), with T 0 = 1/PCR, T = 1/SCR, and � = IBT. We 
an assume that T > T 0.If the bu�er is greater than �=T then the e�e
tive bandwidth is the SCR. Otherwise thee�e
tive bandwidth is very nearly the PCR. More pre
isely:A

ept the 
onne
tion if b � �=T and 
 � 1=T ; otherwise,A

ept the 
onne
tion if 
 � (� � bT + bT 0)=�T 0; otherwise,Reje
t the 
onne
tion. 6
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4 Evaluation & Demonstration EnvironmentThe experimental environment used in the evaluation of the Measure CAC algorithm is des
ribedin this se
tion. Figure 4 shows the implementation ar
hite
ture adopted for the CAC algorithm(s)whi
h the Measure proje
t has developed. The experimental ar
hite
ture is su
h that it enables usto implement and test not only the spe
i�
 CAC algorithms des
ribed in this paper, but also anyother algorithms developed in the Measure proje
t, and algorithms whi
h have been proposed byother authors. We aim, using this testben
h, to evaluate and 
ompare a range of CAC algorithmsfrom the literature, to test how well the Measure algorithms perform in pra
ti
e.At the heart of the ar
hite
ture is an ATM swit
h, whi
h is instrumented to provide mea-surements of the form suitable to the Measure and other measurement based CAC algorithms.Input traÆ
 into the swit
hes used for the study 
omes from a series of 
ustom built traÆ
generators whi
h are able to generate traÆ
 
omprising the statisti
al multiplex of well over ahundred ATM traÆ
 sour
es, ea
h of whi
h draws its traÆ
 behaviour either from an analyti
almodel (su
h as the two-state Markov model used widely in our earlier simulation studies) or a tra
eof a
tivity, su
h as the transmission of MPEG and Motion JPEG streams from ATM Cameras,and the other tra
es measured in Deliverable 3.1. These tra
es in
lude NFS, Web, X windowsand other traÆ
, and have already been used with our estimators. The generators are based onPCs running the Nemesis Operating system, part of the ongoing development of whi
h is beingsponsored under Workpa
kage 4 of this proje
t. Ea
h traÆ
 generator is 
apable of saturatingthe ATM transmission links should this be required, and the whole suite of generators gives usunrivalled 
exibility in experimentation.The instrumentation on the ATM swit
h enables us to retrieve measurements of a qualitysuitable for use in the Measure algorithms. A Measurement 
ontroller, running o� the network on aunix workstation, is responsible for 
olle
ting the data from the swit
h and storing it appropriately.The measurement 
ontroller measures not only the traÆ
 a
tivity, whi
h is the input to the measurealgorithms, but also the QoS experien
ed by the traÆ
: its CLR, queue length distributions, inter-
ell loss times, and other measures whi
h allow us to 
ompare the performan
e of the system inpra
ti
e with the observed perfroman
e of a simulation of the system using a simulated swit
hmodel, o�ine.The CAC system works as follows: a 
all generator (running on unix) is responsible for 'gen-erating' a

ording to some distribution, or perhaps a tra
e of measured arrivals, the arrival ofnew 
alls. New 
alls may be of multiple types, and ea
h 
all may randomly (a

ording to somedistribution) determine its 
all type and any set of parameters whi
h it is required to present. Inthe 
ase of Mosquito, the 
alls need only de
lare their peak rate, however for full ATM Forum
ompliant 
alls, we might require a 
all to de
lare its SCR, IBT and any other useful parameters.New 
alls generated by the traÆ
 generator arrive at the CAC de
ision system when they aregenerated. Ea
h 
all presents its parameters to the CAC system and requests a 
onne
tion tobe set up a
ross the swit
h. The CAC system, in turn, uses measurements from the swit
h ofthe 
urrent a
tivity, together with the 
urrently loaded CAC algorithm (Measure, Mosquito, Peakrate allo
ation, Kelly/Key et
) to make a de
ision as to whether or not to admit the 
all. Onlyone CAC algorithm may be in operation at any time.If a 
all is admitted, the CAC algorithm will reply to the 
all generator a

epting the 
all.The 
all generator then instru
ts the tra�
 generator 
ontroller to 'set up' a new traÆ
 generatorwith the appropriate parameters for a 
all fo this type. The 
all type might be on-o�, or someother analyti
al model, or tra
e driven. The traÆ
 generator 
ontroller then starts the new 
allby instru
ting it to begin transmission. The generator then adds the 
ell stream from the new
all to the 
ell stream from the full set of ATM 
onne
tions for whi
h it is responsible, and simplytransmits its total load. Ea
h 
onne
tion has a lifetime whi
h is drawn from some distribution orperhaps a set of measurements, and when its lifetime expires, the traÆ
 generator responsible forit stops its transmission of 
ells, and the 
all '
lears down'.It is important to stress that in this setup there is no real ATM signalling. The pro
essesrunning o�-swit
h assume the full load of the 'signalling' and therefore we 
an emulate the arrival8
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of 
alls at rates far higher than 
ould be sustained by any real ATM signalling implementation.Also, the setting up of a '
onne
tion' through the swit
h is optimised in the sense that all VCI/VPIpairs to be used in an experiment are mapped through the swit
h before the experiment starts,meaning that we do not need to a
tually set up paths during the experiment. This greatly aidseÆ
ien
y, and meas that we 
an a
hieve realisti
 
all setup rates for large networks.Our experimental system is equipped with a fa
ility whi
h provides graphi
al output in realtime, showing several 
riti
al performan
e parameters for the system under study as 
alls arriveand depart from the network.Figure 5 shows two s
reendumps of the system, depi
ting the evolution of an experiment overtime. The graphi
al output system has 3 graphs, sta
ked verti
ally. The x axis in all 
ases is time,shown in se
onds sin
e the start of the experiment. This grows as the experiment 
ontinues. Mostexperiments last for in ex
ess of an hour (ie we run the system for long enough to obtain a

uratestatisti
al measures of the system perfoman
e under ea
h traÆ
 type, swit
h parameters and CACalgorithm). Details of the results from this system will be presented in a later deliverable, as oure�orts to date have 
on
entrated on developing the �rst implementation.The top graph in ea
h set of 3 produ
ed by the on-line system shows the 
all arrival pro
ess.For ea
h 
all whi
h arrives a verti
al bar is drawn. In the event that an arriving 
all was a

eptedby the CAC algorithm, a green verti
al bar is drawn. If the 
all is reje
ted, then the verti
al bar isred, and extends downwards. In the leftmost series of graphs, no 
alls have been reje
ted be
ausethis shows the system in a startup transient, before there is suÆ
ient traÆ
 in the system for
alls to be reje
ted. In the right-hand set of graphs, however, 
alls begin to be reje
ted after 100se
onds.The se
ond graph from the top in ea
h set is a display of the traÆ
 dynami
s in the swit
h,measured in real time. Ea
h graph shows 3 lines. The green line is the measured instantaneousutilisation of the link being studied. The orange line is the output of the on-line estimationalgorithm of the e�e
tive bandwidth (the Bandwidth Requirement) of the traÆ
, as estimated bythe online estimation algorithm in use. In this 
ase the algorithm is the simple Measure algorithmdes
ribed earlier. Typi
ally the BWR line is below the instantaneous demands, as would beexpe
ted. Finally, the purple line depi
ts the '
ommitted bandwidth': the sum of the estimatedBWR as des
ribed above, plus the amount of resour
e 
ommited, for example by using the peakrate, for all 
alls admitted sin
e the most re
ent stable estimate from the estimation algorithm.Thus the purple line is a 
onservative estimate of the resour
e requirements of the total traÆ
multiplex given the a
tive sour
es and the new 
alls whi
h have been a

epted but for whi
h nomeasurements have been made yet.Finally, the bottom graph in ea
h set shows the number of 
alls in progress in the system, overtime. This rapidly 
limbs, as new 
alls enter the system at a greater rate than they 
lear down,and be
ause in the empty system (at left) no 
alls are reje
ted. On
e reje
tions o

ur, the numberof 
alls in progress stabilises, but displays the expe
ted variation due to statisti
al 
u
tuations.In this experiment the 
alls are 2-state on-o� sour
es, with a peak rate of 10 Mb/s, a mean rate of1 Mb/s, and a mean burst length of 25 
ells. In the experiment shown, the Measure algorithm isbeing used, with a CLR 
onstraint of 10�3 for the entire multiplex. The CLR 
onstraint is neverviolated, yet the link utilisation is 
lose to optimal for this traÆ
.It is important to note that an observational error is introdu
ed as the measured CLR value isredu
ed. A measured CLR of 1� 10�3 means that in an experiment of 100,000,000 
ells, 100,000
ell loss events will be 
ounted. However a measured CLR of 1 � 10�6, for the same lengthexperiment, represents only 1,000 
ell loss events. To give the same number of events for a smallerCLR value, the length of the experiments would need to be in
reased by an appropriate amount.An experiment that transmits 100,000,000 
ells requires about 2 hours to run to 
ompletion; toa
hieve the same number of loss events for a measured CLR of 1 � 10�3, the experiment wouldneed to transmit 100,000,000,000 
ells and run for 2,000 hours (about 12 weeks). Obviously thisis not realisti
 and as a result many more experiments have been run at lower values of CLR, withthe majority targeting a CLR of 1� 10�3 or 100,000 
ell loss events in 2 hours.10



Figure 5: S
reen shots of the CAC system in on-line operation11



5 TraÆ
In this se
tion we detail the traÆ
 sour
es used for the experiments of this paper.5.1 TP10S1TP10S1 is a traÆ
 sour
e based upon a two-state ON-OFF Markovian model. The theoreti
almodel used is shown in Figure 6. The burst sizes and inter-burst spa
ings ea
h have an exponentialdistribution with means derived from the MBS and SCR respe
tively. In the on-state, the 
ells ofa burst are emitted at PCR.The behaviour of traÆ
 from the sour
e is based around the uniformly distributed randomvariable X and the traÆ
 properties of PCR, SCR and MBS. The variable X in turn, is basedon a pseudo-random number generator. As a result, several traÆ
 generators 
an have 
onsistenttraÆ
 properties of PCR, SCR and MBS yet, through the use of di�erent seeds to the pseudo-random number generator, the generators will 
reate a stream of 
ells that will di�er over time inthe 
ell level 
hara
teristi
s of burst length, burst size and inter-burst spa
ing.
0

