
A comparison of system monitoring methods, passive networkmonitoring and kernel instrumentationA. W. Moore�, A. J. McGregory & J. W. BreenzAbstractThis paper presents the comparison of two methods ofsystem monitoring, passive network monitoring andkernel instrumentation. The comparison is made onthe basis of passive network monitoring being usedas a replacement for kernel instrumentation in somesituations. Despite the fact that the passive networkmonitoring technique is shown to perform poorly asa direct replacement for kernel instrumentation, thispaper indicates the areas where passive network mon-itoring could be used to the greatest advantage andpresents methods by which the discrepancies betweenresults of the two techniques could be minimised.1 IntroductionThe use of �le system monitoring in general, andcomprehensive kernel monitoring techniques in par-ticular, have laid the critical groundwork for the de-velopment and re�nement for many operating sys-tems. Kernel instrumentation has the potential togive an exact record of what occurred in the kernelof a system and, as a result, is commonly used whenhigh precision is required.It has been used, in studies such as Ousterhout etal. [20], Smith [28], Mummert and Satyanarayan-an [17, 29] and Baker et al. [2], to record informationabout an operating system and its �le systems. Theresults and conclusions of these studies have thenbeen used for studies of topics such as cache issues�Department of Robotics and Digital Tech-nology, Monash University, Clayton, Victoria 3168, Aus-tralia (andrew.moore@rdt.monash.edu.au).yDepartment of Com-puter Science, Waikato University, Private Bag 3105, Hamil-ton, New Zealand (T.McGregor@cs.waikato.ac.nz).zDepartment of Robotics and Digital Tech-nology, Monash University, Clayton, Victoria 3168, Aus-tralia (j.breen@rdt.monash.edu.au).

and simulation models [32, 7, 8, 33], and in the de-sign process of new systems [11, 19, 13, 10, 21].However, while there is a large variety of sys-tems in common use, a similarly wide variety of com-prehensive studies is not evident, which can be at-tributed to the di�culties in performing such studies.Comprehensive studies using kernel instrumentationhave a number of drawbacks, as seen in the followinglist (adapted from Mogul et al. [16]):� code which is to reside in the kernel is di�cultto write and debug,� kernel source-code is not always available,� the kernel must be recompiled and the machinerebooted each time an error is found,� errors in the kernel code are likely to causesystem crashes,� functionally-independent kernel modules mayhave complex interactions over shared resour-ces,� kernel-code debugging cannot be done duringnormal machine operation; speci�c develop-ment time must be scheduled, resulting in in-convenience for users sharing the system andodd work hours for system programmers,� commonly additional load is introduced ontothe monitored system,� sophisticated debugging and monitoring facili-ties such as those available for developing user-level programs may not be available for kernelcode.Kernel instrumentation for �le-system monitor-ing takes the form of code inserted at the system-call interface or at the internal interface between



system-call and �le-system operations. Such meth-ods suggest an alternative technique for monitoringa computer's �le-system activities where the com-munications channel between a machine and its diskdrives, and in particular between a diskless clientand its disk server, is passively monitored. Blazeused this technique with his snooper/rpcspy soft-ware [3], passively monitoring tra�c between Net-work File System (NFS) [24] clients and servers, andpredicting the operations the clients performed tocause those operations.Full kernel instrumentation is used commonly insystem monitoring but, by de�nition, it involves themodi�cation of the operating-system source-code forthe machine in question. Passive network monitoringcan be a preferred choice over kernel instrumenta-tion for certain system-monitoring work, particularlyif the source-code is not available. Passive networkmonitoring also has other advantages, including:� results from the machines being monitored canbe collected independently of those machines,� no modi�cations are required to the operationof the monitored systems,� the collection of data with passive networkmonitoring does not impact on the machinesbeing monitored, and� the ability exists to monitor multiple machinessimultaneously on a network.This �nal point is important because distributedsystems are growing in popularity and a signi�cantnumber of computers in common use are part of adistributed system, if only through the distributionand sharing of �les. Comprehensive studies of dis-tributed systems in general and distributed �le sys-tems in particular are relatively rare. The main rea-son for this is that the complexity of collecting datais greatly exacerbated by the need to collect it simul-taneously from a large number of machines. Kernelinstrumentation would require modi�cation of anynumber of di�erent computers with di�erent oper-ating systems running on di�erent hardware. Therewould also be the issues of the load imposed in theactual collection of data on or from each client andthe immense task of post-processing the data fromthe di�erent machines.These disadvantages do not exist when using pas-sive network monitoring of the data channel between

