
ESPRIT Measure 20113Deliverable 3.4.2Performane Evaluation { Controlled TraÆandDeliverable 3.4.3Demonstration and EvaluationApril 1999AbstratImplementations of the Measure CAC algorithms on a real loal ATM swith are desribed.A test and demonstration network environment for the algorithms is presented. The algo-rithems are evaluated with various traÆ soures with respet to auray and omputationalomplexity. The results show that the Measure CAC algorithms, used on the time sale of enduser onnetions requests are implementable in real time, even with the prototype implementa-tions desribed here. While the traking of the arrival proess of individual ows, as opposedto simple aggregate analysis, is pratial in the experiments we have performed, aggregateanalysis has proven to have a higher performane and be more easily implemented. Experi-ments whih ompare Measure with other approahes is shown, as are experiments whih useMeasure with aggregate traÆ but use a history mehanism (to forget about performane fromthe distant past). The history mehanisms used step outside our theoretial framework butmay provide a pratial way of using aggregates.Nonetheless, there are questions whih remain with respet to our implementation, notablythe time sale on whih estimations an and should be made. Results for high ell loss rates(1 in 1000) are sastisfatory, but we are not ahieving good performane at lower loss rates.Our implementation is not mature and more investigation is required to explore the di�erenesbetween theoretial and atual behaviour of the algorithms.1 IntrodutionConnetion Admission Control (CAC) denotes the set of ations taken by the network during theonnetion set-up phase in order to aept or rejet an ATM onnetion. A onnetion requestis only aepted when suÆient resoures are available to arry the new onnetion through thenetwork at its requested Quality of Servie (QoS) while maintaining the agreed QoS of existingonnetions. During the onnetion set-up phase the following information has to be delared,negotiated and agreed between the \user" and \network" to enable CAC to make a reliableonnetion aeptane/rejetion deision:� A Servie Category (suh as Constant Bit Rate (CBR) or non-real-time-Variable Bit Rate(nrt-VBR)) 1



� a QoS lass expressed in terms of ell transfer delay, delay jitter and ell loss ratio (CLR),and� spei� limits on traÆ volume the network is expeted to arry.For a given onnetion aross a network it is not neessary that all these aspets of the CACdeision be delared every time. Many of the parameters, suh as (CLR) or ell delay transfermay be impliit for the network on whih the onnetion is being requested. As a result the atualinformation delared between a prospetive \user" and a \network" may be only the servieategory and a haraterisation of the traÆ volume limits. An example of this would be that aonnetion is made on the assumption a ertain QoS is available in a network and when it makesits onnetion it delares that it is a nrt-VBR onnetion with a spei� Peak Cell Rate (PCR),Sustained Cell Rate (SCR) and Maximum Burst Size (MBS).It an be seen that the algorithm ontrolling the deision made during the CAC will ontrolthe poliy of the network. This deision will attempt to balane the requirements of the \user"(ahieve the desired QoS) versus the requirements of the \network" (do not violate the QoSguarantees made to other pre-existing onnetions). As a result of this balane of \trade-o�s",a highly pessimisti CAC algorithm may always ahieve the QoS by assuming the worst possibleharateristis about a new onnetion. As a result this algorithm would allow few onnetions intothe network; in return for always ahieving the QoS ommitment, suh a CAC algorithm wouldpotentially waste resoures { leaving muh of the network under utilised. In omparison, a highlyoptimisti algorithm ould always assume the best possible harateristis about a new onnetion.Suh an algorithm would risk violating the QoS ontrats made to existing onnetions for thesake of making maximal use of the available resoures. An ideal CAC algorithm will ahieve aneven balane between \user" and \network".During the development of suh ideal CAC algorithms, substantial e�ort has been invested inmodelling and experimenting with the entire network situation. Models are made of all aspets ofthe situation inluding traÆ soures, network behaviour, the multiplexing of new onnetions andthe variety of CAC algorithms available. However modelling alone does not satisfatorily assessthe behaviour of real CAC algorithms implemented in real situations. Additionally, ommonmodelling tehniques involve the use of simulated soures of traÆ; these are used beause theyare well understood and easily generated. However due to the variety of soures and the ontinualdevelopment of new network users (and thus new types of traÆ soures), suh simulated souresof traÆ do not represent adequately the range of behaviours suh traÆ soures an have in anetwork.The inability to model the whole of a real-world CAC proess and the inability to adequatelyrepresent real soures of traÆ mean it beomes desirable to evaluate CAC algorithms in a on-trolled experimental situation using real traÆ soures in an atual network. Through the useof modelled traÆ soures a omparison an be onduted between the theoretial models of theCAC situation and the implementation; this enables both the feedbak to improve CAC algorithmsand a way to ensure realisti assumptions are made in the onstrution of CAC algorithms. Byusing real soures of traÆ, suh as video data streams or lient-server �le system traÆ, the CACalgorithm an be tested against traÆ soures that are less easily modelled thereby ensuring theirusefulness in the real-world environment.This doument presents the realisation of the Measure estimator, desribing the performaneevaluation of the LAN ATM estimator under ontrolled and live traÆ. We present results eval-uating the behaviour of the Measure algorithm implemented as a prototype CAC mehanismimplemented on an ATM based network. This implementation an be used with both modelledtraÆ soures and real soures of traÆ suh as video data. We an obtain traes of ATM ellstreams of real traÆ whih an then be replayed in real time. This allows both realisti traÆto be used and for experiments to be repeatable. The Measure implementation has been used topredit the performane of various traÆ types and admission deisions suÆiently that a workingCAC algorithm has been able to be demonstrated.Setion 2 establishes the terminology and presents the theoretial framework of Measure. InSetion 3 we desribe how the theoretial foundations of Measure an be applied to develop2



algorithms for onnetion admission ontrol. Setion 4 details the experimental environment usedin the evaluation of the Measure CAC algorithm. The experimental environment has been designedto allow omparison of di�erent CAC algorithms under di�erent traÆ loads. The traÆ souresused for the experiments of this paper are disussed in Setion 5Setion 6 desribes spei� implementation issues for the Measure and Hornet algorithms.Setion 7 reports results for the experiments we have onduted. These experiments inludeinvestigations of the e�etives of Measure and Hornet inluding a ontrast of these algorithmswith other CAC mehanisms. Additionally, results that illustrate the behaviour of the Measureand Hornet algorithms as their parameters are varied are also presented here.2 TheoryTheoretial FrameworkWe �rst establish the terminology that we will use. Our entral onern is the loss of ellsdue to overow at a bu�er. Consider an ATM traÆ stream arriving at a bu�er whih has �nitestorage apaity b; here b may be sized aording to the delay onstraint of the traÆ. Cells areremoved from the bu�er at �xed rate s, the line-rate. Eah traÆ stream has a �nite duration, asmight be expeted for alls of �nite length. We refer to a traÆ stream as a trae. Assoiated witheah trae is a ell-loss ratio between zero and one; we denote the ell-loss ratio for a bu�er-sizeb and a line-rate s by CLR(b; s). Experiene with a wide variety of traÆ-soures shows that thethe logarithm of CLR(b; s) is asymptotially linear in the bu�er-size b for pratial bu�er sizes1,and for �xed line-rate s. A typial example is shown in Figure 2 whih plots, for a set of motionJPEG soures and �xed line-rate s on the Fairisle ATM network at Cambridge [3℄, the logarithmof the observed ell-loss ratio2 against bu�er-size b.
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Figure 1: Empirial loss probability for 18 streams of JPEG oded videoWe de�ne the bandwidth requirement of a trae to be the minimum line-rate at whih a targetell-loss ratio  is not exeeded in a bu�er of storage apaity b:BWR(b; ) := minfs : CLR(b; s) � g: (1)Notie that this is an operational de�nition whih does not involve any statistial theory; fora given trae, it an be determined empirially by trial and error. In pratie of ourse it isneessary to estimate the bandwidth requirement of a trae rapidly.1We do not intend to fuel the self-similarity debate [1, 2℄ further { we simply report our observations based onexperiene with real ATM traÆ using pratial bu�er sizes and time-sales.2Observe that the sharp drop-o� at the tail of the distribution is due to the �nite observation period of theexperiment. 3



The general features of a plot of the logarithm of ell-loss ratio against bu�er-size for �xedline-rate are explained by queuing-theory. The trae is identi�ed with a portion of a sample-pathof a stationary stohasti proess fAtg, the arrivals proess ; here At denotes the total number ofells whih have arrived up to time t. It an be shown, using large deviation theory, that if thearrivals proess has a rate-funtion I(a) on the sale of t, suh thatIP(At=t > a) � exp(�tI(a));then the ell-loss ratio in a bu�er of size b with �xed line-rate s deays exponentially in b when bis large: CLR(b; s) � exp(�bÆ):Furthermore, the deay-rate Æ is determined by the rate-funtion I(a):Æ = minfI(a+ s)=a : a > 0g:What we refer to as the thermodynami entropy of a traÆ stream is just the rate funtion I(a).These theoretial results, valid for a wide lass of stohasti proesses, o�er an explanation of theobserved asymptoti behaviour of the logarithm of the ell-loss ratio as a funtion of bu�er-sizeand relate the slope of its linear asymptote to the rate-funtion of a stohasti proess representingthe traÆ.The behaviour of the ell-loss ratio for small bu�er sizes is less well understood, but theoretialstudies of model stohasti proesses have thrown some light on this. A simple two-state Markovmodel is apable of apturing the general features of ATM traÆ in a rude way. For suh models,Bu�et and DuÆeld [4℄ showed that the large deviation estimate IP(Q > q) � exp(�qÆ) an beimproved by the introdution of a prefator e�' so that we have a bound valid for all values of q:IP(Q > q) � exp(�'� qÆ):This has motivated us to use a straight-line upper bound to the graph of the logarithm of theell-loss ratio against bu�er-size: logCLR(b; s) � ��(s)� Æ(s)b; (2)at least for bu�er sizes above a small threshold b0. The parameters �(s) and Æ(s) are funtionsof the line-rate s. Suppose we have estimates �̂(s) and Æ̂(s) of the parameters; we de�ne theestimated bandwidth requirement by\BWR(b; ) := minfs : ��̂(s)� Æ̂(s)b � log g: (3)This is used in two ways in our CAC algorithms: for the existing multiplexed traÆ, we use on-lineestimation of the parameters � and Æ to determine its estimated bandwidth requirement; for aproposed new onnetion, we set � equal to zero and estimate Æ using delared parameters.The on-line estimation of the slope parameter Æ for multiplexed traÆ is the harateristifeature of the CAC algorithms introdued in this doument. The on-line estimation of the intereptparameter � is omparatively straight-forward, and based on the frequeny of ourrene of smallinterarrival times; we desribe it in more detail in [5℄. The estimation of Æ is based on the formulaÆ(s) = minfI(a+ s)=a : a � 0g;relating it to the large deviation rate-funtion I(a) of the arrivals proess. This formula has anequivalent version whih is more suited to estimation:Æ(s) = maxf� > 0 : �(�) < s�g;where �(�) is the saled umulant generating funtion (SCGF) of the arrivals proess, de�ned by�(�) = limt!1(1=t) log IE(exp(�At)): (4)4