1

No cells emitted X    ~U[0,1]1,2

-log(X  )2

and the SCR)M
N =

(derived from
mean time between cell bursts

Cells emitted

λµ µ = N

λ = M-log(X  )1

M= mean burst length
(derived from the MBS)

at the PCRFigure 6: Markov 2-state on-o� generator.The TP10S1 traÆ
 type has a PCR of 10Mbps and an SCR of 1Mbps. The 
ell burststhemselves have an MBS of 25 
ells. This means 
ell bursts will be transmitted at 10Mbps,the exponentially distributed 
ell bursts have a mean length of 25 
ells and the exponentiallydistributed inter-burst spa
ing gives an SCR of 1Mbps.5.2 StarWars2StarWars is a sour
e whi
h has been widely used in performan
e studies of ATM systems in theliterature, namely a tra
e of the a
tivity of the Star Wars movie. The Star Wars data set wasprodu
ed by Garrett and Vetterli at Bell
ore, and has been studied in some detail, for examplein [1, 9℄ and [10℄. It 
omprises the information 
ontent in bytes per frame for about 2 hours ofthe �lm, as transmitted by a DCT based 
ode
 similar to JPEG. The byte 
ount per frame isbroken down into \sli
es" of 16 video lines. With 30 sli
es per frame and 24 frames per se
ond,one sli
e represents the information transmitted in about 1.4 millise
onds. The Star Wars traÆ
has been shown to exhibit signs of long-range dependent behaviour, making it potentially diÆ
ultfor a measurement based CAC to 
ope with.The Star Wars tra
es were 
onstru
ted by en
oding ea
h sli
e as a single AAL5 PDU whi
hwas transmitted (and tra
ed); 
ells from ea
h sli
e were transmitted at a CBR rate equal to thesli
e rate, redu
ing the peak rate from the line rate to about 24.2 Mb/s for the worst sli
e. Themean rate is about 5.3 Mb/s. 12



5.3 VP10S4VP10S4 is a traÆ
 stream based, like the StarWars stream, upon a video sour
e. For VP10S4,the video used was a 
ombination of programs on lo
al television, in
luding news broad
asts, talkshows and feature movies. The peak rate is about 10 Mb/s and the mean rate is about 4.0 Mb/s.5.4 T2MIXT2MIX is two-state Markovian sour
e of the same style as TP10S1. It emitts 
ells at a 
onstant(peak) rate of about 11.1 Mb/s (28.8K
ells/s) in the ON state, and is silent in the OFF state.There is a range of parameters for this traÆ
 sour
e with ea
h new 
onne
tion 
hoosing itsparameters randomly: the mean (as a fra
tion of the peak) is 
hosen from 0.1, 0.3, 0.5, 0.7, and0.9 with probabilities 1/16, 4/16, 6/16, 4/16, and 1/16 respe
tively. The burstiness is 
hosen from0.3, 0.5, 0.7, and 0.9 with probabilities 1/8, 3/8, 3/8, and 1/8 respe
tively.6 Algorithm ImplementationWhile both the Measure and Hornet algorithms have elegant mathemati
al des
riptions, the im-plementation of these systems is 
omplex. This 
omplexity derives from there being many di�erent
hoi
es the implementor may follow in the 
ourse of 
onstru
ting working versions of these algo-rithms. This se
tion des
ribes these 
hoi
es in the implementation of the Measure and Hornetalgorithms des
ribed previously in Se
tion 3.Se
tion 6.1 details the rational for breaking up the implementation into two 
omponents,a front-end and a ba
k-end. There are two front-end implementations one ea
h for Measure andHornet and there are two ba
k-end implementations one ea
h for per-
onne
tion measurements andaggregate measurements. The front-end and ba
k-end delineation falls neatly onto the algorithmsboundary between predi
tor and estimator. Se
tion 6.2 
overs details of the Hornet front-endimplementation. Se
tion 6.3 dis
usses the ba
k-end implementation based upon per-
onne
tionline measurements, while Se
tion 6.4 
ompares that with a ba
k-end implementation based uponaggregate line measurements.Se
tion 6.4.1 addresses issues raised through the use of an aggregate line measurement imple-mentation spe
i�
ally and 
omments on the unbounded nature of Measure based algorithms ingeneral. Finally, Se
tion 6.5 gives an assessment of the 
omplexity of implementation.6.1 MeasureThe Measure algorithm uses 
ontinuous measurements of the line utilisation to re�ne its estimateof the bandwidth required by the multiplex of traÆ
 on a network.Reiterating the 
on
lusions of Se
tion 3, the SCGF, and thus for a given Æ value, the e�e
tivebandwidth is estimated from observations of At over a �nite time interval T using empiri
alaverages to estimate the expe
tation. We break the observations into K blo
ks of length B intime and let ~Xk be the total arrivals in the kth blo
k. The SCGF is estimated as follows:�̂(�) := 1B log 1K KXk=1 e� ~Xk (8)In the simplest implementation of the algorithm, measurements of the a
tivity of the line are 
ol-le
ted and for ea
h CAC de
ision, the SCGF is re-
al
ulated in
orporating the new measurements.However, in a pra
ti
al implementation this would involve two drawba
ks. Firstly, the bu�er-ing of an unknown amount of data prior to ea
h re
al
ulation would involve an unknown andunbounded amount of memory. Se
ondly, the 
al
ulation of the SCGF itself may involve an un-known and unbounded amount of time to perform. This would introdu
e an unknown and variabledelay in the response of the CAC pro
es. Rather than an approa
h that required the 
al
ulation of13



the e�e
tive bandwidth estimate for ea
h and every admission attempt at the time of the attempt,an alternative method was required.Rather than performing the 
al
ulation of the e�e
tive bandwidth estimation for ea
h CACde
ision, an alternative method is to divide the task of 
olle
ting measurements and 
al
ulatingthe new e�e
tive bandwidth estimation from the task of performing the CAC de
ision. Figure 7illustrates this te
hnique where the e�e
tive bandwidth estimate is 
al
ulated independently to theCAC de
ision. This division of labour of the CAC algorithm into a front and ba
k end means thatthe CAC de
ision pro
ess be
omes independent, asyn
hronous, to the 
al
ulation of the e�e
tivebandwidth estimate.The front and ba
k ends still need to share information between them and this is done throughthe sharing of a blo
k of memory. It is into this memory that the ba
k-end pla
es the latest 
opyof the bandwidth estimate.By breaking the algorithm into two distin
t 
omponents, we 
an bound the amount of CPUtime and memory that either 
omponent will require. In parti
ular this means that the CACde
ision pro
ess 
an be performed asyn
hronously of the e�e
tive estimate 
al
ulation; thus theperiod between 
onse
utive CAC de
isions is not the minimum time it takes to 
al
ulate an e�e
tivebandwidth estimate.The te
hnique of breaking up of an algorithm into two parts in this way is a suitable approa
hfor any algorithm that may rely upon syn
hronous a

ess to measurements. TheMeasure algorithmrelies upon syn
hronous a

ess to measurements in order to supply the most up to date estimate ofthe e�e
tive bandwidth; other algorithms similarly may require this a

ess to estimate information.Table 6.1 presents a 
ode snippet illustrating the admission pro
ess for a new 
onne
tion inMeasure. The e�e
tive bandwidth variable used in 
al
ulating the 
urrent estimate is 
al
ulatedby the ba
k-end 
omponent of the algorithm. Note that Measure only requires that in
oming
onne
tions de
lare their maximum possible utilisation, PCR.6.2 HornetIn the 
al
ulation of the e�e
tive bandwidth estimate, Hornet and Measure are identi
al; in thisway both algorithms share their ba
k-end 
omponents. The di�eren
e between Hornet and Mea-sure 
omes in the implementation of the de
ision pro
ess in the front-end. While Measure 
anonly pro
ess the simplest traÆ
 des
ription: the peak transmission rate of that sour
e { PCR;Hornet is able to use the ATM Forum parameters PCR, SCR and IBT. Hornet does not need allthese parameters to be de
lared by a new 
onne
tion but if a new 
onne
tion does de
lare theseparameters Hornet 
an make a better attempt at admitting the new 
onne
tion.By operating on the additional parameters o�ered by a new 
onne
tion attempt, Hornet hasthe potential to operate the system 
loser to the maximum line rate, thereby a
hieving the bestutilisation of available network resour
es. Hornet does this while still keeping the multiplex of
onne
tions within the desired target CLR. Table 6.2 presents a 
ode snippet illustrating theadmission pro
ess for a new 
onne
tion in Hornet.6.3 Per-
onne
tion measurementsThe a
tual mathemati
s for the 
al
ulation of the e�e
tive bandwidth estimate from the set oftraÆ
 samples, ~Xk,are the same for both the Per-
onne
tion measurement ba
k-end and theAggregate measurement ba
k-end. The di�eren
e between these implementations is that the Per-
onne
tion implementation is more stri
tly in a

ordan
e with the expe
tations of the algorithms'ar
hite
ts. The Per-
onne
tion implementation ensures that every blo
k, ~Xk, only 
ontains traÆ
for 
onne
tions that were a
tive over the time 
overed by that parti
ular blo
k. In 
ontrast, andas dis
ussed in the next Se
tion, aggregate measurements may 
ontain measurements of traÆ
 for
onne
tions that have long sin
e been `torn-down'.For the Per-
onne
tion implementation, we must ensure ea
h blo
k, ~Xk, is based upon onlya
tive 
onne
tions, this means that when a 
onne
tion is 
ompleted and `torn-down', the line14
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Figure 7: Con
urrent re
al
ulation of e�e
tive bandwidth estimate and CAC de
isions using apair of pro
esses: front-end and ba
k-end.
newConne
tionAttempt( newCallPeakRate )...
urrent_estimate = /* 
urrent effe
tive_bandwidth (from ba
k-end)+ the PCR of all 
onne
tions that haveentered the system sin
e the 
urrenteffe
tive_bandwidth was 
al
ulated */if((line_
apa
ity - 
urrent_estimate) < newCallPeakRate) {/* Conne
tion attempt has been reje
ted */}else{/* Conne
tion attempt has been a