clients and a server. Data about all active clients canbe collected simultaneously and, if a distributed �lesystems such as NFS is in use, the data collectedfrom the network is independent of the operatingsystem or machine architecture [15, 14].2 rpcspy/nfstraceIf rpcspy/nfstrace are to be used as a replacementfor kernel instrumentation, the technique must beable to deliver to a researcher data similar to thatgenerated by the kernel instrumentation techniques.rpcspy/nfstrace has two distinct components forachieving this.rpcspy interacts with the ethernet-interface facil-ities of the monitoring machine and collects packetstraversing the network to which it is connected. Thepackets are converted into the request or reply partof an NFS Remote Procedure Call (RPC). Each re-quest and reply is then matched together, data of in-terest are extracted and a transaction record is madealong with a time stamp of when the transaction wascompleted.The second component, nfstrace, uses an heu-ristic based on the operation of NFS to make anestimation of the duration of a �le's open-close ses-sion (the time between when a �le is �rst opened,read from and/or written to and then closed) whichcaused the NFS transactions recorded by rpcspy tooccur. nfstrace creates records of �le open-closesessions it estimates have occurred (and, thus, tohave generated the NFS transactions seen). Thisestimation relies, in part, on consistency in NFS im-plementations.For example, for every open system call (indepen-dent of whether the �le is to be read to and/or writ-ten from or just accessed) an NFS getattrtransaction is generated. However, open-close ses-sions to read or write data handle the actual datain signi�cantly di�erent ways although it should benoted that the write transaction case is easier tohandle because the cache does not have as dominante�ect on the write operations. As a result, much ofthe special-case handling nfstrace must do appliesonly to NFS read transactions.rpcspy/nfstrace together generate an estima-tion of the open-close sessions that a kernel instru-mentation system could record directly. Figure 1



NFS Filesystem

User Program

Local Filesystem

Network

kernel

instrumentation

System call stubs

Block Cache

RPC

XDR

IP

Device Driver

UDP/TCP

Operating System Kernel

network
monitoringFigure 1: The data ow between a user program andan NFS �le system. Instrumentation points for ker-nel instrumentation (snooper) and network monitor-ing (rpcspy) are indicated. This diagram comparesthe di�erence in the information available to eachsystem. In particular, one instrumentation point,snooper, is before the cache and the other, rpcspy,is after the cache.shows how the instrumentation points for each of thetwo systems di�er in the components of the systemavailable to them and, thus, the information acces-sible to them.Kernel instrumentation is able to record eventssuch as the system calls occurring on the computer,while passive network monitoring must interpret thetransactions between client and server to estimatewhich system operations have occurred. rpcspy/nfstrace results record what happened on theserver side of the client cache - the tra�c that oc-curred between client and server.3 Previous work using rpcspy/nfstraceThe rpcspy/nfstrace implementation by Blazehas been used in several di�erent works to aid in thedevelopment of new systems and as an aid to thecon�guration of existing systems. Anderson [1] usedrpcspy/nfstrace to analyse client-server �le systemtra�c and made use of information about the tra�cto better utilise local disks in the clients themselves.Regularly-read, static, read-only �les were moved tothe local disk, on a partially automatic basis, tak-ing into account each �le's utilisation by a partic-