It is of ruial importane to observe that the SCGF is automatially onvex.A Note on E�etive Bandwidth. Before desribing the CAC algorithms, we briey larifyour use of the term e�etive bandwidth, or equivalent apaity. The de�nition whih most losely�ts our approah originates with Hui [6℄, and is the value of s in equation (2), whih desribes astraight line of slope Æ through the origin in the graph of the empirial CLR of Figure 2. Thisgives rise diretly to the e�etive bandwidth approximation, whih is the funtionŝ(b; ) = �b�(� log =b)log() : (5)The e�etive bandwidth approximation is an upper bound on the rate at whih a bu�er of size bmust be drained in order to meet the target CLR onstraint . It does not inlude any re�nementinvolving the interept �, shown in Figure 2. We have termed our re�ned approximation theestimated bandwidth requirement, as de�ned in equation (3). However, we shall make use of thee�etive bandwidth approximation of equation (5) in situations where we have no way to estimate�, for example, when presented with a new all attempt for whih we have no measurements.3 The Measure CAC AlgorithmsIn this setion we show how the theoretial foundations of Measure an be applied to developalgorithms for onnetion admission ontrol. The algorithms work by estimating saled umulantgenerating funtions (SCGFs) of arrival proesses. The relevant arrival proesses are those of thetraÆ whih is urrently being arried (whih Measure estimates) and of the traÆ for whihadmission is requested.Parameters supplied by a new onnetion request are passed to the preditor whih attemptsto predit the SCGF, and thene the bandwidth requirement, of the new onnetion. This isombined with the estimated bandwidth requirement of the urrent multiplex, produed by theestimator, to deide whether or not to admit the onnetion.Figure 2 shows the behaviour of the Measure CAC algorithm. Given a urrent multiplex ofonnetions, the system estimates the bandwidth requirement of the multiplex from the estimatedSCGF using the entropy estimator (depited here by a thermometer). The preditor used in theMeasure algorithm requires a new onnetion attempt to delare only its peak rate P ; this is usedas a pessimisti assessment of the onnetion's bandwidth requirement. The CAC algorithm sumsthe peak rate P , and the estimated bandwidth requirement of the multiplex; if the total is lessthan the link apaity, then the onnetion an be aepted without violating the QoS of anyonnetions. As soon as the new onnetion ommenes, the estimator uses measurements of thenew multiplex to revise its estimate of the urrent bandwidth requirement. When the next on-netion attempt arrives, the proedure is repeated, as shown. If a new onnetion attempt arrivesbefore the algorithm has developed an aurate estimate of the new bandwidth requirement, asshown in Figure 3, the algorithm ats onservatively. It uses the most reent stable estimate of thebandwidth requirement, plus the sum of the peak rates of all subsequently admitted onnetions.Thus, in Figure 3, the seond onnetion will be rejeted, beause the sum of the two peaks P +P 0and the �rst bandwidth requirement estimate exeeds the link apaity.3.1 Measure AlgorithmThe Measure algorithm uses the following formulation as the estimator for the SCGF � of theurrent multiplex: �(�) := limt!1 1t log IE(e�At); (6)An obvious way of estimating the SCGF from observations of At over a �nite time interval T isto use empirial averages to estimate the expetation: we break the observations into K bloks5



of length B in time and let ~Xk be the total arrivals in the kth blok. The SCGF is then readilyestimated as follows: �̂(�) := 1B log 1K KXk=1 e� ~Xk : (7)3.2 HornetThe Hornet algorithm di�ers from the Measure algorithm only in that it allows more informationabout a new onnetion to be supplied. (In fat Hornet an be seen as a superset of Measure.)The over onservative behaviour of Measure an be moderated by using more information aboutthe onnetion.Arriving traÆ is often desribed by rude parameters, possibly just the peak rate, or possiblyby the ITU (and ATM Forum) de�ned Generi Cell Rate Algorithm (GCRA). TraÆ onforming toGCRA(T ,�), if passed through a queue of size �=T served at at rate 1=T , will not ause overow.TraÆ may be fored to onform to several GCRA onstraints. Note that GCRA onstraintsappear in both ITU and ATM Forum standards for traÆ ontrol in ATM networks, and thatpoliing a soure to ensure that it obeys a set of GCRA onstraints is simple and is urrentlyperformed in many swithes.The CAC algorithm works as follows. At all times an estimate of the e�etive bandwidthof the streams passing through a queueing point in the network is available. Let the di�erenebetween the total apaity and the estimate, that is the available apaity, be . Let the totalbu�er available be b. Then a bound may be produed on the required bandwidth of the inomingstream and ompared with . Several possibilities then arise:1. if only the peak rate (sometimes referred to as peak ell rate, PCR) of the new stream isavailable, then set the required bandwidth estimate to the PCR:Aept the onnetion if  � PCR; otherwise,Rejet the onnetion.2. if a single GCRA onstraint, GCRA(T ,�) is given, then set the e�etive bandwidth to1=T if b � �=T;otherwise set the e�etive bandwidth to the line rate at the soure.Aept the onnetion if  � 1=T and b � �=T ; otherwise,Aept the onnetion if  � soure line rate; otherwise,Rejet the onnetion.3. when the ATM Forum parameters PCR, SCR and IBT (peak ell rate, sustained ell rate andinter burst tolerane) are given, the traÆ onforms to the GCRA onstraints GCRA(T ,�)and GCRA(T 0,0), with T 0 = 1/PCR, T = 1/SCR, and � = IBT. We an assume that T > T 0.If the bu�er is greater than �=T then the e�etive bandwidth is the SCR. Otherwise thee�etive bandwidth is very nearly the PCR. More preisely:Aept the onnetion if b � �=T and  � 1=T ; otherwise,Aept the onnetion if  � (� � bT + bT 0)=�T 0; otherwise,Rejet the onnetion. 6
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Figure 2: Operation of the Measure CAC algorithm
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4 Evaluation & Demonstration EnvironmentThe experimental environment used in the evaluation of the Measure CAC algorithm is desribedin this setion. Figure 4 shows the implementation arhiteture adopted for the CAC algorithm(s)whih the Measure projet has developed. The experimental arhiteture is suh that it enables usto implement and test not only the spei� CAC algorithms desribed in this paper, but also anyother algorithms developed in the Measure projet, and algorithms whih have been proposed byother authors. We aim, using this testbenh, to evaluate and ompare a range of CAC algorithmsfrom the literature, to test how well the Measure algorithms perform in pratie.At the heart of the arhiteture is an ATM swith, whih is instrumented to provide mea-surements of the form suitable to the Measure and other measurement based CAC algorithms.Input traÆ into the swithes used for the study omes from a series of ustom built traÆgenerators whih are able to generate traÆ omprising the statistial multiplex of well over ahundred ATM traÆ soures, eah of whih draws its traÆ behaviour either from an analytialmodel (suh as the two-state Markov model used widely in our earlier simulation studies) or a traeof ativity, suh as the transmission of MPEG and Motion JPEG streams from ATM Cameras,and the other traes measured in Deliverable 3.1. These traes inlude NFS, Web, X windowsand other traÆ, and have already been used with our estimators. The generators are based onPCs running the Nemesis Operating system, part of the ongoing development of whih is beingsponsored under Workpakage 4 of this projet. Eah traÆ generator is apable of saturatingthe ATM transmission links should this be required, and the whole suite of generators gives usunrivalled exibility in experimentation.The instrumentation on the ATM swith enables us to retrieve measurements of a qualitysuitable for use in the Measure algorithms. A Measurement ontroller, running o� the network on aunix workstation, is responsible for olleting the data from the swith and storing it appropriately.The measurement ontroller measures not only the traÆ ativity, whih is the input to the measurealgorithms, but also the QoS experiened by the traÆ: its CLR, queue length distributions, inter-ell loss times, and other measures whih allow us to ompare the performane of the system inpratie with the observed perfromane of a simulation of the system using a simulated swithmodel, o�ine.The CAC system works as follows: a all generator (running on unix) is responsible for 'gen-erating' aording to some distribution, or perhaps a trae of measured arrivals, the arrival ofnew alls. New alls may be of multiple types, and eah all may randomly (aording to somedistribution) determine its all type and any set of parameters whih it is required to present. Inthe ase of Mosquito, the alls need only delare their peak rate, however for full ATM Forumompliant alls, we might require a all to delare its SCR, IBT and any other useful parameters.New alls generated by the traÆ generator arrive at the CAC deision system when they aregenerated. Eah all presents its parameters to the CAC system and requests a onnetion tobe set up aross the swith. The CAC system, in turn, uses measurements from the swith ofthe urrent ativity, together with the urrently loaded CAC algorithm (Measure, Mosquito, Peakrate alloation, Kelly/Key et) to make a deision as to whether or not to admit the all. Onlyone CAC algorithm may be in operation at any time.If a all is admitted, the CAC algorithm will reply to the all generator aepting the all.The all generator then instruts the tra� generator ontroller to 'set up' a new traÆ generatorwith the appropriate parameters for a all fo this type. The all type might be on-o�, or someother analytial model, or trae driven. The traÆ generator ontroller then starts the new allby instruting it to begin transmission. The generator then adds the ell stream from the newall to the ell stream from the full set of ATM onnetions for whih it is responsible, and simplytransmits its total load. Eah onnetion has a lifetime whih is drawn from some distribution orperhaps a set of measurements, and when its lifetime expires, the traÆ generator responsible forit stops its transmission of ells, and the all 'lears down'.It is important to stress that in this setup there is no real ATM signalling. The proessesrunning o�-swith assume the full load of the 'signalling' and therefore we an emulate the arrival8
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of alls at rates far higher than ould be sustained by any real ATM signalling implementation.Also, the setting up of a 'onnetion' through the swith is optimised in the sense that all VCI/VPIpairs to be used in an experiment are mapped through the swith before the experiment starts,meaning that we do not need to atually set up paths during the experiment. This greatly aidseÆieny, and meas that we an ahieve realisti all setup rates for large networks.Our experimental system is equipped with a faility whih provides graphial output in realtime, showing several ritial performane parameters for the system under study as alls arriveand depart from the network.Figure 5 shows two sreendumps of the system, depiting the evolution of an experiment overtime. The graphial output system has 3 graphs, staked vertially. The x axis in all ases is time,shown in seonds sine the start of the experiment. This grows as the experiment ontinues. Mostexperiments last for in exess of an hour (ie we run the system for long enough to obtain auratestatistial measures of the system perfomane under eah traÆ type, swith parameters and CACalgorithm). Details of the results from this system will be presented in a later deliverable, as oure�orts to date have onentrated on developing the �rst implementation.The top graph in eah set of 3 produed by the on-line system shows the all arrival proess.For eah all whih arrives a vertial bar is drawn. In the event that an arriving all was aeptedby the CAC algorithm, a green vertial bar is drawn. If the all is rejeted, then the vertial bar isred, and extends downwards. In the leftmost series of graphs, no alls have been rejeted beausethis shows the system in a startup transient, before there is suÆient traÆ in the system foralls to be rejeted. In the right-hand set of graphs, however, alls begin to be rejeted after 100seonds.The seond graph from the top in eah set is a display of the traÆ dynamis in the swith,measured in real time. Eah graph shows 3 lines. The green line is the measured instantaneousutilisation of the link being studied. The orange line is the output of the on-line estimationalgorithm of the e�etive bandwidth (the Bandwidth Requirement) of the traÆ, as estimated bythe online estimation algorithm in use. In this ase the algorithm is the simple Measure algorithmdesribed earlier. Typially the BWR line is below the instantaneous demands, as would beexpeted. Finally, the purple line depits the 'ommitted bandwidth': the sum of the estimatedBWR as desribed above, plus the amount of resoure ommited, for example by using the peakrate, for all alls admitted sine the most reent stable estimate from the estimation algorithm.Thus the purple line is a onservative estimate of the resoure requirements of the total traÆmultiplex given the ative soures and the new alls whih have been aepted but for whih nomeasurements have been made yet.Finally, the bottom graph in eah set shows the number of alls in progress in the system, overtime. This rapidly limbs, as new alls enter the system at a greater rate than they lear down,and beause in the empty system (at left) no alls are rejeted. One rejetions our, the numberof alls in progress stabilises, but displays the expeted variation due to statistial utuations.In this experiment the alls are 2-state on-o� soures, with a peak rate of 10 Mb/s, a mean rate of1 Mb/s, and a mean burst length of 25 ells. In the experiment shown, the Measure algorithm isbeing used, with a CLR onstraint of 10�3 for the entire multiplex. The CLR onstraint is neverviolated, yet the link utilisation is lose to optimal for this traÆ.It is important to note that an observational error is introdued as the measured CLR value isredued. A measured CLR of 1� 10�3 means that in an experiment of 100,000,000 ells, 100,000ell loss events will be ounted. However a measured CLR of 1 � 10�6, for the same lengthexperiment, represents only 1,000 ell loss events. To give the same number of events for a smallerCLR value, the length of the experiments would need to be inreased by an appropriate amount.An experiment that transmits 100,000,000 ells requires about 2 hours to run to ompletion; toahieve the same number of loss events for a measured CLR of 1 � 10�3, the experiment wouldneed to transmit 100,000,000,000 ells and run for 2,000 hours (about 12 weeks). Obviously thisis not realisti and as a result many more experiments have been run at lower values of CLR, withthe majority targeting a CLR of 1� 10�3 or 100,000 ell loss events in 2 hours.10