epted *//* re
ord the PCR of the new 
onne
tion alongwith the time it entered the system *//* allo
ate 
onne
tionID */}...Table 1: Code snippet illustrating the admission pro
ess for a new 
onne
tion in Measure.
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newConne
tionAttempt( newCallPeakRate [,tau ℄ [,newCallMeanRate℄ )... /* 
al
ulate GCRA parameters */T = 1 / newCallMeanRate;T_prime = 1 / newCallPeakRate;
urrent_estimate = /* 
urrent effe
tive_bandwidth (from ba
k-end)+ the required bandwidth of all 
onne
tionsthat have entered the system sin
e the 
urrenteffe
tive_bandwidth was 
al
ulated */if((line_
apa
ity - 
urrent_estimate) < newCallPeakRate) {/* `Measure' style admission failed */if(
urrent_estimate + newCallMeanRate > st->maxlinerate ||buffer_length < (tau / newCallMeanRate) ) {/* 1st round `Hornet' failed *//* now 
al
ulate (tau - (buffer_length x 1/newCallMeanRate) +(buffer_length x 1/newCallPeakRate))/(tau x 1/newCallPeakRate) */effe
tive_rate =(( tau - (buffer_length * T) +(T_prime * buffer_length))/ (tau * T_prime));if( line_
apa
ity - estimate >= effe
tive_rate ) {/* 2nd round `Hornet' failednew 
onne
tion attempt has failed */}else{/* new 
onne
tion attempt su

eeded */}}else{/* new 
onne
tion attempt su

eeded */}}else{/* new 
onne
tion attempt su

eeded */}if( /* new 
onne
tion attempt su

eeded */ ) {/* re
ord the required bandwidth of the new 
onne
tion alongwith the time it entered the system *//* allo
ate 
onne
tionID */}... Table 2: Code snippet illustrating the admission pro
ess for a new 
onne
tion in Hornet.16



utilisation statisti
s that it was responsible for are removed from all the blo
ks before the e�e
-tive bandwidth is re
al
ulated. The Per-
onne
tion measurement implementation has signi�
antoverheads asso
iated with it be
ause we need to keep information about whi
h 
onne
tions area
tive for ea
h blo
k as well as the original measurements for ea
h 
onne
tion over ea
h blo
k.This is ne
essary be
ause the blo
k must either be re
al
ulated without in
luding the 
ompleted
onne
tions' statisti
s or have the 
ompleted 
onne
tions' statisti
s removed from the sum.Per-
onne
tion measurements, as the name implies, requires that statisti
s about the 
ontribu-tion to the line of ea
h individual 
onne
tion is available from the swit
h. Without a me
hanismto identify what data belongs to whi
h 
onne
tion, the per-
onne
tion me
hanism 
annot identifyand remove the appropriate data. The per-
onne
tion measurements ba
k-end 
an be used witheither the Measure or Hornet front-ends.6.4 Aggregate measurementsThe in
entive for an implementation based upon aggregate rather than per-
onne
tion measure-ments was the massive potential load that moving measurements between the swit
h statisti
ssystem and the 
omponent 
al
ulating the Measure estimates is 
ontained. The amount of datatransferred for the lower range of values of the size of the blo
k length B and thus the granularityof measurements (the period over whi
h measurements are made) 
ould make aggregate measure-ments the only plausible implementation approa
h to take. For ea
h port 
arrying 256 
onne
tionsand a blo
k length B of 100 
ell times in length, measurements made every 100 
ell times willrequire over 2Mbyte/se
ond be moved into the Measure system for ea
h port of the swit
h. Ifonly aggregate measurements were used this �gure would be redu
ed to 2Kbytes/se
ond for thesame measurement period. It was with this information in mind that an aggregate measurementimplementation was 
onsidered worthy of investigation.In dire
t 
ontrast to the per-
onne
tion measurements ba
k-end of Se
tion 6.3, the aggregatemeasurements ba
k-end requires a measurement of the total line a
tivity for the given blo
klength period. This means the ba
k-end, and indeed the measurement gathering system are bothsigni�
antly simpli�ed. This signi�
ant simpli�
ation 
an be seen 
learly in the 
omparison ofthe 
ode of per-
onne
tion measurement 
ode Table 6.3 with the aggregate measurement 
ode ofTable 6.4The drawba
k of the aggregate measurement based ba
k-end is that ea
h blo
k, ~Xk, 
ontainsmeasurements that have been 
aused by 
onne
tions that may have sin
e been `torn-down'. Inthis way the aggregate measurements may 
ontain old data no longer relevant to the 
urrent traÆ
mix and thus not relevant to the 
al
ulation of a 
urrent e�e
tive bandwidth estimation. Su
h anapproa
h does not have a good theoreti
al foundation, however the ease of implementation thatthis approa
h o�ers makes it worth investigating. The workload on the swit
h is also minimisedmaking this me
hanism very appealing; supplying line a
tivity statisti
s for every a
tive 
onne
tionwith the regularity required by Measure may simply not be realisti
 for a large swit
h with tens orhundreds of thousands of 
onne
tions a
ross hundreds of ports. However, o�ering high resolutionaggregate measurements might be more realisti
 for both new swit
h systems to be designed too�er and old swit
h systems to be re-engineered to make newly available.An immediate drawba
k of aggregate measurements is that it is not 
lear when the measure-ment is no longer relevant. In per-
onne
tion measurements, a blo
k is no longer relevant whenit 
ontains no data for 
urrent 
onne
tions; when this is the 
ase it should be dis
arded being ofno further use in the 
al
ulations to predi
t the behaviour of the 
urrent 
onne
tions. The use ofaggregate measurements requires a way to de
ide when blo
ks should no longer be in
luded in theset of samples used to 
al
ulate the e�e
tive bandwidth estimate.The use of history boundaries to set the oldest point beyond whi
h blo
ks would be dis
ardedis the subje
t of the Se
tion 6.4.1.
17



...for /* ea
h blo
k period */ {for /* ea
h valid 
onne
tionID */ {perBlo
k_traffi
_sample +=per
onne
tion_traffi
_sample[ 
onne
tionID ℄;}}/* Using all perBlo
k_traffi
_sample withat least one valid 
onne
tion present;
al
ulate 
urrent effe
tive_bandwidth estimate.pla
e this estimate in shared memory to allowa

ess by the front-endpla
e a time-stamp of when this latest valuebe
ame available in shared memory to allowa

ess by the front-end */...Table 3: Code snippet illustrating the Per-
onne
tion measurements based Measure ba
k-end.

... /* perBlo
k_traffi
_samples = an aggregate ofall line a
tivity at the time the blo
k was taken *//*Using up to the maximumOldestBLo
k perBlo
k_traffi
_sample;
al
ulate 
urrent effe
tive_bandwidth estimate.pla
e this estimate in shared memory to allowa

ess by the front-endpla
e a time-stamp of when this latest valuebe
ame available in shared memory to allowa

ess by the front-end */... Table 4: Code snippet illustrating the Aggregate measurements based Measure ba
k-end.
18



6.4.1 History boundariesThe use of aggregate measurements in general invokes a problem that the 
ontent of ea
h blo
k,~Xk, may 
ontain measurement data for 
onne
tions that have sin
e been removed from the net-work. Additionally, if a blo
k does not 
ontain measurement data for any a
tive 
onne
tions its
ontribution to the Measure 
al
ulation of e�e
tive bandwidth estimate will be unpredi
table atbest and unhelpful at worst. In the per-
onne
tion implementation, only data for a
tive 
on-ne
tions is used to 
al
ulate the value of ea
h blo
k, ~Xk; even when this means re
al
ulating thevalues of ea
h ~Xk whenever a 
onne
tion is removed from the system. For aggregate measurementswe have two problems, �rstly, that some blo
ks will 
ontain measurements that are a mixture of
onne
tions that are still a
tive and 
onne
tions that are no longer a
tive, and se
ondly, that someblo
ks will 
ontain measurements for no 
urrent data at all.A solution to both of these problems is to pla
e an upper limit on the lifetime of any parti
ularblo
k: on
e a blo
k be
omes older than a 
ertain period it is removed from the traÆ
 mix. Inthis way if this history length is shorter than the average length of a 
onne
tion, some blo
ks withvalid data will be dis
arded, whereas if the history length is longer than the average length of a
onne
tion, some blo
ks will be in
luded in the Measure 
al
ulation that 
ontain no valid data atthat time. From this we 
an see that sele
ting the history length may in itself be a non-trivialtask.In addition to using a �xed history Grossglauser & Tse [11℄ explored using an adjustable anddynami
 history length based upon the number of 
onne
tions in progress and the mean length ofea
h 
onne
tion. While their work was not with the Measure algorithm, it was widely 
onsidereddire
tly relevant to any algorithm that has at its basis the sampling of 
onne
tion a
tivity overthe lifetime of 
onne
tions. The boundary on the blo
k history in time is given as:Tmax = mpn (9)The (trivial) implementation of this 
ode is given in Table 6.4.1.This value for the boundary on the length of history implies that as more 
onne
tions enterthe system, histori
al knowledge of longer 
onne
tions is dis
arded in favour of blo
ks 
ontainingtraÆ
 mixtures for more re
ent 
onne
tions. This history me
hanism is used for all experimentsbased upon the aggregate measurement ba
k-end unless otherwise mentioned.The additional use of a �xed upper boundary on the total number of blo
ks may also be neededfor real-world implementations of both the per-
onne
tion and aggregate measurement ba
k-end.This is be
ause without su
h a boundary, a 
onne
tion held open permanently may 
ause thetotal blo
k history to be unbounded. By being unbounded, both the 
al
ulation of the Measureestimate and the memory required to store the blo
k history would be unbounded. The 
urrentimplementations of the per-
onne
tion or aggregate measurement ba
k-end do not implement su
ha feature.6.5 Implementation 
omplexityIn the wider a

eptan
e of the Measure algorithm one problem may be its per
eived 
omplexity.While in
reased familiarity with the algorithm foundations and assumptions makes implementationless diÆ
ult, su
h a 
omplex algorithm may have a signi�
ant 
ode investment based asso
iated... maximumOldestBlo
k = (meanCallHoldingTime) /sqrt(numberOfCallsInProgress);...Table 5: Code snippet to 
al
ulate the oldest blo
k to be added to an Aggregate measurement.19