ular workstation. Blaze uses results collected usingrpcspy/nfstrace in a number of works to justifythe design of a wide area �le system [4, 5]. Finally,Dahlin et al. [9] uses rpcspy and a partially-modi�edversion of nfstrace to collect results used in a paperto justify a particular �le system design [34].Each of these studies has been made with the as-sumption that complications introduced by the re-sults of rpcspy/nfstrace are negligible. This isvalid for studies based upon the tra�c between aclient and server which take into account the e�ectsof the client cache such as Dahlin et al. [9]. How-ever, other studies can be at risk for assuming thatrpcspy/nfstrace is such a perfect replacement fortraditional techniques.Blaze [4] notes in his description of the rpcspysoftware that the e�ects of packet loss should bequanti�ed. Additionally, he notes in his descriptionof the rpcspy/nfstrace software that peculiaritiesof the heuristics of nfstrace (and its original imple-mentation) need to be evaluated more completely.Previously, the use of rpcspy/nfstrace hasbeen without any hard data on the accuracy of theimplementation and only a passing appreciation ofareas where the implementation is inaccurate andthe reasons for those inaccuracies. The following sec-tions present a comparison of two systems recordingdata from the same source and then discuss the re-sults.4 Systematic error in rpcspyThe rpcspy/nfstrace tools depend heavily on theability of the network interface of the machine onwhich they are being run to capture all tra�c pass-ing through the network. Packet-loss by the net-work interface does not have a linear relationshipwith network utilisation. The network interface willnot lose data when utilisation is low but data losswill increase as utilisation increases to a point be-yond which it will be unable to accept any furtherincrease in the data-transfer rate. The amount ofdata it can process will atten out no matter whatthe utilisation beyond that point.A study was performed to quantify the potentialdata loss of rpcspy and to calibrate the network in-terface rpcspy uses. To perform these tests satisfac-torily, a network analyser capable of full-utilisation



measurements on Ethernet was required. A HewlettPackard Internet Advisor Model J2522As was usedboth to make measurements and to generate arti�-cial loads on the network. The packetfiltermech-anism used was in a DECstation 3100 running Ul-trix 4.3a and the NIT mechanism used was in a Sol-bourne SC2000 (a machine compatible with the SunSparcstation 2) running a SunOS 4.1.2 compatibleoperating system.Tests of rpcspy, where the network was loadedarti�cially, used the tra�c breakdown in Table 1which was based on an analysis of the network's reg-ular tra�c content collected over several 24-hour pe-riods.The packetfilter facility of Ultrix o�ers somecon�guration options. In particular, the size of thepacket bu�er, where packets processed by packetfilter are placed for collection by the user process,can be set. The NIT mechanism in SunOS does noto�er this con�gurability. The default con�gurationand an optimum (largest con�gurable bu�er size) forpacketfilter in addition to the NIT mechanismsare compared in Figure 2. This �gure shows thepercentage of unprocessed Ethernet packets versusEthernet network utilisation. It is apparent that notonly are the characteristics of the NIT mechanismpoor beyond 10% utilisation but that the packetfilter mechanism did not demonstrate the samelevel of loss until utilisation was close to 50%. Thepacketfilter mechanism showed no loss until over15% utilisation, a stage by which NITmechanism losswas close to 25%.A signi�cant issue in rpcspy is the combinationof processing overhead on the client, which is im-posed by the need of rpcspy to match RPC transac-tions, and the packet-loss characteristics of the Eth-ernet interface which rpcspy is using. Figure 3 showsthe number of NFS transactions versus Ethernet util-isation. The Ethernet utilisation in these tests is al-most purely NFS tra�c. By using NFS tra�c exclu-sively we are able to establish the maximum numberof NFS transactions each rpcspy system is able toprocess in a given time period. The Hewlett Packardtest equipment recorded the actual number of NFStransactions that occurred over this time. For thistest the packetfilter was left in the default con-�guration.The test shows that each system has a maxi-mum number of packets it can process. The NIT-

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80

T
ot

al
 p

ac
ke

ts
 u

np
ro

ce
ss

ed
 (

%
)

Ethernet Utilization (%)

Packetfilter (default)
Packetfilter (optim.)