Figure 5: Sreen shots of the CAC system in on-line operation11



5 TraÆIn this setion we detail the traÆ soures used for the experiments of this paper.5.1 TP10S1TP10S1 is a traÆ soure based upon a two-state ON-OFF Markovian model. The theoretialmodel used is shown in Figure 6. The burst sizes and inter-burst spaings eah have an exponentialdistribution with means derived from the MBS and SCR respetively. In the on-state, the ells ofa burst are emitted at PCR.The behaviour of traÆ from the soure is based around the uniformly distributed randomvariable X and the traÆ properties of PCR, SCR and MBS. The variable X in turn, is basedon a pseudo-random number generator. As a result, several traÆ generators an have onsistenttraÆ properties of PCR, SCR and MBS yet, through the use of di�erent seeds to the pseudo-random number generator, the generators will reate a stream of ells that will di�er over time inthe ell level harateristis of burst length, burst size and inter-burst spaing.
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5.3 VP10S4VP10S4 is a traÆ stream based, like the StarWars stream, upon a video soure. For VP10S4,the video used was a ombination of programs on loal television, inluding news broadasts, talkshows and feature movies. The peak rate is about 10 Mb/s and the mean rate is about 4.0 Mb/s.5.4 T2MIXT2MIX is two-state Markovian soure of the same style as TP10S1. It emitts ells at a onstant(peak) rate of about 11.1 Mb/s (28.8Kells/s) in the ON state, and is silent in the OFF state.There is a range of parameters for this traÆ soure with eah new onnetion hoosing itsparameters randomly: the mean (as a fration of the peak) is hosen from 0.1, 0.3, 0.5, 0.7, and0.9 with probabilities 1/16, 4/16, 6/16, 4/16, and 1/16 respetively. The burstiness is hosen from0.3, 0.5, 0.7, and 0.9 with probabilities 1/8, 3/8, 3/8, and 1/8 respetively.6 Algorithm ImplementationWhile both the Measure and Hornet algorithms have elegant mathematial desriptions, the im-plementation of these systems is omplex. This omplexity derives from there being many di�erenthoies the implementor may follow in the ourse of onstruting working versions of these algo-rithms. This setion desribes these hoies in the implementation of the Measure and Hornetalgorithms desribed previously in Setion 3.Setion 6.1 details the rational for breaking up the implementation into two omponents,a front-end and a bak-end. There are two front-end implementations one eah for Measure andHornet and there are two bak-end implementations one eah for per-onnetion measurements andaggregate measurements. The front-end and bak-end delineation falls neatly onto the algorithmsboundary between preditor and estimator. Setion 6.2 overs details of the Hornet front-endimplementation. Setion 6.3 disusses the bak-end implementation based upon per-onnetionline measurements, while Setion 6.4 ompares that with a bak-end implementation based uponaggregate line measurements.Setion 6.4.1 addresses issues raised through the use of an aggregate line measurement imple-mentation spei�ally and omments on the unbounded nature of Measure based algorithms ingeneral. Finally, Setion 6.5 gives an assessment of the omplexity of implementation.6.1 MeasureThe Measure algorithm uses ontinuous measurements of the line utilisation to re�ne its estimateof the bandwidth required by the multiplex of traÆ on a network.Reiterating the onlusions of Setion 3, the SCGF, and thus for a given Æ value, the e�etivebandwidth is estimated from observations of At over a �nite time interval T using empirialaverages to estimate the expetation. We break the observations into K bloks of length B intime and let ~Xk be the total arrivals in the kth blok. The SCGF is estimated as follows:�̂(�) := 1B log 1K KXk=1 e� ~Xk (8)In the simplest implementation of the algorithm, measurements of the ativity of the line are ol-leted and for eah CAC deision, the SCGF is re-alulated inorporating the new measurements.However, in a pratial implementation this would involve two drawbaks. Firstly, the bu�er-ing of an unknown amount of data prior to eah realulation would involve an unknown andunbounded amount of memory. Seondly, the alulation of the SCGF itself may involve an un-known and unbounded amount of time to perform. This would introdue an unknown and variabledelay in the response of the CAC proes. Rather than an approah that required the alulation of13



the e�etive bandwidth estimate for eah and every admission attempt at the time of the attempt,an alternative method was required.Rather than performing the alulation of the e�etive bandwidth estimation for eah CACdeision, an alternative method is to divide the task of olleting measurements and alulatingthe new e�etive bandwidth estimation from the task of performing the CAC deision. Figure 7illustrates this tehnique where the e�etive bandwidth estimate is alulated independently to theCAC deision. This division of labour of the CAC algorithm into a front and bak end means thatthe CAC deision proess beomes independent, asynhronous, to the alulation of the e�etivebandwidth estimate.The front and bak ends still need to share information between them and this is done throughthe sharing of a blok of memory. It is into this memory that the bak-end plaes the latest opyof the bandwidth estimate.By breaking the algorithm into two distint omponents, we an bound the amount of CPUtime and memory that either omponent will require. In partiular this means that the CACdeision proess an be performed asynhronously of the e�etive estimate alulation; thus theperiod between onseutive CAC deisions is not the minimum time it takes to alulate an e�etivebandwidth estimate.The tehnique of breaking up of an algorithm into two parts in this way is a suitable approahfor any algorithm that may rely upon synhronous aess to measurements. TheMeasure algorithmrelies upon synhronous aess to measurements in order to supply the most up to date estimate ofthe e�etive bandwidth; other algorithms similarly may require this aess to estimate information.Table 6.1 presents a ode snippet illustrating the admission proess for a new onnetion inMeasure. The e�etive bandwidth variable used in alulating the urrent estimate is alulatedby the bak-end omponent of the algorithm. Note that Measure only requires that inomingonnetions delare their maximum possible utilisation, PCR.6.2 HornetIn the alulation of the e�etive bandwidth estimate, Hornet and Measure are idential; in thisway both algorithms share their bak-end omponents. The di�erene between Hornet and Mea-sure omes in the implementation of the deision proess in the front-end. While Measure anonly proess the simplest traÆ desription: the peak transmission rate of that soure { PCR;Hornet is able to use the ATM Forum parameters PCR, SCR and IBT. Hornet does not need allthese parameters to be delared by a new onnetion but if a new onnetion does delare theseparameters Hornet an make a better attempt at admitting the new onnetion.By operating on the additional parameters o�ered by a new onnetion attempt, Hornet hasthe potential to operate the system loser to the maximum line rate, thereby ahieving the bestutilisation of available network resoures. Hornet does this while still keeping the multiplex ofonnetions within the desired target CLR. Table 6.2 presents a ode snippet illustrating theadmission proess for a new onnetion in Hornet.6.3 Per-onnetion measurementsThe atual mathematis for the alulation of the e�etive bandwidth estimate from the set oftraÆ samples, ~Xk,are the same for both the Per-onnetion measurement bak-end and theAggregate measurement bak-end. The di�erene between these implementations is that the Per-onnetion implementation is more stritly in aordane with the expetations of the algorithms'arhitets. The Per-onnetion implementation ensures that every blok, ~Xk, only ontains traÆfor onnetions that were ative over the time overed by that partiular blok. In ontrast, andas disussed in the next Setion, aggregate measurements may ontain measurements of traÆ foronnetions that have long sine been `torn-down'.For the Per-onnetion implementation, we must ensure eah blok, ~Xk, is based upon onlyative onnetions, this means that when a onnetion is ompleted and `torn-down', the line14
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newConnetionAttempt( newCallPeakRate )...urrent_estimate = /* urrent effetive_bandwidth (from bak-end)+ the PCR of all onnetions that haveentered the system sine the urrenteffetive_bandwidth was alulated */if((line_apaity - urrent_estimate) < newCallPeakRate) {/* Connetion attempt has been rejeted */}else{/* Connetion attempt has been aepted *//* reord the PCR of the new onnetion alongwith the time it entered the system *//* alloate onnetionID */}...Table 1: Code snippet illustrating the admission proess for a new onnetion in Measure.
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newConnetionAttempt( newCallPeakRate [,tau ℄ [,newCallMeanRate℄ )... /* alulate GCRA parameters */T = 1 / newCallMeanRate;T_prime = 1 / newCallPeakRate;urrent_estimate = /* urrent effetive_bandwidth (from bak-end)+ the required bandwidth of all onnetionsthat have entered the system sine the urrenteffetive_bandwidth was alulated */if((line_apaity - urrent_estimate) < newCallPeakRate) {/* `Measure' style admission failed */if(urrent_estimate + newCallMeanRate > st->maxlinerate ||buffer_length < (tau / newCallMeanRate) ) {/* 1st round `Hornet' failed *//* now alulate (tau - (buffer_length x 1/newCallMeanRate) +(buffer_length x 1/newCallPeakRate))/(tau x 1/newCallPeakRate) */effetive_rate =(( tau - (buffer_length * T) +(T_prime * buffer_length))/ (tau * T_prime));if( line_apaity - estimate >= effetive_rate ) {/* 2nd round `Hornet' failednew onnetion attempt has failed */}else{/* new onnetion attempt sueeded */}}else{/* new onnetion attempt sueeded */}}else{/* new onnetion attempt sueeded */}if( /* new onnetion attempt sueeded */ ) {/* reord the required bandwidth of the new onnetion alongwith the time it entered the system *//* alloate onnetionID */}... Table 2: Code snippet illustrating the admission proess for a new onnetion in Hornet.16