with it. Table 6 gives an assessment of the 
omplexity of the 
ode. These results are based on thesize of the 
ode base and a subje
tive assessment of the diÆ
ulty making the implementation.From Table 6 we would have to 
on
lude that even the most 
ompli
ated algorithm based uponMeasure or Hornet 
ould be 
onsidered relatively easy. In the 
ontext of swit
h software whi
h
an run to many hundreds of thousands of lines, the 
ode investment in these algorithms is nottrivial but 
ertainly straightforward.Algorithm Lines of Code DiÆ
ulty to Implement1 (easiest) { 5 (hardest)Measure Aggregate Ba
k-end 1500 4Measure Per-
onne
tion Ba
k-end 2050 5Hornet Per-
onne
tion Front-end 250 3Measure Per-
onne
tion Front-end 200 2Peak Rate Allo
ation 170 1Gibbens/Kelly95 - III 280 4Table 6: Implementation 
omplexity given by the amount of 
ode in ea
h CAC algorithm and asubje
tive assessment of the diÆ
ulty of making the implementation.7 ResultsIn this se
tion we present results for a range of experiments we have 
ondu
ted. We have 
ondu
tedexperiments investigating the e�e
tives of Measure and Hornet, 
ontrasting these algorithms withother CAC me
hanisms. Additionally, results that illustrate the behaviour of the Measure andHornet algorithms as their parameters are varied are also presented here.Se
tion 7.1 presents results showing the performan
e of the implementations in parti
ular
ontrasts of the desired CLR with the measured CLR. Se
tion 7.2 reports on the behaviour of al-gorithms when input parameters to the algorithm, in parti
ular the blo
k length B, are varied overa range of values. Se
tion 7.3 presents performan
e statisti
s for the 
omponents of the Measureand Hornet CAC implementations as well as performan
e statisti
s of 
omparison CAC algotihms.Finally, in Se
tion 7.4 results 
omparing the two Measure and two Hornet CAC algorithms alongwith Gibbens/Kelly95 - III a CAC from [12℄ and a simple Peak Rate Allo
ation poli
y.Unless it is spe
i�
ally stated, all experiments 
ondu
ted had 100 
ell bu�er and a target CLRof 1�10�3. The 
onne
tion attempts arrive at a high (Poisson) rate with a mean of 10 
onne
tionattempts per se
ond. Blo
ked 
onne
tions are lost, but the high arrival rate means that the systemis 
ontinually fa
ed with new 
onne
tion attempts. Conne
tions have an exponentially distributedlength; 
onne
tions have a mean length of 10 se
onds.7.1 Algorithm E�e
tivenessAn attra
tion of a CAC 
onstru
ted upon the Measure or Hornet algorithm is that we shouldbe able to set the value of Æ: namely the desired CLR and the system bu�er size, and the CACalgorithm should attempt to a
hieve that CLR as a mean for all 
onne
tions sharing the line. Thisse
tion presents results showing the performan
e of the implementations in parti
ular 
ontrastingthe desired CLR with the measured CLR.As dis
ussed in Se
tion 2, both the Measure and Hornet algorithms are pessimisti
 about thebehaviour of newly admitted 
onne
tions. Ea
h algorithm assumes the newly admitted 
onne
tionwill perform with the worst possible traÆ
 
hara
teristi
s that have been de
lared; as a result themeasured CLR of the line is expe
ted to be lower than the desired CLR parameter. In the 
ase ofMeasure, new 
onne
tions need only de
lare their PCR, as a result Measure is expe
ted to returna higher divergen
e in the CLR values than Hornet: where in
oming 
onne
tions 
an de
lare agreater number of parameters. 20



For the following experiments a bu�er size of 100 
ells and a target CLR of 1� 10�3 is usedunless otherwise noted. For the results of Table 7 and Table 8, the other adjustment of the Measurealgorithm, the Blo
k length B is set to 5 � 10�3 se
onds; this parameter is dis
ussed in greaterdetail in Se
tion 7.2.Using the ON-OFF traÆ
 sour
e TP10S1, des
ribed in Se
tion 5.1; the results of Table 7 weregathered. Conne
tion attempts arrive at a high (Poisson) rate with a mean 10 attempts s�1.Blo
ked attempts are lost, but the high arrival rate means that the system is 
ontinually fa
edwith new 
onne
tion attempts. As a result it is expe
ted that the system will remain at 
lose tomaximum utilisation. Conne
tions have an exponentially distributed length with a mean durationof 10 s.Ea
h CAC will attempt to a
hieve as high a line utilisation as possible, however in return forgreater line utilisation, greater 
ell-loss will present itself. Be
ause of this the results of Table 7and Table 8 need to be assessed only as an attempt by theMeasure or Hornet algorithms to a
hievea given CLR; this alone is not the only assessment 
riteria of a CAC algorithm and a 
omparisonof other aspe
ts of ea
h experiment is given in Se
tion 7.4.From Table 7 we 
an see that, with the ex
eption of the Hornet algorithm using aggregatemeasurements, ea
h algorithm returns quite a

eptable CLR values measured from the test envi-ronment. The Hornet algorithm using per-
onne
tion line measurements admitted a larger numberof 
onne
tions and thus the resulting measured CLR is greater. The Hornet algorithm based uponaggregate line measurements returns a mu
h lower CLR value, almost an order of magnitudelower, indi
ating that the e�e
t of aggregation of measurements is 
ausing the algorithm to bemore pessimisti
 in its admissions.Algorithm A
hieved CLRMean Var Std. Dev. 95 % CIMeasure Aggregate 7:075� 10�4 2:78� 10�8 1:667� 10�4 1:414� 10�5Measure Per-
onne
tion 9:312� 10�4 1:511� 10�8 1:229� 10�4 6:017� 10�6Hornet Aggregate 2:052� 10�4 2:193� 10�9 4:683� 10�5 3:765� 10�6Hornet Per-
onne
tion 5:628� 10�3 7:991� 10�7 8:939� 10�4 8:053� 10�5Table 7: A 
omparison of desired CLR and a
hieved CLR for the Measure based algorithms usingthe TP10S1 traÆ
 sour
e.Using 
onne
tions 
arrying the video stream traÆ
 sour
e VP10S4 (des
ribed in Se
tion 5.3)with the same 
onne
tion attempt 
hara
teristi
s as the previous experiment, the results of Table 8were gathered. The Hornet and Measure algorithms based upon aggregated line measurementsboth have performed quite well, while the two algorithms based upon per-
onne
tion line measure-ments have faired less well. The reasons for this di�eren
e have turned out to be several fa
torsin
luding: the value of the blo
k length B, the traÆ
 and even the sele
tion of the target CLRhave ea
h played a role in the behaviour exhibited.Algorithm A
hieved CLRMean Var Std. Dev. 95 % CIMeasure Aggregate 1:043� 10�3 6:551� 10�8 2:560� 10�4 2:168� 10�5Measure Per-
onne
tion 7:247� 10�3 1:618� 10�6 1:272� 10�3 1:180� 10�4Hornet Aggregate 1:252� 10�3 3:094� 10�7 5:563� 10�4 4:712� 10�5Hornet Per-
onne
tion 1:672� 10�2 4:496� 10�6 2:120� 10�3 1:971� 10�4Table 8: A 
omparison of desired CLR and a
hieved CLR for the Measure based algorithms usingthe VP10S4 traÆ
 sour
e.Firstly we 
hose to test if the algorithms all performed in the same way a
ross a range oftarget CLR values. Figure 8 graphs the results for experiments where the value of the target21



CLR is varied a
ross a wide range of values. The blo
k length B was 2� 10�3 se
onds for theseexperiments. From this graph it is 
lear that, for this sele
tion of traÆ
, blo
k length B and
onne
tion load attempt, the performan
e is poor. However, it is interesting to note that there isa 
lear relationship between measured and target CLR for ea
h algorithm.Figure 9 presents the results for a similar 
omparison of measured and target CLR but usinga di�erent traÆ
 sour
e. In this 
ase the video based sour
e VP10S4 is 
arried by the new
onne
tions. Figure 9 presents a situation where the di�eren
e between the measured and targetCLR values are worse than in Figure 8.One di�eren
e between the VP10S4 and TP10S1 sour
es is the level of a
tivity (the ratio ofPCR and SCR values). One avenue of investigation was that the sour
e itself had a serious a�e
ton the behaviour of the algorithm. It has already been dis
ussed in previous deliverables thattraÆ
 with signi�
ant Hurstiness properties had been postulated to interfere with the algorithmsoperation. Subsequently our �rst 
hoi
e was to 
ompare high and low a
tivity traÆ
 from anON-OFF sour
e with better Hurstiness 
hara
teristi
s.Figure 10(a) and Figure 10(b) ea
h show that in terms of measured CLR, the performan
eof the Hornet Aggregate and Hornet Per-
onne
tion algorithms improve when the a
tivity of thetraÆ
 sour
e is redu
ed. While it appears the Hurstiness of the traÆ
 of VP10S4 may have beenthe 
ontributing fa
tor, the blo
k length B used in these experiments is still mu
h larger thanthose used in any theoreti
al work. As a result the sele
tion of the blo
k length is the primary
ontributing fa
tor to the CLR performan
e reported in Figure 9 and Table 8.Some of the 
auses for the di�eren
es in performan
e in some of these experiments is dis
ussedfurther in Se
tions 7.2 and 7.3. While the traÆ
 