NIT

Figure 2: A comparison of Ethernet utilisation ver-sus packet loss for various workstation Ethernet in-terfaces. packetfilter default and optim(um) aretwo con�gurations of the Ethernet packet capture fa-cility of the Digital DECstation, NIT is the Ethernetcapture facility in Sun Microsystem's SunOS.SunOS system is limited to processing about 175NFS transactions per second. The default con�g-uration packetfilter-Ultrix combination appearsto be limited to processing approximately 260 NFStransactions per second. It is important to notethis was a stress-testing of rpcspy and that suchNFS loads were not a characteristic of the networkto which these machines were connected. From the�gures in Table 1 we can see that 36% of the to-tal Ethernet tra�c is from NFS. However, it wouldnot be true to say of this 36% that half the numberof NFS Ethernet packets is an approximate countof complete NFS transactions. Such a simpli�ca-tion would not allow for there being incomplete NFStransactions (the loss of the request or reply in atransaction), nor would it allow for NFS transactionsthat required more than one pair of network packets(transactions where the data payload required twoor more Ethernet packets). In each of these casesrpcspy does not need as much processor time as ifit had had a complete NFS transaction. As a result,the test network operating at 12% utilisation couldmean less than 72 transactions per second in a mixedload with a variety of NFS tra�c rather than the 200transactions per second that the Figure 3 stress-testindicates.The exact cause of such data loss is not knownfor certain but it could result from limitations inthe hardware of the network interface and/or in the



Protocol type Sub-protocol Types of packet Packet size (avg.) %Internet Protocol (IP) 67 UDP 36.9 NFS 155 24.71500 12.2TCP 30.1 (all) 80 15.1192 9.01272 6.0Novell Netware (IPX) 33 - - 155 19.8768 13.2Table 1: A breakdown of the tra�c mixture used for testing rpcspy response to Ethernet utilisation

0

50

100

150

200

250

300

0 2 4 6 8 10 12 14 16 18

N
F

S
 tr

an
sa

ct
io

ns
 r

ec
or

de
d 

pe
r 

se
co

nd

Ethernet utilization (%)

NFS transactions recorded versus ethernet utilization

packetfilter
NIT

Hardware Monitor

Figure 3: The number of NFS transactions versusEthernet utilisation for the NIT and packetfiltercapture mechanisms. Results from a network anal-yser recording no packet loss is also given.software of the packet collection and �ltering mecha-nism. This characteristic is unfortunate. It is duringthe time when the network is busiest that utilisationacross a distributed �le system will potentially behighest. Because there is potential for rpcspy basedtools to lose data about transactions at busy times,studies such as �le sharing, a situation that wouldbe more likely to occur at busier times, would bea�ected adversely.Such drawbacks could be overcome by the useof faster workstations with faster hardware networkinterfaces. However, this may not be solved as easilyif the problem is due principally to poor softwareimplementation performance in either the networkpacket capture mechanism (NIT/packetfilter) orrpcspy.While this characteristic loss does exist, it is sig-ni�cant only above about 10% utilisation for thepacketfiltermechanism. Boggs et al. [6] comment

that most Ethernet loads are well below 50% (andare actually close to just 5% of the network capacity)and the network on which measurements were takensupports this observation with a maximum load over24 hours of no greater than 18% and an average util-isation over 24 hours of closer to 1.1%.5 ComparisonThe following results present a comparison betweenrpcspy/nfstrace and a kernel instrumentationtechnique. In these results there has been an as-sumption that rpcspy/nfstrace would be used asa substitute for kernel instrumentation.The kernel instrumentation this paper used is thesnooper package. It was implemented originally bySiebenmann and Zhou [27] for Ultrix version 3.3.Snooper is a set of kernel instrumentation routinesfor recording information about a number of kernelfunctions including logical �le operations, physical-block operations, process execution and termination,etc. The snooper package is based upon the packageof the same name described in Zhou et al. [35] which,in turn, shares its ancestry with the package used byOusterhout et al. [20] to perform their study of theUNIX 4.2 BSD �le system.The results from each system were processed intoopen-close sessions, i.e. sets of �le transactions boun-ded by an open and a close system call. nfstraceperforms that function for rpcspy/nfstrace but ad-ditional post-processing code was required for thedata produced by snooperThe comparisons of snooper and rpcspy/nfs-trace have been done by using simultaneous tracesof a single machine over a 24-hour period. The traceof this machine was performed from 11:00 a.m. Mon-day, 12th of December, 1994, until 11:00 a.m. the fol-