utilisation statistis that it was responsible for are removed from all the bloks before the e�e-tive bandwidth is realulated. The Per-onnetion measurement implementation has signi�antoverheads assoiated with it beause we need to keep information about whih onnetions areative for eah blok as well as the original measurements for eah onnetion over eah blok.This is neessary beause the blok must either be realulated without inluding the ompletedonnetions' statistis or have the ompleted onnetions' statistis removed from the sum.Per-onnetion measurements, as the name implies, requires that statistis about the ontribu-tion to the line of eah individual onnetion is available from the swith. Without a mehanismto identify what data belongs to whih onnetion, the per-onnetion mehanism annot identifyand remove the appropriate data. The per-onnetion measurements bak-end an be used witheither the Measure or Hornet front-ends.6.4 Aggregate measurementsThe inentive for an implementation based upon aggregate rather than per-onnetion measure-ments was the massive potential load that moving measurements between the swith statistissystem and the omponent alulating the Measure estimates is ontained. The amount of datatransferred for the lower range of values of the size of the blok length B and thus the granularityof measurements (the period over whih measurements are made) ould make aggregate measure-ments the only plausible implementation approah to take. For eah port arrying 256 onnetionsand a blok length B of 100 ell times in length, measurements made every 100 ell times willrequire over 2Mbyte/seond be moved into the Measure system for eah port of the swith. Ifonly aggregate measurements were used this �gure would be redued to 2Kbytes/seond for thesame measurement period. It was with this information in mind that an aggregate measurementimplementation was onsidered worthy of investigation.In diret ontrast to the per-onnetion measurements bak-end of Setion 6.3, the aggregatemeasurements bak-end requires a measurement of the total line ativity for the given bloklength period. This means the bak-end, and indeed the measurement gathering system are bothsigni�antly simpli�ed. This signi�ant simpli�ation an be seen learly in the omparison ofthe ode of per-onnetion measurement ode Table 6.3 with the aggregate measurement ode ofTable 6.4The drawbak of the aggregate measurement based bak-end is that eah blok, ~Xk, ontainsmeasurements that have been aused by onnetions that may have sine been `torn-down'. Inthis way the aggregate measurements may ontain old data no longer relevant to the urrent traÆmix and thus not relevant to the alulation of a urrent e�etive bandwidth estimation. Suh anapproah does not have a good theoretial foundation, however the ease of implementation thatthis approah o�ers makes it worth investigating. The workload on the swith is also minimisedmaking this mehanism very appealing; supplying line ativity statistis for every ative onnetionwith the regularity required by Measure may simply not be realisti for a large swith with tens orhundreds of thousands of onnetions aross hundreds of ports. However, o�ering high resolutionaggregate measurements might be more realisti for both new swith systems to be designed too�er and old swith systems to be re-engineered to make newly available.An immediate drawbak of aggregate measurements is that it is not lear when the measure-ment is no longer relevant. In per-onnetion measurements, a blok is no longer relevant whenit ontains no data for urrent onnetions; when this is the ase it should be disarded being ofno further use in the alulations to predit the behaviour of the urrent onnetions. The use ofaggregate measurements requires a way to deide when bloks should no longer be inluded in theset of samples used to alulate the e�etive bandwidth estimate.The use of history boundaries to set the oldest point beyond whih bloks would be disardedis the subjet of the Setion 6.4.1.
17



...for /* eah blok period */ {for /* eah valid onnetionID */ {perBlok_traffi_sample +=peronnetion_traffi_sample[ onnetionID ℄;}}/* Using all perBlok_traffi_sample withat least one valid onnetion present;alulate urrent effetive_bandwidth estimate.plae this estimate in shared memory to allowaess by the front-endplae a time-stamp of when this latest valuebeame available in shared memory to allowaess by the front-end */...Table 3: Code snippet illustrating the Per-onnetion measurements based Measure bak-end.

... /* perBlok_traffi_samples = an aggregate ofall line ativity at the time the blok was taken *//*Using up to the maximumOldestBLok perBlok_traffi_sample;alulate urrent effetive_bandwidth estimate.plae this estimate in shared memory to allowaess by the front-endplae a time-stamp of when this latest valuebeame available in shared memory to allowaess by the front-end */... Table 4: Code snippet illustrating the Aggregate measurements based Measure bak-end.
18



6.4.1 History boundariesThe use of aggregate measurements in general invokes a problem that the ontent of eah blok,~Xk, may ontain measurement data for onnetions that have sine been removed from the net-work. Additionally, if a blok does not ontain measurement data for any ative onnetions itsontribution to the Measure alulation of e�etive bandwidth estimate will be unpreditable atbest and unhelpful at worst. In the per-onnetion implementation, only data for ative on-netions is used to alulate the value of eah blok, ~Xk; even when this means realulating thevalues of eah ~Xk whenever a onnetion is removed from the system. For aggregate measurementswe have two problems, �rstly, that some bloks will ontain measurements that are a mixture ofonnetions that are still ative and onnetions that are no longer ative, and seondly, that somebloks will ontain measurements for no urrent data at all.A solution to both of these problems is to plae an upper limit on the lifetime of any partiularblok: one a blok beomes older than a ertain period it is removed from the traÆ mix. Inthis way if this history length is shorter than the average length of a onnetion, some bloks withvalid data will be disarded, whereas if the history length is longer than the average length of aonnetion, some bloks will be inluded in the Measure alulation that ontain no valid data atthat time. From this we an see that seleting the history length may in itself be a non-trivialtask.In addition to using a �xed history Grossglauser & Tse [11℄ explored using an adjustable anddynami history length based upon the number of onnetions in progress and the mean length ofeah onnetion. While their work was not with the Measure algorithm, it was widely onsidereddiretly relevant to any algorithm that has at its basis the sampling of onnetion ativity overthe lifetime of onnetions. The boundary on the blok history in time is given as:Tmax = mpn (9)The (trivial) implementation of this ode is given in Table 6.4.1.This value for the boundary on the length of history implies that as more onnetions enterthe system, historial knowledge of longer onnetions is disarded in favour of bloks ontainingtraÆ mixtures for more reent onnetions. This history mehanism is used for all experimentsbased upon the aggregate measurement bak-end unless otherwise mentioned.The additional use of a �xed upper boundary on the total number of bloks may also be neededfor real-world implementations of both the per-onnetion and aggregate measurement bak-end.This is beause without suh a boundary, a onnetion held open permanently may ause thetotal blok history to be unbounded. By being unbounded, both the alulation of the Measureestimate and the memory required to store the blok history would be unbounded. The urrentimplementations of the per-onnetion or aggregate measurement bak-end do not implement suha feature.6.5 Implementation omplexityIn the wider aeptane of the Measure algorithm one problem may be its pereived omplexity.While inreased familiarity with the algorithm foundations and assumptions makes implementationless diÆult, suh a omplex algorithm may have a signi�ant ode investment based assoiated... maximumOldestBlok = (meanCallHoldingTime) /sqrt(numberOfCallsInProgress);...Table 5: Code snippet to alulate the oldest blok to be added to an Aggregate measurement.19



with it. Table 6 gives an assessment of the omplexity of the ode. These results are based on thesize of the ode base and a subjetive assessment of the diÆulty making the implementation.From Table 6 we would have to onlude that even the most ompliated algorithm based uponMeasure or Hornet ould be onsidered relatively easy. In the ontext of swith software whihan run to many hundreds of thousands of lines, the ode investment in these algorithms is nottrivial but ertainly straightforward.Algorithm Lines of Code DiÆulty to Implement1 (easiest) { 5 (hardest)Measure Aggregate Bak-end 1500 4Measure Per-onnetion Bak-end 2050 5Hornet Per-onnetion Front-end 250 3Measure Per-onnetion Front-end 200 2Peak Rate Alloation 170 1Gibbens/Kelly95 - III 280 4Table 6: Implementation omplexity given by the amount of ode in eah CAC algorithm and asubjetive assessment of the diÆulty of making the implementation.7 ResultsIn this setion we present results for a range of experiments we have onduted. We have ondutedexperiments investigating the e�etives of Measure and Hornet, ontrasting these algorithms withother CAC mehanisms. Additionally, results that illustrate the behaviour of the Measure andHornet algorithms as their parameters are varied are also presented here.Setion 7.1 presents results showing the performane of the implementations in partiularontrasts of the desired CLR with the measured CLR. Setion 7.2 reports on the behaviour of al-gorithms when input parameters to the algorithm, in partiular the blok length B, are varied overa range of values. Setion 7.3 presents performane statistis for the omponents of the Measureand Hornet CAC implementations as well as performane statistis of omparison CAC algotihms.Finally, in Setion 7.4 results omparing the two Measure and two Hornet CAC algorithms alongwith Gibbens/Kelly95 - III a CAC from [12℄ and a simple Peak Rate Alloation poliy.Unless it is spei�ally stated, all experiments onduted had 100 ell bu�er and a target CLRof 1�10�3. The onnetion attempts arrive at a high (Poisson) rate with a mean of 10 onnetionattempts per seond. Bloked onnetions are lost, but the high arrival rate means that the systemis ontinually faed with new onnetion attempts. Connetions have an exponentially distributedlength; onnetions have a mean length of 10 seonds.7.1 Algorithm E�etivenessAn attration of a CAC onstruted upon the Measure or Hornet algorithm is that we shouldbe able to set the value of Æ: namely the desired CLR and the system bu�er size, and the CACalgorithm should attempt to ahieve that CLR as a mean for all onnetions sharing the line. Thissetion presents results showing the performane of the implementations in partiular ontrastingthe desired CLR with the measured CLR.As disussed in Setion 2, both the Measure and Hornet algorithms are pessimisti about thebehaviour of newly admitted onnetions. Eah algorithm assumes the newly admitted onnetionwill perform with the worst possible traÆ harateristis that have been delared; as a result themeasured CLR of the line is expeted to be lower than the desired CLR parameter. In the ase ofMeasure, new onnetions need only delare their PCR, as a result Measure is expeted to returna higher divergene in the CLR values than Hornet: where inoming onnetions an delare agreater number of parameters. 20