hara
teristi
s make a signi�
ant 
ontribution;the sele
tion of the blo
k length B also requires 
onsiderable thought. Be
ause of the importan
eof the blo
k length B used by the algorithm the role it plays in the algorithm was investigatedat length and the next se
tion presents results that demonstrate the e�e
ts arising from 
hangingthis variable.7.2 Algorithm ParametersIn this se
tion we dis
uss the results of experiments where input parameters to the algorithm, inparti
ular the blo
k length B, are varied over a range of values. The blo
k length B is sele
tedto be large enough to 
ontain a representative sample of traÆ
; ea
h sample of blo
k length Bbeing statisti
ally independent. However, the blo
k length B 
annot be so large that the samplewill smooth out short term transients. It is obvious from the outset that the sele
tion of the blo
klength B 
ould vary between traÆ
 types as well as between mixes of traÆ
, additionally thelength of 
onne
tions as well as their arrival rate also will have an e�e
t on blo
k length B.From the results of the previous se
tion we have seen that the blo
k length B value may havea signi�
ant e�e
t on the behaviour of the Measure and Hornet CAC algorithms. Figure 11(a)graphs the relationship between the measured CLR and the blo
k length for several of the CACalgorithms using the ON-OFF traÆ
 sour
e TP10S1. Figure 11(b) illustrates the same resultsusing the video based sour
e VP10S4. When we �rst viewed this data, the `maxima' feature of theMeasure algorithms drew our attention. In parti
ular, at �rst it was not 
lear why the measuredCLR should de
line when the blo
k length B was greater than a 
ertain value. The answer wasin the design of the Measure algorithm; the situation also exists in the Hornet algorithm.The Measure algorithm will assume that an in
oming 
onne
tion is transmitting 
ells at thePCR value de
lared when the 
onne
tion was attempted. The algorithm will 
ontinue to assumethe new 
onne
tion is transmitting 
ells at the PCR rate until the next e�e
tive bandwidth estimateis available. The next e�e
tive bandwidth estimate will not be available until the 
urrent blo
k ofdata (of period B) has been 
ompleted. Prior to the availability of a new estimate, the Measurealgorithmwill add to the 
urrently available bandwidth estimate the PCR of the newly 
onne
tions.This PCR 
omponent is removed on
e the new e�e
tive bandwidth estimate is available; sin
e thenew 
onne
tion has data that forms part of the most re
ent blo
k period. If the blo
k period issigni�
antly slower than the rate at whi
h 
onne
tions are attempted; the CAC algorithm willturn away a signi�
ant number of these new 
onne
tion attempts.22
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(b) Hornet Per-
onne
tion CAC algorithmFigure 10: Measured CLR versus target CLR for sour
es with di�erent a
tivity levels.This situation 
an be seen in Figure 12, the s
reen-dump of two running systems: one with asmall value for blo
k length B and the other with a large value for blo
k length B. The layoutof the s
reen-dump is des
ribed in detail in Se
tion 4. In this �gure we 
an see that for the longblo
k there are steps in the CAC de
ision line; these steps o

ur with the same period as that ofthe blo
k length B itself.For 
omparison Figure 12 also 
ontains a s
reen-dump of an experiment with a short blo
klength and it is obvious that the behaviour of the algorithm is 
ompletely di�erent, the numberof 
onne
tions in progress is mu
h higher and, we 
an assume, the CLR of the system would alsobe higher.The situations where the Measure algorithm performs fewer admissions as the blo
k length Bin
reases 
an neatly a

ount for the `maxima' seen in Figure 11(a). The Hornet algorithm will alsoexhibit this 
hara
teristi
 but the e�e
t is redu
ed be
ause Hornet will be able to admit 
onne
tionattempts that have de
lared parameters in addition to the PCR used by Measure. The result isthat a `maxima' may exist but it will not be as pronoun
ed, this is what we see in Figure 11(a).What is seen here is that be
ause the Hornet and parti
ularly the Measure algorithms ea
hhave a pessimisti
 assumption, PCR based admission in the 
ase of Measure, when 
onne
tions�rst arrive; they will do pessimisti
 admission for the period of the blo
k length B. The resultis as the blo
k length B in
reases the algorithm be
omes in
reasingly pessimisti
. In the mostextreme 
ase, an overly long blo
k length B will 
ause the algorithm to behave as if it were onebased solely upon Peak Rate allo
ation of the line resour
es.Figure 11(a) and Figure 11(b) also show that as the blo
k length B diminishes, the measuredCLR approa
hes the target CLR. It has always been understood that the sele
tion of the blo
klength B plays a signi�
ant role in the behaviour of the CAC algorithm. We 
an easily obtainresults for large values of blo
k length, however obtaining results for small values of blo
k lengthpresents 
onsiderable diÆ
ulty.In obtaining smaller and smaller blo
k length B values, implementations are limited by theirmethod as well as the me
hani
s of the measurement extra
tion, re
al
ulation of the e�e
tivebandwidth estimate and so on, this issue is dis
ussed further in Se
tion 7.3. However, as wasseen in Figure 12, the blo
k length B 
an adversely e�e
t the number of 
onne
tions the Measurealgorithm will admit.A 
omparison of Figure 11(a) and Figure 11(b) also reveals that the sele
tion of the blo
klength B was a substantial 
ontributor in the di�eren
e in results between the results of Table 7and Table 8 of Se
tion 7.1. It was not expe
ted that the properties of the traÆ
 would have su
ha signi�
ant e�e
t on the algorithm, and provided a suitable value of blo
k length B is sele
tedthis appears to hold true. For the two traÆ
 sour
es VP10S4 and TP10S1 it be
omes apparentthat di�erent blo
k length B values were required.24
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The results illustrated in Figure 13 show the measured CLR for a range of blo
k length values.In this experiment we 
ompare the same traÆ
 type under two di�erent 
onne
tion attempt loads.In 
omparison with the previous experiments where the mean rate of 
onne
tion attempts is 10per se
ond, the mean rate is set to 0.5s. In order to maintain the same high traÆ
 load on thesystem the Mean CHT of these 
onne
tions is 200 se
onds. The obje
tive of this experiment is toshow that the measured CLR will more 
losely mat
h the target CLR of the experiments as the
onne
tion attempts arrive less frequently.Clearly Figure 13 shows that the the form of ea
h 
urve is similar, but that in the 
ase wherethe load is lower, the CLR results for all values of blo
k length have been redu
ed. The 
on
lusionwe draw from this is that with fewer 
onne
tion attempts being made, the likely-hood of themost re
ent estimation of e�e
tive bandwidth, being available is in
reased, as a result the CACalgorithm de
isions give an improved measured CLR.Su
h a 
on
lusion seems at odds with the previous 
on
lusion that larger values of blo
k lengthB will 
ause the algorithm to be more pessimisti
 and thus result in a lower measured CLR.However Figure 11(a) shows a `maxima' of measured CLR values and thus the measured CLRwill in
rease for in
reasing blo
k length B values, while the value is on the left of the `maxima'(or less than about 60ms). On
e the blo
k length B is greater than 60ms these results indi
atethat the pessimisti
 
omponent of the algorithm be
omes the primary issue in the measure CLRvalue. Redu
ing the blo
k length B to the desired value is not 
urrently an option for us either;implementation limitations mean a physi
al lower limit on the blo
k length B value.While it may be possible to run simulations with small blo
k length B values; there is adistin
t lower limit on this value for a physi
al implementation. We have found that in ourphysi
al implementation we are unable to extra
t per-
onne
tion or aggregate measurements fromthe swit
h for periods smaller than 1ms. The result is that this pla
es a very real limit on how smallthe blo
k length B 
an be. In simulations, values approa
hing 50-150 
ell times have been used,but at between 220�s and 660�s su
h values are not able to be repli
ated in this implementation.The lower limit on the granularity of measurements (the period over whi
h measurements aremade) and thus the lower limit on the size of the blo
k length B is often imposed by the swit
hsystem itself or by the me
hanism whi
h extra
ts the measurement from the swit
h. The input ofmany, up to 256 
onne
tions for a typi
al swit
h port, of line statisti
s for one experiment alonemeans transferring blo
ks of data 1024 bytes in size into the Measure system. If the blo
k lengthB were a value approa
hing 100 
ell times in length; this would imply that over 2Mbyte/se
ondwas being moved into the Measure system, and this is only for a single port of the swit
h. Fromthis example we 
an see there are engineering problems that will 
onfront implementers who wishto take full advantage of this algorithm.From this we 
on
lude that while not possible in the 
urrent implementation, it would beworthwhile using a smaller value of blo
k length B. We 
on
lude that the 
urrent lower limit onblo
k length B may, for some traÆ
 types, mean that the traÆ
 sample taken in that period is toolong, smoothing out short term transients that are of importan
e as input to the Measure (andHornet) algorithms. In Se
tion 7.3 we dis
uss how the me
hani
s of an implementation will alsoe�e
t the algorithm behaviour.7.3 Algorithm Me
hani
sThe blo
k length B may not be the biggest obsta
le to improved performan
e in the Measurealgorithm. In addition to 
olle
ting measurements over the blo
k length B period, the algorithmmust speedily 
al
ulate a new e�e
tive bandwidth estimate. As we noted in Se
tion 6.1, the
olle
tion of measurements and the 
al
ulation of the e�e
tive bandwidth estimate is a pro
ess thato

urs 
ontinuously in the implementations' ba
k-end. The ba
k-end 
olle
ts the measurementsand on
e it has 
olle
ted a blo
k length B period of masurements, a re
al
ulation o

urs. Thisre
al
ulation will take a �nite amount of time and this Se
tion details how the behaviour of there
al
ulation 
an have an important e�e
t on the e�e
tive bandwidth and thus the CAC algorithm.In this Se
tion we present typi
al performan
e statisti
s for the 
omponents of the Measureand Hornet CAC implementations as well as performan
e statisti
s of 
omparison CAC algotihms.27