lowing day. The machine traced was a Digital DEC-station 3100 con�gured with 20Mbytes of memory,running Ultrix 4.3a. This machine was con�guredwith a local disk for virtual memory swap activities.The rpcspy trace was recorded to an additional localdisk so as not to perturb the results with extrane-ous network activity. During the 24-hour period, aloss of 1.5% of total Ethernet tra�c was recorded.Based on the graphs of packet loss versus utilization(�gure 2) and upon the average Ethernet packet uti-lization (table 1) this gives an approximate loss of0.6% of NFS transactions from the total recordedtrace.The nfstrace post-processing tool uses a heu-ristic which incorporates a timeout to determine howlong an open-close session will last. The value is user-selectable but the default value of 135 seconds wasused throughout the analysis described herein.5.1 Excluded dataAll transactions associated with the reading of exe-cutable �les recorded by either the snooper or rpcspy systems were removed from the trace data beforeprocessing. This was done to avoid problems associ-ated with a shortcoming in the snooper instrumen-tation, not the rpcspy/nfstrace system. Recordspertaining to the snooper trace �le itself were re-moved from the output records during the processingstage.While the removal of all execution transactionsmay seem to change the results presented, the re-maining data still permit a satisfactory comparisonof the two monitoring systems. The amount of po-tential comparison-error which would be introduceddue to the inclusion of incomplete execution recordsby snooper was not justi�ed. Additionally, �le sys-tem tra�c resulting from the loading of executable�les was excluded from previous studies such asOusterhout et al. [20] and Baker et al. [2] due to sim-ilar problems in the logging of executable �le tra�c.5.2 System tra�cThe characteristics of the total �le-system communi-cations tra�c are commonly-used measurements. Inthe case of diskless workstations, the measurementsare important for insuring that the networks haveadequate transport capacity and that the servers of

diskless workstations have adequate service capacity.In any sort of workstation such values de�ne the re-quired capacity for disk interfaces, as well as beingused in cache and bus design [35, 21, 20, 2, 23].A comparison of communications tra�c to andfrom the �le system at the logical level and of thecommunications tra�c at the rpcspy network levelare not strictly comparable because each set of mea-surements was made on a di�erent side of the cache.However, one of the objectives of nfstrace was toestimate operations that occurred at the user level byanalysing the data communications tra�c betweenclient and server and the transactions used by theclient to ensure the contents of the cache are upto date. As a result, while rpcspy/nfstrace can-not generate information on exactly what data weretransferred between the user programs and the �lesystem (including the NFS �le-system routines andthe block cache), it can calculate the exact amountof data transferred by the NFS �le system betweenNFS client and server.Table 2 gives a summary of results for the com-parison period. It is apparent immediately that thereis a major di�erence in the value nfstrace estimatesfor the total data transferred when compared withsnooper. They di�er by a factor of 1:7. From theseresults it is equally apparent that over the course ofa long-term analysis (24 hours) the results for peakvalues and write data are comparable for the twosystems.Peak values display this characteristic becausethey typically involve amounts of data that are toolarge or too volatile to be suitable for long term stor-age in the cache [20, 2, 28] - this characteristic isindependent of the particular load a machine is un-der [18]. As a result, the similarity between trans-ferred data, particularly peak values, would remainacross any sample taken. In comparison, values forthe total quantity of data transferred over time isnot similar. The di�erence between snooper readaverages and nfstrace values is not surprising. Theclient cache will eliminate successive NFS transac-tions for reading data from the NFS server and, asa result, nfstrace cannot record the data transferthat occurred at the logical level.Figure 4 shows plots of data transferred over timeas recorded by snooper and rpcspy/nfstrace.Higher levels of data transfer, particularly signi�-cant writing activity, between 7 a.m. and 11 a.m.