For the following experiments a bu�er size of 100 ells and a target CLR of 1� 10�3 is usedunless otherwise noted. For the results of Table 7 and Table 8, the other adjustment of the Measurealgorithm, the Blok length B is set to 5 � 10�3 seonds; this parameter is disussed in greaterdetail in Setion 7.2.Using the ON-OFF traÆ soure TP10S1, desribed in Setion 5.1; the results of Table 7 weregathered. Connetion attempts arrive at a high (Poisson) rate with a mean 10 attempts s�1.Bloked attempts are lost, but the high arrival rate means that the system is ontinually faedwith new onnetion attempts. As a result it is expeted that the system will remain at lose tomaximum utilisation. Connetions have an exponentially distributed length with a mean durationof 10 s.Eah CAC will attempt to ahieve as high a line utilisation as possible, however in return forgreater line utilisation, greater ell-loss will present itself. Beause of this the results of Table 7and Table 8 need to be assessed only as an attempt by theMeasure or Hornet algorithms to ahievea given CLR; this alone is not the only assessment riteria of a CAC algorithm and a omparisonof other aspets of eah experiment is given in Setion 7.4.From Table 7 we an see that, with the exeption of the Hornet algorithm using aggregatemeasurements, eah algorithm returns quite aeptable CLR values measured from the test envi-ronment. The Hornet algorithm using per-onnetion line measurements admitted a larger numberof onnetions and thus the resulting measured CLR is greater. The Hornet algorithm based uponaggregate line measurements returns a muh lower CLR value, almost an order of magnitudelower, indiating that the e�et of aggregation of measurements is ausing the algorithm to bemore pessimisti in its admissions.Algorithm Ahieved CLRMean Var Std. Dev. 95 % CIMeasure Aggregate 7:075� 10�4 2:78� 10�8 1:667� 10�4 1:414� 10�5Measure Per-onnetion 9:312� 10�4 1:511� 10�8 1:229� 10�4 6:017� 10�6Hornet Aggregate 2:052� 10�4 2:193� 10�9 4:683� 10�5 3:765� 10�6Hornet Per-onnetion 5:628� 10�3 7:991� 10�7 8:939� 10�4 8:053� 10�5Table 7: A omparison of desired CLR and ahieved CLR for the Measure based algorithms usingthe TP10S1 traÆ soure.Using onnetions arrying the video stream traÆ soure VP10S4 (desribed in Setion 5.3)with the same onnetion attempt harateristis as the previous experiment, the results of Table 8were gathered. The Hornet and Measure algorithms based upon aggregated line measurementsboth have performed quite well, while the two algorithms based upon per-onnetion line measure-ments have faired less well. The reasons for this di�erene have turned out to be several fatorsinluding: the value of the blok length B, the traÆ and even the seletion of the target CLRhave eah played a role in the behaviour exhibited.Algorithm Ahieved CLRMean Var Std. Dev. 95 % CIMeasure Aggregate 1:043� 10�3 6:551� 10�8 2:560� 10�4 2:168� 10�5Measure Per-onnetion 7:247� 10�3 1:618� 10�6 1:272� 10�3 1:180� 10�4Hornet Aggregate 1:252� 10�3 3:094� 10�7 5:563� 10�4 4:712� 10�5Hornet Per-onnetion 1:672� 10�2 4:496� 10�6 2:120� 10�3 1:971� 10�4Table 8: A omparison of desired CLR and ahieved CLR for the Measure based algorithms usingthe VP10S4 traÆ soure.Firstly we hose to test if the algorithms all performed in the same way aross a range oftarget CLR values. Figure 8 graphs the results for experiments where the value of the target21



CLR is varied aross a wide range of values. The blok length B was 2� 10�3 seonds for theseexperiments. From this graph it is lear that, for this seletion of traÆ, blok length B andonnetion load attempt, the performane is poor. However, it is interesting to note that there isa lear relationship between measured and target CLR for eah algorithm.Figure 9 presents the results for a similar omparison of measured and target CLR but usinga di�erent traÆ soure. In this ase the video based soure VP10S4 is arried by the newonnetions. Figure 9 presents a situation where the di�erene between the measured and targetCLR values are worse than in Figure 8.One di�erene between the VP10S4 and TP10S1 soures is the level of ativity (the ratio ofPCR and SCR values). One avenue of investigation was that the soure itself had a serious a�eton the behaviour of the algorithm. It has already been disussed in previous deliverables thattraÆ with signi�ant Hurstiness properties had been postulated to interfere with the algorithmsoperation. Subsequently our �rst hoie was to ompare high and low ativity traÆ from anON-OFF soure with better Hurstiness harateristis.Figure 10(a) and Figure 10(b) eah show that in terms of measured CLR, the performaneof the Hornet Aggregate and Hornet Per-onnetion algorithms improve when the ativity of thetraÆ soure is redued. While it appears the Hurstiness of the traÆ of VP10S4 may have beenthe ontributing fator, the blok length B used in these experiments is still muh larger thanthose used in any theoretial work. As a result the seletion of the blok length is the primaryontributing fator to the CLR performane reported in Figure 9 and Table 8.Some of the auses for the di�erenes in performane in some of these experiments is disussedfurther in Setions 7.2 and 7.3. While the traÆ harateristis make a signi�ant ontribution;the seletion of the blok length B also requires onsiderable thought. Beause of the importaneof the blok length B used by the algorithm the role it plays in the algorithm was investigatedat length and the next setion presents results that demonstrate the e�ets arising from hangingthis variable.7.2 Algorithm ParametersIn this setion we disuss the results of experiments where input parameters to the algorithm, inpartiular the blok length B, are varied over a range of values. The blok length B is seletedto be large enough to ontain a representative sample of traÆ; eah sample of blok length Bbeing statistially independent. However, the blok length B annot be so large that the samplewill smooth out short term transients. It is obvious from the outset that the seletion of the bloklength B ould vary between traÆ types as well as between mixes of traÆ, additionally thelength of onnetions as well as their arrival rate also will have an e�et on blok length B.From the results of the previous setion we have seen that the blok length B value may havea signi�ant e�et on the behaviour of the Measure and Hornet CAC algorithms. Figure 11(a)graphs the relationship between the measured CLR and the blok length for several of the CACalgorithms using the ON-OFF traÆ soure TP10S1. Figure 11(b) illustrates the same resultsusing the video based soure VP10S4. When we �rst viewed this data, the `maxima' feature of theMeasure algorithms drew our attention. In partiular, at �rst it was not lear why the measuredCLR should deline when the blok length B was greater than a ertain value. The answer wasin the design of the Measure algorithm; the situation also exists in the Hornet algorithm.The Measure algorithm will assume that an inoming onnetion is transmitting ells at thePCR value delared when the onnetion was attempted. The algorithm will ontinue to assumethe new onnetion is transmitting ells at the PCR rate until the next e�etive bandwidth estimateis available. The next e�etive bandwidth estimate will not be available until the urrent blok ofdata (of period B) has been ompleted. Prior to the availability of a new estimate, the Measurealgorithmwill add to the urrently available bandwidth estimate the PCR of the newly onnetions.This PCR omponent is removed one the new e�etive bandwidth estimate is available; sine thenew onnetion has data that forms part of the most reent blok period. If the blok period issigni�antly slower than the rate at whih onnetions are attempted; the CAC algorithm willturn away a signi�ant number of these new onnetion attempts.22
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(b) Hornet Per-onnetion CAC algorithmFigure 10: Measured CLR versus target CLR for soures with di�erent ativity levels.This situation an be seen in Figure 12, the sreen-dump of two running systems: one with asmall value for blok length B and the other with a large value for blok length B. The layoutof the sreen-dump is desribed in detail in Setion 4. In this �gure we an see that for the longblok there are steps in the CAC deision line; these steps our with the same period as that ofthe blok length B itself.For omparison Figure 12 also ontains a sreen-dump of an experiment with a short bloklength and it is obvious that the behaviour of the algorithm is ompletely di�erent, the numberof onnetions in progress is muh higher and, we an assume, the CLR of the system would alsobe higher.The situations where the Measure algorithm performs fewer admissions as the blok length Binreases an neatly aount for the `maxima' seen in Figure 11(a). The Hornet algorithm will alsoexhibit this harateristi but the e�et is redued beause Hornet will be able to admit onnetionattempts that have delared parameters in addition to the PCR used by Measure. The result isthat a `maxima' may exist but it will not be as pronouned, this is what we see in Figure 11(a).What is seen here is that beause the Hornet and partiularly the Measure algorithms eahhave a pessimisti assumption, PCR based admission in the ase of Measure, when onnetions�rst arrive; they will do pessimisti admission for the period of the blok length B. The resultis as the blok length B inreases the algorithm beomes inreasingly pessimisti. In the mostextreme ase, an overly long blok length B will ause the algorithm to behave as if it were onebased solely upon Peak Rate alloation of the line resoures.Figure 11(a) and Figure 11(b) also show that as the blok length B diminishes, the measuredCLR approahes the target CLR. It has always been understood that the seletion of the bloklength B plays a signi�ant role in the behaviour of the CAC algorithm. We an easily obtainresults for large values of blok length, however obtaining results for small values of blok lengthpresents onsiderable diÆulty.In obtaining smaller and smaller blok length B values, implementations are limited by theirmethod as well as the mehanis of the measurement extration, realulation of the e�etivebandwidth estimate and so on, this issue is disussed further in Setion 7.3. However, as wasseen in Figure 12, the blok length B an adversely e�et the number of onnetions the Measurealgorithm will admit.A omparison of Figure 11(a) and Figure 11(b) also reveals that the seletion of the bloklength B was a substantial ontributor in the di�erene in results between the results of Table 7and Table 8 of Setion 7.1. It was not expeted that the properties of the traÆ would have suha signi�ant e�et on the algorithm, and provided a suitable value of blok length B is seletedthis appears to hold true. For the two traÆ soures VP10S4 and TP10S1 it beomes apparentthat di�erent blok length B values were required.24



0.0001

0.001

0.01

0.1

0.0001 0.001 0.01 0.1 1

C
LR

 (
lo

g1
0 

sc
al

e)

Block length in seconds (log10 scale)