We show that poor performan
e in the implementation 
an lead to poor behaviour of the CACalgorithm.Prior to a new e�e
tive bandwidth estimate being available, a blo
k length B period of mea-surements needs to be made, and a 
al
ulation of the new e�e
tive bandwidth estimate so asto in
orporate those measurements. We note that any time taken to perform the re
al
ulation isadded to the blo
k length B before a new estimate 
an be used. While it may be able to parallelisethese two 
omponents, performing a re
al
ulation of the estimate while making the next blo
klength B worth of measurements, if the re
al
ulation takes signi�
antly longer than the blo
klength B period, the estimate will be available less frequently than every blo
k length B period.A slow re
al
ulation of the estimate will mean the estimate will not be available as often. Wenote that until the CAC algorithm has a new estimate available it assumes that the newly admitted
onne
tions are still at PCR. It is not until the new estimate is made available, in
orporating traÆ
from the newly admitted 
onne
tion, that the PCR of these re
ent new 
onne
tions is no longerpart of the de
ision for new 
onne
tions. In the worst-
ase, an overly long re
al
ulation periodwill 
ause the algorithm to behave as if it were solely based upon Peak Rate allo
ation of the lineresour
es. These symptoms are near-identi
al to the situation that o

urs when the blo
k lengthB is too long.Table 9 presents the time taken for the 
al
ulation of ea
h new estimate, in the 
ase of ba
k-ends and the time taken for ea
h new admission, in the 
ase of front-ends. For 
omparison thetime taken for ea
h new admission is also given for a simple Peak Rate Allo
ation algorithm andCAC method based on algorithm III from [12℄. The Gibbens/Kelly95 - III algorithm 
annot begiven a target CLR, rather its response is tuned with a s
aling value, the behaviour of this valuemust be un
overed by experiment.In the 
ase of the ba
k-end periods and the Gibbens/Kelly95 - III algorithm periods, this timein
ludes obtaining measurements. It is worth reiterating that the Peak Rate Allo
ation algorithmrequires no measurements, working solely with the de
lared PCR of the in
oming 
onne
tion.The Gibbens/Kelly95 - III algorithm requires a single aggregate measurement of line a
tivity forea
h admission pro
ess. The Measure ba
k-ends require either Per-
onne
tion measurements orAggregate measurements as indi
ated.The Hornet and Measure algorithms share 
ommon ba
k-ends subsequently results are onlygiven for the two types of Measure ba
k-ends. For both the Measure and Hornet algorithms theirPer-
onne
tion and Aggregate front-ends are identi
al.Algorithm Mean Var Std. Dev.Measure Aggregate Ba
k-end 2:995� 10�2 8:641� 10�4 2:939� 10�2(identi
al for Hornet Aggregate Ba
k-end)Measure Per-
onne
tion Ba
k-end 1:748� 10�1 1:672� 10�2 1:293� 10�1(identi
al for Hornet Per-
onne
tion Ba
k-end)Hornet Per-
onne
tion Front-end 5:748� 10�5 1:510� 10�9 3:886� 10�5(identi
al for Hornet Aggregate Front-end)Measure Per-
onne
tion Front-end 1:882� 10�5 5:183� 10�6 2:277� 10�3(identi
al for Measure Aggregate Front-end)Peak Rate Allo
ation 1:350� 10�5 4:231� 10�11 6:504� 10�6Gibbens/Kelly95 - III 4:950� 10�5 3:856� 10�9 6:209� 10�5Table 9: Time taken for ea
h phase of ea
h CAC algorithm (se
onds).To have implemented Measure Per-
onne
tion as an algorithm that 
al
ulated a new estimateas part of ea
h admission pro
ess, the total amount of time required would have, on average waitof 174.8ms would have been in
urred for every 
onne
tion attempt. These �gures appear to justifythe design de
ision detailed in Se
tion 6, to split the Measure and Hornet CAC algorithms intofront and ba
k-ends.Figure 8 shows that values of blo
k length B greater than 60ms will 
ause the CAC algorithm28



to be
ome in
reasingly pessimisti
. As 
on
luded earlier in this Se
tion, if new estimates are notmade faster than every 60ms then the algorithm also be
omes in
reasingly pessimisti
. Table 9indi
ates that the Measure Per-
onne
tion Ba
k-end is, on average, 
al
ulating new estimates ofthe e�e
tive bandwidth estimate every 174.8ms, substantially slower than the 60ms of Figure 8.Figure 14 graphs the measured CLR for a range of re
al
ulation periods. There is a `hard' lowerlimit on the re
al
ulation period of about 115ms. As the period gets longer, the measured CLRbe
omes lower, indi
ative of in
reasing pessimism by the CAC algorithm. Similar to the de
line ofthe measured CLR when the blo
k length B in
reases, as the re
al
ulation period in
reases thereis a steady de
line in the measured CLR.Not only does slow performan
e in the 
al
ulation of the e�e
tive bandwidth 
ause pessimisti
behaviour of the CAC algorithm, but the CAC algorithm may also be overly optimisti
, 
ausingex
essive 
ell-loss. We would postulate that this o

urs be
ause the algorithm is using an out-of-date estimate of the e�e
tive bandwidth; by using an out-of-date estimate of the e�e
tivebandwidth the algorithm may admit a 
onne
tion when the line 
apa
ity is not available. Thissituation, of optimisti
 admission 
ausing ex
essive 
ell-loss would be more prevalent for Hornetwhere the algorithm obtains a better line utilisation by using the new 
onne
tion SCR and IBTparameters when these parameters are available. Hornet 
an keep the line utilisation 
loser tomaximum and as a result will be more adversely a�e
ted by out-of-date estimates.In addition to di�eren
es between the Measure and Hornet performan
e, di�eren
es will re-sults from the measuring system underlying the algorithm implementations. The per-
onne
tionmeasurements implementation of the Measure and Hornet ba
k-end has a slower 
al
ulation pe-riod than the ba
k-end implementation based upon aggregate measurements, as a result the per-
onne
tion CAC algorithms 
an be expe
ted to have larger errors between the target CLR andthe measured CLR than the aggregate method 
ould give.The performan
e of an implementation is not simply the speed at whi
h the Equation 8 
an be
al
ulated. For the implementation based upon per-
onne
tion measurements the Table 10 reveals3a great deal of information about how the time is used in the estimation of an e�e
tive bandwidth.Data management involves the summing of ~Xk for ea
h 
onne
tion into the single ~Xk that is theinput of Equation 8. This task is expensive be
ause it requires a large amount of information be
arried with ea
h set of per-
onne
tion measurements to indi
ate whi
h 
onne
tions were a
tiveat the time of the measurement. Che
king the validity of these samples a

ounts for a signi�
antportion of the `data management' entry in this table. The three items of this table a

ount for93.5% of the time 
al
ulating the e�e
tive bandwidth estimate, no other single 
omponent ofthe Measure ba
k-end a

ounts for more than 0.1% of the total time. Any redu
tion of these
omponents stands to return signi�
ant improvements in the speed at whi
h estimates 
an bemade available. Module % of timeAddition and Multipli
ation range 
he
king 65.0(in the root solver)Cal
ulating the PKk=1 e� ~Xk 17.8term of Equation 8Data management 10.7Table 10: Top three Measure ba
k-end modules listed by the per
entage time used in the re
al
u-lation of an estimate.The implementation has been signi�
antly improved sin
e its original in
eption, however westill feel there is still room for improvement. In this early implementation of the Measure andHornet algorithms there are bound to be parts of the 
ode that 
an undergo further signi�
ant3In
onsisten
ies between the results of Table 10 and those of Table 9 are still unresolved at this time but it istheorised that they are as a result of the in
reased memory a

esses in the per 
onne
tion implementation of the`root-solver' 
entral to Measure. 29
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optimisation. The root-solver, 
entral to the 
al
ulation of an e�e
tive bandwidth estimate fromthe SCGF, is still quite primitive and it is estimated that a revised, simpli�
ation 
ould returna �ve fold improvement in speed. Su
h an improvement would immediately return almost amagnitude improvement in the time taken to 
al
ulate estimates. However, su
h improvementsrequire signi�
ant testing to ensure they are both robust and numeri
ally sound.Table 10 shows that for a Measure estimator based upon per-
onne
tion measurements a largeper
entage of time is spent managing the data: 
he
king whi
h 
onne
tions are a
tive, summingthis data and so on. The Measure estimator based upon aggregate measurements does not havethis overhead and Table 9 shows how signi�
ant the speed di�eren
e 
an be. While it would beunfair to 
on
lude that the data management is alone responsible for the di�eren
e in times, thegreater memory requirements for per-
onne
tion measurements would mean larger requirementsfor pro
ess management on the part of the operating system and as a result slower times wouldresult.The speed of the per-
onne
tion estimator will be dire
tly in
uen
ed by the number of a
tive
onne
tions at any time. The larger the number of a
tive 
onne
tions, will mean there will begreater samples to be summed to 
reate ea
h ~Xk. As a result the greater the number of 
on
urrent
onne
tions, whether due to 
onne
tions with parti
ularly small traÆ
 requirements, or due to theeÆ
ien
y of an algorithm su
h as Hornet in admitting these 
onne
tions will mean the e�e
tivebandwidth estimate will be 
al
ulated more slowly than if there were fewer 
onne
tions in-progress.In addition to the e�e
t the number of 
onne
tions has on per-
onne
tion measurments, thetime taken by both per-
onne
tion and aggregate algorithms will be dire
tly proportional to thenumber of blo
ks, K. In a very simple way: the longer the history { the longer it will take to
al
ulate an e�e
tive bandwidth estimate.A solution to both of these problems may be to for
e the implementation into hardware,thus giving a 
leaner a

ess to information about the validity of 
onne
tions, the statisti
s of
onne
tion paths and the bene�ts of a �xed implementation dire
tly in the swit
h. In this way wewould be trading o� 
exibility for speed; either alternatively or as an adjun
t to a dire
t swit
himplementation aggregate statisti
s 
ould be
ome a satisfa
tory 
ompromise. As a result of thisthe management and memory overhead of per-
onne
tion statisti
s would be eliminated.A solution to the problem of a potentially unbounded number of blo
ks theMeasure and Hornetalgorithm may need to deal with would be to pla
e an upper limit on the value of K, the totalnumber of blo
ks. Su
h a requirement would be a ne
essity for any produ
tion implementationwhere unbounded memory requirements 
annot be realisti
ly handled. The problem that remainswould be to sele
t the maximum value of K; at �rst, an upper limit on the history period itselfwould seem appropriate. Se
tion 6.4.1 dis
usses how the Measure algorithm based upon aggregatemeasurements uses an upper limit for the history it 
olle
ts. This history limit is based upon themean 
onne
tion length, in se
onds. The relationship between su
h a value and the value of K,the number of blo
ks, is the blo
k length B. It 
an be seen that the problem of bounding thenumber of blo
ks, would be to pla
e an upper limit on the value of K rather than an upper limiton the history period itself. This would have the unusual side-e�e
t that the maximum period oftime 
overed would 
hange, depending upon the blo
k length B.Figure 15 shows an implementation of the Measure algorithm using aggregate line measure-ments and a �xed history length for ea
h experiment. The history length is varied and this graphshows the measured CLR that results. It be
omes apparent that, like the blo
k length B, thelength of history of previous blo
ks, is a parameter whi
h may need to be adjusted to a
hievean optimum CAC behaviour. The keeping a large number of blo
ks about all 
onne
tions, andin parti
ular those 
ontaining data of 
onne
tions that have sin
e left the system, has limitedtheoreti
al basis and thus a system su
h as the algorithms based upon aggregate measurements,with a �xed history may have an unsound foundation.7.4 Algorithm ComparisonThis Se
tion presents results 
omparing the two Measure and two Hornet CAC algorithms alongwith Gibbens/Kelly95 - III a CAC from [12℄ and a simple Peak Rate Allo
ation poli
y. Results31