Measured CLR versus Block Length for traffic TP10S1

Measure Per-connection
Measure Aggregate

Hornet Per-connection(a) traÆ type TP10S1

0.0001

0.001

0.01

0.1

0.0001 0.001 0.01 0.1 1

C
LR

 (
lo

g1
0 

sc
al

e)

Block length in seconds (log10 scale)

Measured CLR versus Block Length for traffic VP10S4

Measure Per-connection
Measure Aggregate

Hornet Per-connection
Hornet Aggregate(b) TraÆ type VP10S4Figure 11: Measured CLR versus Blok length

25



Short Block Length Long Block Length

Figure12:Thee�etofashortorlongbloklength.
26



The results illustrated in Figure 13 show the measured CLR for a range of blok length values.In this experiment we ompare the same traÆ type under two di�erent onnetion attempt loads.In omparison with the previous experiments where the mean rate of onnetion attempts is 10per seond, the mean rate is set to 0.5s. In order to maintain the same high traÆ load on thesystem the Mean CHT of these onnetions is 200 seonds. The objetive of this experiment is toshow that the measured CLR will more losely math the target CLR of the experiments as theonnetion attempts arrive less frequently.Clearly Figure 13 shows that the the form of eah urve is similar, but that in the ase wherethe load is lower, the CLR results for all values of blok length have been redued. The onlusionwe draw from this is that with fewer onnetion attempts being made, the likely-hood of themost reent estimation of e�etive bandwidth, being available is inreased, as a result the CACalgorithm deisions give an improved measured CLR.Suh a onlusion seems at odds with the previous onlusion that larger values of blok lengthB will ause the algorithm to be more pessimisti and thus result in a lower measured CLR.However Figure 11(a) shows a `maxima' of measured CLR values and thus the measured CLRwill inrease for inreasing blok length B values, while the value is on the left of the `maxima'(or less than about 60ms). One the blok length B is greater than 60ms these results indiatethat the pessimisti omponent of the algorithm beomes the primary issue in the measure CLRvalue. Reduing the blok length B to the desired value is not urrently an option for us either;implementation limitations mean a physial lower limit on the blok length B value.While it may be possible to run simulations with small blok length B values; there is adistint lower limit on this value for a physial implementation. We have found that in ourphysial implementation we are unable to extrat per-onnetion or aggregate measurements fromthe swith for periods smaller than 1ms. The result is that this plaes a very real limit on how smallthe blok length B an be. In simulations, values approahing 50-150 ell times have been used,but at between 220�s and 660�s suh values are not able to be repliated in this implementation.The lower limit on the granularity of measurements (the period over whih measurements aremade) and thus the lower limit on the size of the blok length B is often imposed by the swithsystem itself or by the mehanism whih extrats the measurement from the swith. The input ofmany, up to 256 onnetions for a typial swith port, of line statistis for one experiment alonemeans transferring bloks of data 1024 bytes in size into the Measure system. If the blok lengthB were a value approahing 100 ell times in length; this would imply that over 2Mbyte/seondwas being moved into the Measure system, and this is only for a single port of the swith. Fromthis example we an see there are engineering problems that will onfront implementers who wishto take full advantage of this algorithm.From this we onlude that while not possible in the urrent implementation, it would beworthwhile using a smaller value of blok length B. We onlude that the urrent lower limit onblok length B may, for some traÆ types, mean that the traÆ sample taken in that period is toolong, smoothing out short term transients that are of importane as input to the Measure (andHornet) algorithms. In Setion 7.3 we disuss how the mehanis of an implementation will alsoe�et the algorithm behaviour.7.3 Algorithm MehanisThe blok length B may not be the biggest obstale to improved performane in the Measurealgorithm. In addition to olleting measurements over the blok length B period, the algorithmmust speedily alulate a new e�etive bandwidth estimate. As we noted in Setion 6.1, theolletion of measurements and the alulation of the e�etive bandwidth estimate is a proess thatours ontinuously in the implementations' bak-end. The bak-end ollets the measurementsand one it has olleted a blok length B period of masurements, a realulation ours. Thisrealulation will take a �nite amount of time and this Setion details how the behaviour of therealulation an have an important e�et on the e�etive bandwidth and thus the CAC algorithm.In this Setion we present typial performane statistis for the omponents of the Measureand Hornet CAC implementations as well as performane statistis of omparison CAC algotihms.27



We show that poor performane in the implementation an lead to poor behaviour of the CACalgorithm.Prior to a new e�etive bandwidth estimate being available, a blok length B period of mea-surements needs to be made, and a alulation of the new e�etive bandwidth estimate so asto inorporate those measurements. We note that any time taken to perform the realulation isadded to the blok length B before a new estimate an be used. While it may be able to parallelisethese two omponents, performing a realulation of the estimate while making the next bloklength B worth of measurements, if the realulation takes signi�antly longer than the bloklength B period, the estimate will be available less frequently than every blok length B period.A slow realulation of the estimate will mean the estimate will not be available as often. Wenote that until the CAC algorithm has a new estimate available it assumes that the newly admittedonnetions are still at PCR. It is not until the new estimate is made available, inorporating traÆfrom the newly admitted onnetion, that the PCR of these reent new onnetions is no longerpart of the deision for new onnetions. In the worst-ase, an overly long realulation periodwill ause the algorithm to behave as if it were solely based upon Peak Rate alloation of the lineresoures. These symptoms are near-idential to the situation that ours when the blok lengthB is too long.Table 9 presents the time taken for the alulation of eah new estimate, in the ase of bak-ends and the time taken for eah new admission, in the ase of front-ends. For omparison thetime taken for eah new admission is also given for a simple Peak Rate Alloation algorithm andCAC method based on algorithm III from [12℄. The Gibbens/Kelly95 - III algorithm annot begiven a target CLR, rather its response is tuned with a saling value, the behaviour of this valuemust be unovered by experiment.In the ase of the bak-end periods and the Gibbens/Kelly95 - III algorithm periods, this timeinludes obtaining measurements. It is worth reiterating that the Peak Rate Alloation algorithmrequires no measurements, working solely with the delared PCR of the inoming onnetion.The Gibbens/Kelly95 - III algorithm requires a single aggregate measurement of line ativity foreah admission proess. The Measure bak-ends require either Per-onnetion measurements orAggregate measurements as indiated.The Hornet and Measure algorithms share ommon bak-ends subsequently results are onlygiven for the two types of Measure bak-ends. For both the Measure and Hornet algorithms theirPer-onnetion and Aggregate front-ends are idential.Algorithm Mean Var Std. Dev.Measure Aggregate Bak-end 2:995� 10�2 8:641� 10�4 2:939� 10�2(idential for Hornet Aggregate Bak-end)Measure Per-onnetion Bak-end 1:748� 10�1 1:672� 10�2 1:293� 10�1(idential for Hornet Per-onnetion Bak-end)Hornet Per-onnetion Front-end 5:748� 10�5 1:510� 10�9 3:886� 10�5(idential for Hornet Aggregate Front-end)Measure Per-onnetion Front-end 1:882� 10�5 5:183� 10�6 2:277� 10�3(idential for Measure Aggregate Front-end)Peak Rate Alloation 1:350� 10�5 4:231� 10�11 6:504� 10�6Gibbens/Kelly95 - III 4:950� 10�5 3:856� 10�9 6:209� 10�5Table 9: Time taken for eah phase of eah CAC algorithm (seonds).To have implemented Measure Per-onnetion as an algorithm that alulated a new estimateas part of eah admission proess, the total amount of time required would have, on average waitof 174.8ms would have been inurred for every onnetion attempt. These �gures appear to justifythe design deision detailed in Setion 6, to split the Measure and Hornet CAC algorithms intofront and bak-ends.Figure 8 shows that values of blok length B greater than 60ms will ause the CAC algorithm28



to beome inreasingly pessimisti. As onluded earlier in this Setion, if new estimates are notmade faster than every 60ms then the algorithm also beomes inreasingly pessimisti. Table 9indiates that the Measure Per-onnetion Bak-end is, on average, alulating new estimates ofthe e�etive bandwidth estimate every 174.8ms, substantially slower than the 60ms of Figure 8.Figure 14 graphs the measured CLR for a range of realulation periods. There is a `hard' lowerlimit on the realulation period of about 115ms. As the period gets longer, the measured CLRbeomes lower, indiative of inreasing pessimism by the CAC algorithm. Similar to the deline ofthe measured CLR when the blok length B inreases, as the realulation period inreases thereis a steady deline in the measured CLR.Not only does slow performane in the alulation of the e�etive bandwidth ause pessimistibehaviour of the CAC algorithm, but the CAC algorithm may also be overly optimisti, ausingexessive ell-loss. We would postulate that this ours beause the algorithm is using an out-of-date estimate of the e�etive bandwidth; by using an out-of-date estimate of the e�etivebandwidth the algorithm may admit a onnetion when the line apaity is not available. Thissituation, of optimisti admission ausing exessive ell-loss would be more prevalent for Hornetwhere the algorithm obtains a better line utilisation by using the new onnetion SCR and IBTparameters when these parameters are available. Hornet an keep the line utilisation loser tomaximum and as a result will be more adversely a�eted by out-of-date estimates.In addition to di�erenes between the Measure and Hornet performane, di�erenes will re-sults from the measuring system underlying the algorithm implementations. The per-onnetionmeasurements implementation of the Measure and Hornet bak-end has a slower alulation pe-riod than the bak-end implementation based upon aggregate measurements, as a result the per-onnetion CAC algorithms an be expeted to have larger errors between the target CLR andthe measured CLR than the aggregate method ould give.The performane of an implementation is not simply the speed at whih the Equation 8 an bealulated. For the implementation based upon per-onnetion measurements the Table 10 reveals3a great deal of information about how the time is used in the estimation of an e�etive bandwidth.Data management involves the summing of ~Xk for eah onnetion into the single ~Xk that is theinput of Equation 8. This task is expensive beause it requires a large amount of information bearried with eah set of per-onnetion measurements to indiate whih onnetions were ativeat the time of the measurement. Cheking the validity of these samples aounts for a signi�antportion of the `data management' entry in this table. The three items of this table aount for93.5% of the time alulating the e�etive bandwidth estimate, no other single omponent ofthe Measure bak-end aounts for more than 0.1% of the total time. Any redution of theseomponents stands to return signi�ant improvements in the speed at whih estimates an bemade available. Module % of timeAddition and Multipliation range heking 65.0(in the root solver)Calulating the PKk=1 e� ~Xk 17.8term of Equation 8Data management 10.7Table 10: Top three Measure bak-end modules listed by the perentage time used in the realu-lation of an estimate.The implementation has been signi�antly improved sine its original ineption, however westill feel there is still room for improvement. In this early implementation of the Measure andHornet algorithms there are bound to be parts of the ode that an undergo further signi�ant3Inonsistenies between the results of Table 10 and those of Table 9 are still unresolved at this time but it istheorised that they are as a result of the inreased memory aesses in the per onnetion implementation of the`root-solver' entral to Measure. 29
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optimisation. The root-solver, entral to the alulation of an e�etive bandwidth estimate fromthe SCGF, is still quite primitive and it is estimated that a revised, simpli�ation ould returna �ve fold improvement in speed. Suh an improvement would immediately return almost amagnitude improvement in the time taken to alulate estimates. However, suh improvementsrequire signi�ant testing to ensure they are both robust and numerially sound.Table 10 shows that for a Measure estimator based upon per-onnetion measurements a largeperentage of time is spent managing the data: heking whih onnetions are ative, summingthis data and so on. The Measure estimator based upon aggregate measurements does not havethis overhead and Table 9 shows how signi�ant the speed di�erene an be. While it would beunfair to onlude that the data management is alone responsible for the di�erene in times, thegreater memory requirements for per-onnetion measurements would mean larger requirementsfor proess management on the part of the operating system and as a result slower times wouldresult.The speed of the per-onnetion estimator will be diretly inuened by the number of ativeonnetions at any time. The larger the number of ative onnetions, will mean there will begreater samples to be summed to reate eah ~Xk. As a result the greater the number of onurrentonnetions, whether due to onnetions with partiularly small traÆ requirements, or due to theeÆieny of an algorithm suh as Hornet in admitting these onnetions will mean the e�etivebandwidth estimate will be alulated more slowly than if there were fewer onnetions in-progress.In addition to the e�et the number of onnetions has on per-onnetion measurments, thetime taken by both per-onnetion and aggregate algorithms will be diretly proportional to thenumber of bloks, K. In a very simple way: the longer the history { the longer it will take toalulate an e�etive bandwidth estimate.A solution to both of these problems may be to fore the implementation into hardware,thus giving a leaner aess to information about the validity of onnetions, the statistis ofonnetion paths and the bene�ts of a �xed implementation diretly in the swith. In this way wewould be trading o� exibility for speed; either alternatively or as an adjunt to a diret swithimplementation aggregate statistis ould beome a satisfatory ompromise. As a result of thisthe management and memory overhead of per-onnetion statistis would be eliminated.A solution to the problem of a potentially unbounded number of bloks theMeasure and Hornetalgorithm may need to deal with would be to plae an upper limit on the value of K, the totalnumber of bloks. Suh a requirement would be a neessity for any prodution implementationwhere unbounded memory requirements annot be realistily handled. The problem that remainswould be to selet the maximum value of K; at �rst, an upper limit on the history period itselfwould seem appropriate. Setion 6.4.1 disusses how the Measure algorithm based upon aggregatemeasurements uses an upper limit for the history it ollets. This history limit is based upon themean onnetion length, in seonds. The relationship between suh a value and the value of K,the number of bloks, is the blok length B. It an be seen that the problem of bounding thenumber of bloks, would be to plae an upper limit on the value of K rather than an upper limiton the history period itself. This would have the unusual side-e�et that the maximum period oftime overed would hange, depending upon the blok length B.Figure 15 shows an implementation of the Measure algorithm using aggregate line measure-ments and a �xed history length for eah experiment. The history length is varied and this graphshows the measured CLR that results. It beomes apparent that, like the blok length B, thelength of history of previous bloks, is a parameter whih may need to be adjusted to ahievean optimum CAC behaviour. The keeping a large number of bloks about all onnetions, andin partiular those ontaining data of onnetions that have sine left the system, has limitedtheoretial basis and thus a system suh as the algorithms based upon aggregate measurements,with a �xed history may have an unsound foundation.7.4 Algorithm ComparisonThis Setion presents results omparing the two Measure and two Hornet CAC algorithms alongwith Gibbens/Kelly95 - III a CAC from [12℄ and a simple Peak Rate Alloation poliy. Results31



using a number of di�erent traÆ soures are used; these traÆ soures inlude TP10S1, VP10S4and the traÆ ombination (a ombination of ON-OFF soures and an ATM stream based uponthe StarWars movie) that was used in the previous deliverable 3.4.1.7.4.1 ON-OFF traÆ soure { TP10S1Through the use of a traÆ soure that has a theoretial basis, omparison an be made betweenthe implementation and the theory on whih it has been founded; in this Setion we are able toompare the results we gain by using a theoretial soure with the estimations of several widelyaepted estimation models. The ON-OFF traÆ soure TP10S1 is a 2-state ON-OFF Markovsoure, it is desribed in Setion 5.1.Table 11 presents a group of experimental results for the four variations on the Measure al-gorithm (Measure Per-onnetion, Measure Aggregate, Hornet Per-onnetion and Hornet Ag-gregate). These implementations and their di�erenes are detailed at length in Setion 6 but insummary those based on the Measure will use the delared PCR of an inoming onnetion as apessimisti assumption of the load to be introdued by the new onnetion. In ontrast Hornetan, in addition to the PCR parameter, make use of SCR and IBT to better estimate the worstase load a new onnetion may introdue to the system. The di�erene between Per-onnetionand Aggregate is that the former is based stritly on the theoretial basis of Measure, summingonly urrently ative onnetions when alulating values of ~Xk (from Equation 8. The aggregatebased system uses as input aggregated line measurements and thus the traÆ measurements ofonnetions that have sine been pulled-down still ontribute to the value of ~Xk. The aggregatebased system also introdues a `history-limiting' mehanism putting an upper limit on the numberof bloks that are part of the alulation proess; this has the e�et of disounting the data oflong-sine removed onnetions. The upper boundary on the history value is alulated using amethod detailed in Setion 6.4.1.Two sets of results of experiments onduted usingMeasure and Hornet based CAC algorithmsare presented here; these results di�er in the value of blok length B used. As was disussed inSetion 7.2, the value of this parameter has a signi�ant e�et on the behaviour of these CACalgorithms. The results of Table 11 show that, in addition to the measured CLR, hanges in theblok length B will a�et other aspets of the CAC operation too. Figure 16 allows the diretomparison of the pro�les of the mean number of onnetions in progress. The di�erene, dueto blok length B, reets the di�ering means, but also the distributions themselves are di�erenttoo. This would support the onlusion that the blok length B value extends signi�ant ontrolof the general behaviour of the Measure and Hornet CAC algorithms as well.Theoretial models an also give estimates for the mean onnetions in progress a �gure roughlyomparable with the onnetion aept/rejet ratio if the experiment has a suÆiently high MCAR.In the table an estimation for mean onnetions in progress is given from several theoretialestimators: Gu�erin [13℄, Elwalid [14℄ and Bu�et & DuÆeld [4℄. It is interesting to note thesigni�ant divergene in the results for ommonly used theoretial models.Table 12 presents three �gure for eah experiment of Table 11. Leftmost is the histogram ofonnetions with a given ell loss, the entre �gure is the distribution of `per-onnetion' CLR andthe rightmost �gure is the distribution of the average number of onnetions admitted for a givenexperiment.Table 11 reveals that the ells lost for a given measure CLR, a �gure taken for the line, maynot be shared evenly amount onnetions. The �gures for Hornet per-onnetion with a bloklength B of 0.005s show that the line CLR is well below target (5:752�10�3) but that only �73%of onnetions atually su�er a ell-loss worse than 1� 10�3. The appropriate �gure in Table 12learly shows that a small number of onnetions are su�ering signi�ant (�50%) ell-loss.Table 12: Table of �gures showing the distribution of ells lost per onnetion, the distributionof per-onnetion CLR and the mean number of onnetions in progress for the experimentssummarised in Table 11. 32
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7.4.2 Video traÆ soure { VP10S4The experimental environment we use, desribed in Setion 4, allows us to generate onnetionsarrying real streams of traÆ. Suh real traÆ streams ould be pre-reorded from the originalsoure, or they ould be summarised and this summary (of the video harateristis suh asframe size, frame rate, et.) then used to reate traÆ on-demand that is idential to the traÆstreams originating from soures. Suh a faility has enabled us to reord the arriage of the videostream through the ATM network. This reord of the network ativity an be replayed by theexperimental environment, on demand, per onnetion. The result is we are able to simulate anetwork with every onnetion arrying part or all of the reorded video session. TraÆ streamVP10S4 is further detailed in Setion 5.3, it has been used in this Setion of the study to allowthe omparison of the traÆ streams with the arriage of real video data through the network.Table 13 presents the results of a set of experiments onduted with the VP10S4 traÆ soure.In the same manner as Table 11 several results for the Measure and Hornet algorithms have beengiven; these inlude two di�erent values of the blok length B and Measure and Hornet basedupon two di�erent measurement tehniques: Per-onnetion and Aggregate line measurements.Setion 6 gives full details on how the various CAC algorithms di�er.In addition to theMeasure andHornet algorithms; we present results gained usingGibbens/Kelly95- III a CAC from [12℄ as well as a simple Peak Rate Alloation poliy. Alongside these pratialresults, the estimations gained from several popular theoretial models have also been given. Inthe table an estimation for mean onnetions in progress is given from several theoretial estima-tors: Gu�erin [13℄, Elwalid [14℄ and Bu�et & DuÆeld [4℄. One again, signi�ant divergene in theresults is present for ommonly used theoretial models. This divergene is most likely due to thevideo stream not �tting as losely the 2-state Poisson traÆ as these theoretial models assume.This failure of Poisson traÆ models to represent real-world data is a well known problem and haslead to numerous papers most notably [15℄.In omparison with CAC algorithms based upon these estimations, we have maintained that\real-world" traÆ will not present the same hallenge to Measure based estimation. Table 1334