using a number of di�erent traÆ
 sour
es are used; these traÆ
 sour
es in
lude TP10S1, VP10S4and the traÆ
 
ombination (a 
ombination of ON-OFF sour
es and an ATM stream based uponthe StarWars movie) that was used in the previous deliverable 3.4.1.7.4.1 ON-OFF traÆ
 sour
e { TP10S1Through the use of a traÆ
 sour
e that has a theoreti
al basis, 
omparison 
an be made betweenthe implementation and the theory on whi
h it has been founded; in this Se
tion we are able to
ompare the results we gain by using a theoreti
al sour
e with the estimations of several widelya

epted estimation models. The ON-OFF traÆ
 sour
e TP10S1 is a 2-state ON-OFF Markovsour
e, it is des
ribed in Se
tion 5.1.Table 11 presents a group of experimental results for the four variations on the Measure al-gorithm (Measure Per-
onne
tion, Measure Aggregate, Hornet Per-
onne
tion and Hornet Ag-gregate). These implementations and their di�eren
es are detailed at length in Se
tion 6 but insummary those based on the Measure will use the de
lared PCR of an in
oming 
onne
tion as apessimisti
 assumption of the load to be introdu
ed by the new 
onne
tion. In 
ontrast Hornet
an, in addition to the PCR parameter, make use of SCR and IBT to better estimate the worst
ase load a new 
onne
tion may introdu
e to the system. The di�eren
e between Per-
onne
tionand Aggregate is that the former is based stri
tly on the theoreti
al basis of Measure, summingonly 
urrently a
tive 
onne
tions when 
al
ulating values of ~Xk (from Equation 8. The aggregatebased system uses as input aggregated line measurements and thus the traÆ
 measurements of
onne
tions that have sin
e been pulled-down still 
ontribute to the value of ~Xk. The aggregatebased system also introdu
es a `history-limiting' me
hanism putting an upper limit on the numberof blo
ks that are part of the 
al
ulation pro
ess; this has the e�e
t of dis
ounting the data oflong-sin
e removed 
onne
tions. The upper boundary on the history value is 
al
ulated using amethod detailed in Se
tion 6.4.1.Two sets of results of experiments 
ondu
ted usingMeasure and Hornet based CAC algorithmsare presented here; these results di�er in the value of blo
k length B used. As was dis
ussed inSe
tion 7.2, the value of this parameter has a signi�
ant e�e
t on the behaviour of these CACalgorithms. The results of Table 11 show that, in addition to the measured CLR, 
hanges in theblo
k length B will a�e
t other aspe
ts of the CAC operation too. Figure 16 allows the dire
t
omparison of the pro�les of the mean number of 
onne
tions in progress. The di�eren
e, dueto blo
k length B, re
e
ts the di�ering means, but also the distributions themselves are di�erenttoo. This would support the 
on
lusion that the blo
k length B value extends signi�
ant 
ontrolof the general behaviour of the Measure and Hornet CAC algorithms as well.Theoreti
al models 
an also give estimates for the mean 
onne
tions in progress a �gure roughly
omparable with the 
onne
tion a

ept/reje
t ratio if the experiment has a suÆ
iently high MCAR.In the table an estimation for mean 
onne
tions in progress is given from several theoreti
alestimators: Gu�erin [13℄, Elwalid [14℄ and Bu�et & DuÆeld [4℄. It is interesting to note thesigni�
ant divergen
e in the results for 
ommonly used theoreti
al models.Table 12 presents three �gure for ea
h experiment of Table 11. Leftmost is the histogram of
onne
tions with a given 
ell loss, the 
entre �gure is the distribution of `per-
onne
tion' CLR andthe rightmost �gure is the distribution of the average number of 
onne
tions admitted for a givenexperiment.Table 11 reveals that the 
ells lost for a given measure CLR, a �gure taken for the line, maynot be shared evenly amount 
onne
tions. The �gures for Hornet per-
onne
tion with a blo
klength B of 0.005s show that the line CLR is well below target (5:752�10�3) but that only �73%of 
onne
tions a
tually su�er a 
ell-loss worse than 1� 10�3. The appropriate �gure in Table 12
learly shows that a small number of 
onne
tions are su�ering signi�
ant (�50%) 
ell-loss.Table 12: Table of �gures showing the distribution of 
ells lost per 
onne
tion, the distributionof per-
onne
tion CLR and the mean number of 
onne
tions in progress for the experimentssummarised in Table 11. 32
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7.4.2 Video traÆ
 sour
e { VP10S4The experimental environment we use, des
ribed in Se
tion 4, allows us to generate 
onne
tions
arrying real streams of traÆ
. Su
h real traÆ
 streams 
ould be pre-re
orded from the originalsour
e, or they 
ould be summarised and this summary (of the video 
hara
teristi
s su
h asframe size, frame rate, et
.) then used to 
reate traÆ
 on-demand that is identi
al to the traÆ
streams originating from sour
es. Su
h a fa
ility has enabled us to re
ord the 
arriage of the videostream through the ATM network. This re
ord of the network a
tivity 
an be replayed by theexperimental environment, on demand, per 
onne
tion. The result is we are able to simulate anetwork with every 
onne
tion 
arrying part or all of the re
orded video session. TraÆ
 streamVP10S4 is further detailed in Se
tion 5.3, it has been used in this Se
tion of the study to allowthe 
omparison of the traÆ
 streams with the 
arriage of real video data through the network.Table 13 presents the results of a set of experiments 
ondu
ted with the VP10S4 traÆ
 sour
e.In the same manner as Table 11 several results for the Measure and Hornet algorithms have beengiven; these in
lude two di�erent values of the blo
k length B and Measure and Hornet basedupon two di�erent measurement te
hniques: Per-
onne
tion and Aggregate line measurements.Se
tion 6 gives full details on how the various CAC algorithms di�er.In addition to theMeasure andHornet algorithms; we present results gained usingGibbens/Kelly95- III a CAC from [12℄ as well as a simple Peak Rate Allo
ation poli
y. Alongside these pra
ti
alresults, the estimations gained from several popular theoreti
al models have also been given. Inthe table an estimation for mean 
onne
tions in progress is given from several theoreti
al estima-tors: Gu�erin [13℄, Elwalid [14℄ and Bu�et & DuÆeld [4℄. On
e again, signi�
ant divergen
e in theresults is present for 
ommonly used theoreti
al models. This divergen
e is most likely due to thevideo stream not �tting as 
losely the 2-state Poisson traÆ
 as these theoreti
al models assume.This failure of Poisson traÆ
 models to represent real-world data is a well known problem and haslead to numerous papers most notably [15℄.In 
omparison with CAC algorithms based upon these estimations, we have maintained that\real-world" traÆ
 will not present the same 
hallenge to Measure based estimation. Table 1334



Algorithm CLR for a Prob. Prob. Conne
tion Mean Mean line100 
ell bu�er 
alls with 
all has 
all has 
onne
tions Utilisation
ell loss CLR > 1� 10�3 in progressMeasure Per-
onne
tion 3:780� 10�4 4:954� 10�1 7:533� 10�2 0.591 57.726 0.575Measure Aggregate 1:702� 10�4 3:029� 10�1 1:833� 10�2 0.559 55.387 0.553Hornet Per-
onne
tion 2:903� 10�3 8:600� 10�1 8:030� 10�1 0.680 67.759 0.670Hornet Aggregate 9:537� 10�4 7:034� 10�1 3:612� 10�1 0.639 62.658 0.626Blo
k length B = 1� 10�3Measure Per-
onne
tion 9:447� 10�4 7:027� 10�1 3:498� 10�1 0.638 62.871 0.630Measure Aggregate 8:918� 10�4 6:919� 10�1 3:278� 10�1 0.635 62.679 0.625Hornet Per-
onne
tion 5:752� 10�3 7:313� 10�1 4:323� 10�1 0.740 73.181 0.726Hornet Aggregate 8:715� 10�4 7:027� 10�1 3:498� 10�1 0.635 62.55 0.624Blo
k length B = 5� 10�3Peak Rate Allo
ation 0 0 0 0.100 9.89 0.080Gibbens/Kelly95 - III 8:761� 10�4 6:960� 10�1 3:161� 10�1 0.637 62.958 0.630s
alar s = 2 Theoreti
al model estimationsGu�erin [13℄ 1:00� 10�3 36.92Elwalid [14℄ 1:00� 10�3 42.98Bu�ett & Du�eld [4℄ 1:00� 10�3 45.20Table 11: Results for traÆ
 sour
e TP10S1
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results bear this out, although these results do show the importan
e of sele
ting appropriate valuesfor blo
k length B.Figure 17 illustrates that the range of CAC algorithms that give di�erent a

eptan
e ratioswill also result in di�erent pro�les of `
onne
tions in progress.' Apart from the results for the PeakRate Allo
ation poli
y, the three other sets of results were sele
ted to be illustrated together as themeasured CLR for ea
h is near identi
al. Su
h results allow us to very qui
kly as
ertain the moree�e
tive algorithm (assuming other fa
tors su
h as measured CLR are identi
al). In this �gurewe note that the Hornet and Measure results present a near identi
al pro�le of `
onne
tions inprogress' and that both have signi�
antly more 
onne
tions in progress than the Gibbens/Kelly95- III CAC algorithm.In a fashion similar to that of Table 12, Table 14 presents three �gure for ea
h experiment ofTable 13. Leftmost is the histogram of 
onne
tions with a given 
ell loss, the 
entre �gure is thedistribution of `per-
onne
tion' CLR and the rightmost �gure is the distribution of the averagenumber of 
onne
tions admitted for a given experiment.Table 14: Table of �gures showing the distribution of 
ells lost per 
onne
tion, the distribution ofper-
onne
tion CLR and Mean number of 
onne
tions in progress for the experiments summarisedin Table 13.
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7.4.3 TraÆ
 MixPrevious Se
tions have reported on the behaviour of Measure and Hornet when used with 
onne
-tions 
arrying a single traÆ
 sour
e; this Se
tion reports on results gained when the 
onne
tions
arry mixtures of traÆ
. 37