Algorithm CLR for a Prob. Prob. Connetion Mean Mean line100 ell bu�er alls with all has all has onnetions Utilisationell loss CLR > 1� 10�3 in progressMeasure Per-onnetion 3:780� 10�4 4:954� 10�1 7:533� 10�2 0.591 57.726 0.575Measure Aggregate 1:702� 10�4 3:029� 10�1 1:833� 10�2 0.559 55.387 0.553Hornet Per-onnetion 2:903� 10�3 8:600� 10�1 8:030� 10�1 0.680 67.759 0.670Hornet Aggregate 9:537� 10�4 7:034� 10�1 3:612� 10�1 0.639 62.658 0.626Blok length B = 1� 10�3Measure Per-onnetion 9:447� 10�4 7:027� 10�1 3:498� 10�1 0.638 62.871 0.630Measure Aggregate 8:918� 10�4 6:919� 10�1 3:278� 10�1 0.635 62.679 0.625Hornet Per-onnetion 5:752� 10�3 7:313� 10�1 4:323� 10�1 0.740 73.181 0.726Hornet Aggregate 8:715� 10�4 7:027� 10�1 3:498� 10�1 0.635 62.55 0.624Blok length B = 5� 10�3Peak Rate Alloation 0 0 0 0.100 9.89 0.080Gibbens/Kelly95 - III 8:761� 10�4 6:960� 10�1 3:161� 10�1 0.637 62.958 0.630salar s = 2 Theoretial model estimationsGu�erin [13℄ 1:00� 10�3 36.92Elwalid [14℄ 1:00� 10�3 42.98Bu�ett & Du�eld [4℄ 1:00� 10�3 45.20Table 11: Results for traÆ soure TP10S1
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results bear this out, although these results do show the importane of seleting appropriate valuesfor blok length B.Figure 17 illustrates that the range of CAC algorithms that give di�erent aeptane ratioswill also result in di�erent pro�les of `onnetions in progress.' Apart from the results for the PeakRate Alloation poliy, the three other sets of results were seleted to be illustrated together as themeasured CLR for eah is near idential. Suh results allow us to very quikly asertain the moree�etive algorithm (assuming other fators suh as measured CLR are idential). In this �gurewe note that the Hornet and Measure results present a near idential pro�le of `onnetions inprogress' and that both have signi�antly more onnetions in progress than the Gibbens/Kelly95- III CAC algorithm.In a fashion similar to that of Table 12, Table 14 presents three �gure for eah experiment ofTable 13. Leftmost is the histogram of onnetions with a given ell loss, the entre �gure is thedistribution of `per-onnetion' CLR and the rightmost �gure is the distribution of the averagenumber of onnetions admitted for a given experiment.Table 14: Table of �gures showing the distribution of ells lost per onnetion, the distribution ofper-onnetion CLR and Mean number of onnetions in progress for the experiments summarisedin Table 13.
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7.4.3 TraÆ MixPrevious Setions have reported on the behaviour of Measure and Hornet when used with onne-tions arrying a single traÆ soure; this Setion reports on results gained when the onnetionsarry mixtures of traÆ. 37



Algorithm CLR for a Prob. Prob. Connetion Mean Mean line100 ell bu�er all has all has aept ratio onnetions Utilisationell loss CLR > 1� 10�3 in progressMeasure Per-onnetion 6:279� 10�3 8:441� 10�1 7:272� 10�1 0.195 19.185 0.753Measure Aggregate 4:523� 10�4 2:568� 10�1 9:091� 10�2 0.146 14.606 0.509Hornet Per-onnetion 6:597� 10�3 8:428� 10�1 7:177� 10�1 0.196 18.783 0.703Hornet Aggregate 1:256� 10�3 5:251� 10�1 2:578� 10�1 0.176 17.367 0.670Blok length B = 1� 10�3Measure Per-onnetion 6:565� 10�3 8:431� 10�1 7:259� 10�1 0.191 18.921 0.754Measure Aggregate 9:957� 10�4 4:786� 10�1 2:103� 10�1 0.161 15.861 0.653Hornet Per-onnetion 4:767� 10�3 8:160� 10�1 6:758� 10�1 0.185 18.478 0.688Hornet Aggregate 1:228� 10�3 5:684� 10�1 2:813� 10�1 0.182 17.499 0.685Blok length B = 5� 10�3Peak Rate Alloation 0 0 0 0.101 9.885 0.389Gibbens/Kelly95 - III 1:433� 10�3 2:584� 10�1 1:366� 10�1 0.157 14.765 0.578salar s = 15 Theoretial model estimationsGu�erin [13℄ 1:00� 10�3 15.12Elwalid [14℄ 1:00� 10�3 15.65Bu�ett & Du�eld [4℄ 1:00� 10�3 17.12Table 13: Results for traÆ soure VP10S4
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In an attempt to repliate in pratie results �rst reated in simulation, we tested the al-gorithms against a ombination of traÆ and model of onnetion attempts that was used inSetion 5 Simulation Results, of the previous deliverable 3.4.1.For this set of experiments a ombination of ON-OFF theoretial model traÆ and traÆ basedon video data were used, the video traÆ used was based upon the StarWars movie, the details ofthe traÆ used is in Setion 5.2. The ON-OFF two-state Markovian soure, T2MIX, is detailedin Setion 5.4.In an attempt to repliate the previous deliverable as losely as possible we set the maximumbu�er size to 500 ells and we used a CLR onstraint of 1�10�4 for all of the results with this traÆmix. We also adopted the same model of onnetion attempts as had been used in the previousdeliverable; we have used onnetion lengths whih are exponentially distributed. Connetionattempts have an exponentially distributed length; long onnetions have a mean length of 60seonds, and short onnetions a mean of 10 seonds. Both long and short duration onnetionshave a mean onnetion arrival rate of 5 onnetion attempts per seond.Eah aepted onnetion transmits an independent trae. In the ase of Star Wars, the traeis derived by randomly seleting a start point in the traÆ trae. For the ON-OFF soure, eahonnetion hooses its parameters randomly: the mean (as a fration of the peak) is hosen from0.1, 0.3, 0.5, 0.7, and 0.9 with probabilities 1/16, 4/16, 6/16, 4/16, and 1/16 respetively. Theburstiness is hosen from 0.3, 0.5, 0.7, and 0.9 with probabilities 1/8, 3/8, 3/8, and 1/8 respetively.Connetions are not orrelated in any way, although the same random seed was used with eahdi�erent experiment, resulting in preisely the same onnetion arrivals proess in eah ase. Thisallows us to ompare not only the statistial properties of the algorithms, but also their dynamibehaviour.Table 15 presents a set of the results obtained for the mixed traÆ onnetions. The resultsare very disappointing with both Measure and Hornet per-onnetion algorithms over admittingonnetions and thus ausing a large value of measured CLR. While the reasons for these resultshave not been fully established; several plausible reasons are suggested.Algorithm CLR for a Connetion Mean Mean line500 ell bu�er aept ratio onnetions Utilisationin progressMeasure Per-onnetion 1:237� 10�1 0.061 20.077 1.000Hornet Per-onnetion 1:121� 10�1 0.064 20.020 1.000Blok length B = 2� 10�3Peak Rate Alloation 0 0.027 8.565 0.521Gibbens/Kelly95 - III 3:586� 10�2 0.039 13.857 1.000salar s = 2 Table 15: Results for mixed traÆ experiments.Initially we were onerned that the nature of the soures themselves were the ause for thepoor behaviour; while video soures have not presented suh unusually poor behaviour previously,the traÆ soure T2MIX used in this set of experiments were less \bursty" than TP10S1. As wellas having a lower ativity and smaller mean burst lengths, the onnetions generally high SCR.It was thought that any of these fators ould have ontributed to the poor performane. Oneapproah was to run experiments with all parameters (target CLR, blok length B, bu�er size)held onstant but to only use one traÆ type at a time. Table 16 details the results obtained forthese experiments. Previously used traÆ soure, TP10S1, is inluded for omparison.In omparison to the TP10S1 soure, both of the other traÆ soures perform far worse. Themean holding time appears to have no e�et on the performane for eah individual traÆ stream.Firstly, we already have established that the realulation speed of the per-onnetion Measureand Hornet algorithms is sub-optimal, it is easy to envisage the e�et that slow and inompleteresults may ause and we have disussed this in general terms in Setion 7.3. Seondly, the method39
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Figure 15: Measured CLR versus history length using traÆ type TP10S1. TheMeasure algorithmwith aggregate line statistis was used for this set of experiments.
TraÆ Mean CLR for a Connetion Mean Mean lineonnetion 500 ell bu�er aept ratio onnetions Utilisationhold time in progressStarWars 10 0.411 0.133 11.961 0.990StarWars 60 0.045 0.031 12.317 1.000T2MIX 10 0.111 0.197 19.488 1.000T2MIX 60 0.108 0.042 20.128 1.000TP10S1 10 0.000285 0.794 77.865 0.777Table 16: Results for individual omponents of mixed traÆ experiments.
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of seletion of the value of blok length B still requires some work and as a result the poor resultsould be due to seletion of this parameter. On the basis that the results for TP10S1 have themeasured CLR approahing the target CLR, we are fored to onlude that the blok length Bused for these experiments is not suitable for the T2MIX and StarWars traÆ soures.8 ConlusionsInterest in CAC algorithms stems from the need for a network user and a network provider toestablish an agreement on the QoS for a onnetion the user wishes to have admitted into thenetwork. This study has presented results of experiments ulminating in the evaluation of theMeasure CAC algorithm and the omparison of that CAC algorithm with several other CACalgorithms.Setion 2 and Setion 3 established the terminology and presents the theoretial frameworkof Measure and desribed how the theoretial foundations of Measure an be applied to developalgorithms for onnetion admission ontrol.Setion 4 detailed the experimental environment used in the evaluation of the Measure CACalgorithm. Of partiular interest was the implementation of Measure into two omponents, bak-end and front-end. The delineation of front and bak-end is oinidently the delineation betweenpreditor and estimator in the Measure algorithm.Setion 5 disussed the two types of soures used in this CAC evaluation. One soure beingbased upon a theoretial model and the other derived from a stream of video data,Setion 6 desribes spei� implementation issues for the Measure and Hornet algorithms.One aspet of the implementation was how the delineation between bak-end and front-end alsoorresponded with division in the algorithm between estimator and preditor. This setion alsoovered the mehanism that implements a boundary on the history of data proessed by Measure.Setion 7 reports results for the experiments we have onduted. A omparison was ondutedbetween implementations of the Measure algorithm omparing measured CLR with target CLR.This revealed highly variable performane. The parameters of Measure were then ompared withtheir performane and this showed the importantane in seleting blok length B. Performaneresults indiated the signi�ant di�erenes between per-onnetion and aggregate measurementsas well as illustrating how the speed of realulation a�ets the algorithms operation. Finallythis setion detailed a omparison between the Measure and Hornet algorithms along with severalother CAC mehanisms. These results reinfored the importane of seleting blok length B andthe importane of speedy realulations of results.Future WorkThe sope for future work is very broad, and there are a number of areas of potential development.At this stage we see onsiderable sope exists to further investigate the relationship between theblok length B and traÆ harateristis: both of the traÆ and of the onnetion pro�le.With the potential engineering diÆulties assoiated with per-onnetion based measurements,many aspets of Measure based upon aggregate measurements deserve future attention.Additionally, beause of the importane of a speedy algorithm, future work ould assess theimpat of a less aurate algorithm if it is able to return results more speedily.Referenes[1℄ M. W. Garrett and W. Willinger. Analysis, modeling and generation of self-similar vbr video traÆ.In Proeedings ACM SIGCOMM 94, pages 269{280, London, UK, August 1994.[2℄ Matthias Grossglauser and Jean-Chrysostome Bolot. On the relevane of long-range dependene innetwork traÆ. In Proeedings ACM Sigomm, Stanford University CA, August 1996.[3℄ Rihard Blak, Ian Leslie, and Derek MAuley. Experienes of building an ATM swith for the LoalArea. In Proeedings ACM SIGCOMM, volume 24(4), September 1994.41
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Figure 16: A omparison of the mean number of onnetions in progress for Measure per-onnetionusing di�erent values of blok length.
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