Algorithm CLR for a Prob. Prob. Conne
tion Mean Mean line100 
ell bu�er 
all has 
all has a

ept ratio 
onne
tions Utilisation
ell loss CLR > 1� 10�3 in progressMeasure Per-
onne
tion 6:279� 10�3 8:441� 10�1 7:272� 10�1 0.195 19.185 0.753Measure Aggregate 4:523� 10�4 2:568� 10�1 9:091� 10�2 0.146 14.606 0.509Hornet Per-
onne
tion 6:597� 10�3 8:428� 10�1 7:177� 10�1 0.196 18.783 0.703Hornet Aggregate 1:256� 10�3 5:251� 10�1 2:578� 10�1 0.176 17.367 0.670Blo
k length B = 1� 10�3Measure Per-
onne
tion 6:565� 10�3 8:431� 10�1 7:259� 10�1 0.191 18.921 0.754Measure Aggregate 9:957� 10�4 4:786� 10�1 2:103� 10�1 0.161 15.861 0.653Hornet Per-
onne
tion 4:767� 10�3 8:160� 10�1 6:758� 10�1 0.185 18.478 0.688Hornet Aggregate 1:228� 10�3 5:684� 10�1 2:813� 10�1 0.182 17.499 0.685Blo
k length B = 5� 10�3Peak Rate Allo
ation 0 0 0 0.101 9.885 0.389Gibbens/Kelly95 - III 1:433� 10�3 2:584� 10�1 1:366� 10�1 0.157 14.765 0.578s
alar s = 15 Theoreti
al model estimationsGu�erin [13℄ 1:00� 10�3 15.12Elwalid [14℄ 1:00� 10�3 15.65Bu�ett & Du�eld [4℄ 1:00� 10�3 17.12Table 13: Results for traÆ
 sour
e VP10S4
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In an attempt to repli
ate in pra
ti
e results �rst 
reated in simulation, we tested the al-gorithms against a 
ombination of traÆ
 and model of 
onne
tion attempts that was used inSe
tion 5 Simulation Results, of the previous deliverable 3.4.1.For this set of experiments a 
ombination of ON-OFF theoreti
al model traÆ
 and traÆ
 basedon video data were used, the video traÆ
 used was based upon the StarWars movie, the details ofthe traÆ
 used is in Se
tion 5.2. The ON-OFF two-state Markovian sour
e, T2MIX, is detailedin Se
tion 5.4.In an attempt to repli
ate the previous deliverable as 
losely as possible we set the maximumbu�er size to 500 
ells and we used a CLR 
onstraint of 1�10�4 for all of the results with this traÆ
mix. We also adopted the same model of 
onne
tion attempts as had been used in the previousdeliverable; we have used 
onne
tion lengths whi
h are exponentially distributed. Conne
tionattempts have an exponentially distributed length; long 
onne
tions have a mean length of 60se
onds, and short 
onne
tions a mean of 10 se
onds. Both long and short duration 
onne
tionshave a mean 
onne
tion arrival rate of 5 
onne
tion attempts per se
ond.Ea
h a

epted 
onne
tion transmits an independent tra
e. In the 
ase of Star Wars, the tra
eis derived by randomly sele
ting a start point in the traÆ
 tra
e. For the ON-OFF sour
e, ea
h
onne
tion 
hooses its parameters randomly: the mean (as a fra
tion of the peak) is 
hosen from0.1, 0.3, 0.5, 0.7, and 0.9 with probabilities 1/16, 4/16, 6/16, 4/16, and 1/16 respe
tively. Theburstiness is 
hosen from 0.3, 0.5, 0.7, and 0.9 with probabilities 1/8, 3/8, 3/8, and 1/8 respe
tively.Conne
tions are not 
orrelated in any way, although the same random seed was used with ea
hdi�erent experiment, resulting in pre
isely the same 
onne
tion arrivals pro
ess in ea
h 
ase. Thisallows us to 
ompare not only the statisti
al properties of the algorithms, but also their dynami
behaviour.Table 15 presents a set of the results obtained for the mixed traÆ
 
onne
tions. The resultsare very disappointing with both Measure and Hornet per-
onne
tion algorithms over admitting
onne
tions and thus 
ausing a large value of measured CLR. While the reasons for these resultshave not been fully established; several plausible reasons are suggested.Algorithm CLR for a Conne
tion Mean Mean line500 
ell bu�er a

ept ratio 
onne
tions Utilisationin progressMeasure Per-
onne
tion 1:237� 10�1 0.061 20.077 1.000Hornet Per-
onne
tion 1:121� 10�1 0.064 20.020 1.000Blo
k length B = 2� 10�3Peak Rate Allo
ation 0 0.027 8.565 0.521Gibbens/Kelly95 - III 3:586� 10�2 0.039 13.857 1.000s
alar s = 2 Table 15: Results for mixed traÆ
 experiments.Initially we were 
on
erned that the nature of the sour
es themselves were the 
ause for thepoor behaviour; while video sour
es have not presented su
h unusually poor behaviour previously,the traÆ
 sour
e T2MIX used in this set of experiments were less \bursty" than TP10S1. As wellas having a lower a
tivity and smaller mean burst lengths, the 
onne
tions generally high SCR.It was thought that any of these fa
tors 
ould have 
ontributed to the poor performan
e. Oneapproa
h was to run experiments with all parameters (target CLR, blo
k length B, bu�er size)held 
onstant but to only use one traÆ
 type at a time. Table 16 details the results obtained forthese experiments. Previously used traÆ
 sour
e, TP10S1, is in
luded for 
omparison.In 
omparison to the TP10S1 sour
e, both of the other traÆ
 sour
es perform far worse. Themean holding time appears to have no e�e
t on the performan
e for ea
h individual traÆ
 stream.Firstly, we already have established that the re
al
ulation speed of the per-
onne
tion Measureand Hornet algorithms is sub-optimal, it is easy to envisage the e�e
t that slow and in
ompleteresults may 
ause and we have dis
ussed this in general terms in Se
tion 7.3. Se
ondly, the method39
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Figure 15: Measured CLR versus history length using traÆ
 type TP10S1. TheMeasure algorithmwith aggregate line statisti
s was used for this set of experiments.
TraÆ
 Mean CLR for a Conne
tion Mean Mean line
onne
tion 500 
ell bu�er a

ept ratio 
onne
tions Utilisationhold time in progressStarWars 10 0.411 0.133 11.961 0.990StarWars 60 0.045 0.031 12.317 1.000T2MIX 10 0.111 0.197 19.488 1.000T2MIX 60 0.108 0.042 20.128 1.000TP10S1 10 0.000285 0.794 77.865 0.777Table 16: Results for individual 
omponents of mixed traÆ
 experiments.
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of sele
tion of the value of blo
k length B still requires some work and as a result the poor results
ould be due to sele
tion of this parameter. On the basis that the results for TP10S1 have themeasured CLR approa
hing the target CLR, we are for
ed to 
on
lude that the blo
k length Bused for these experiments is not suitable for the T2MIX and StarWars traÆ
 sour
es.8 Con
lusionsInterest in CAC algorithms stems from the need for a network user and a network provider toestablish an agreement on the QoS for a 
onne
tion the user wishes to have admitted into thenetwork. This study has presented results of experiments 
ulminating in the evaluation of theMeasure CAC algorithm and the 
omparison of that CAC algorithm with several other CACalgorithms.Se
tion 2 and Se
tion 3 established the terminology and presents the theoreti
al frameworkof Measure and des
ribed how the theoreti
al foundations of Measure 
an be applied to developalgorithms for 
onne
tion admission 
ontrol.Se
tion 4 detailed the experimental environment used in the evaluation of the Measure CACalgorithm. Of parti
ular interest was the implementation of Measure into two 
omponents, ba
k-end and front-end. The delineation of front and ba
k-end is 
oin
idently the delineation betweenpredi
tor and estimator in the Measure algorithm.Se
tion 5 dis
ussed the two types of sour
es used in this CAC evaluation. One sour
e beingbased upon a theoreti
al model and the other derived from a stream of video data,Se
tion 6 des
ribes spe
i�
 implementation issues for the Measure and Hornet algorithms.One aspe
t of the implementation was how the delineation between ba
k-end and front-end also
orresponded with division in the algorithm between estimator and predi
tor. This se
tion also
overed the me
hanism that implements a boundary on the history of data pro
essed by Measure.Se
tion 7 reports results for the experiments we have 
ondu
ted. A 
omparison was 
ondu
tedbetween implementations of the Measure algorithm 
omparing measured CLR with target CLR.This revealed highly variable performan
e. The parameters of Measure were then 
ompared withtheir performan
e and this showed the importantan
e in sele
ting blo
k length B. Performan
eresults indi
ated the signi�
ant di�eren
es between per-
onne
tion and aggregate measurementsas well as illustrating how the speed of re
al
ulation a�e
ts the algorithms operation. Finallythis se
tion detailed a 
omparison between the Measure and Hornet algorithms along with severalother CAC me
hanisms. These results reinfor
ed the importan
e of sele
ting blo
k length B andthe importan
e of speedy re
al
ulations of results.Future WorkThe s
ope for future work is very broad, and there are a number of areas of potential development.At this stage we see 
onsiderable s
ope exists to further investigate the relationship between theblo
k length B and traÆ
 
hara
teristi
s: both of the traÆ
 and of the 
onne
tion pro�le.With the potential engineering diÆ
ulties asso
iated with per-
onne
tion based measurements,many aspe
ts of Measure based upon aggregate measurements deserve future attention.Additionally, be
ause of the importan
e of a speedy algorithm, future work 
ould assess theimpa
t of a less a

urate algorithm if it is able to return results more speedily.Referen
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Figure 16: A 
omparison of the mean number of 
onne
tions in progress for Measure per-
onne
tionusing di�erent values of blo
k length.
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