Particular interval snooper nfstracemeasurement length (bytes) (bytes)Total data transferred 86,644,530 46,967,724Average data transferred 10 seconds 10,028 5,436Peak data transferred 5,120,000 5,048,320Average data read 7,468 2,590Peak data read 5,120,000 3,914,935Average data written 2,560 2,846Peak data written 5,120,000 5,048,320Average data transferred 10 minutes 601,698 326,165Peak data transferred 19,028,550 17,015,414Average data read 448,103 155,387Peak data read 10,427,845 7,144,164Average data written 153,595 170,777Peak data written 8,600,705 9,289,091Table 2: The total data transferred for the system. Peak and average values for 10 second and 10 minuteintervals are also given.is due to the testing of image encoding algorithms(by another researcher) on this machine requiringthe reading and writing of large image �les.The graph of read-data shows an example of thedi�erence between data gained from snooper instru-mentation and that available to nfstrace. Peri-odic accesses by automatic jobs account for the reg-ular communications tra�c logged during the 19:00to 07:00 period. Because this communications traf-�c involves the regular execution of programs, com-monly with little other �le-system activity, the cacheof the client holds all the necessary software and as-sociated data �les. The result is that approximately300 Kbytes of logical data are read each 30 minutesat the snooper level but rpcspy records negligibleread-activity between client and server over the sameperiod.The reason nfstrace is not as accurate for rec-ords of raw data transfer is because NFS transactionsdo not contain signi�cant information about blocksread from the cache of the client. The only speci�cread data available to rpcspy about data transfersthat occur is when data are read by the client fromthe server's disks.5.3 File system transactionsAs with most unix systems, each �le system is usedtypically for a particular purpose. For example, one�le system contains the users' directories, another

�le system contains executable �les for the system,etc. The DECstation analysed in this study did nothave any local �le systems, apart from that used tostore trace data locally, and a local, swap disk. Ta-ble 3 lists the di�erent �le systems the client accessedover the trace period and the tasks each �le systemserved.A breakdown of the type of data transferred toand from each �le system can be used to assist inmaking �le-system-con�guration decisions. Such de-cisions can include which �le systems generate somuch server tra�c that it would be better for themto be attached locally to the machine and how widelya particular �le system is used. A breakdown of each�le system's communications tra�c is given in Ta-ble 4.It is important to note that at the system-calllevel, as recorded by snooper, there is a character-istic breakdown of these transactions. Of particularnote is a very large percentage of operations asso-ciated with the / partition. The large number oftransactions on this partition will have been poten-tially compounded because the /tmp and /var/tmpdirectories resided on the / �le systems. /tmp and/var/tmp can potentially carry a large percentage ofoperations because temporary �les are traditionallycreated in this directory structure [31, 22].Table 4 shows a moderate similarity between theresults from the two monitoring methods. Notableexceptions are tra�c involving the / partition and



0 Mbyte

2 Mbyte

4 Mbyte

6 Mbyte

8 Mbyte

10 Mbyte

11:00 13:00 15:00 17:00 19:00 21:00 23:00 01:00 03:00 05:00 07:00 09:00 11:00

B
yt

es
 tr

an
sf

er
re

d

Time of day

Read data transferred over day (10 minute samples)

snooper read
nfstrace read

0 Mbyte

2 Mbyte

4 Mbyte

6 Mbyte

8 Mbyte

10 Mbyte

11:00 13:00 15:00 17:00 19:00 21:00 23:00 01:00 03:00 05:00 07:00 09:00 11:00

B
yt

es
 tr

an
sf

er
re

d

Time of day

Write data transferred over day (10 minute samples)

snooper write
nfstrace write

Figure 4: Read and Write transfers as recorded by kernel instrumentation (snooper) and network mon-itoring (nfstrace). A quiescent system from 19:00 until 7:00, the machine is busy during the daylighthours.
File System Function and Contents/ root �le system, also includes /var and /tmp. Top-level �le systemcontaining temporary directories and logging directories./usr contains standard software distribution, in addition to libraries and in-clude �les for the current system./var/spool/mail contains each users' mail �le./usr/local contains locally installed software./usr2 home directories for a group of users./packages contains commercial software packages and collections of project speci�cdata (in this case image data).Table 3: A breakdown of the �le systems of the study and their respective functions.



File System snooper rpcspy/nfstracetotal/ 31,736,478 (36.63) 5,863,351 (11.59)/usr 2,941,480 (03.39) 1,446,003 (02.86)/var/spool/mail 4,385,788 (05.06) 3,142,239 (06.21)/usr/local 1,455,692 (01.68) 965,364 (01.91)/usr2 38,660,513 (44.62) 35,251,413 (69.66)/packages 7,464,579 (08.62) 3,934,663 (07.78)read/ 27,267,823 (42.26) 2,853,302 (12.73)/usr 2,941,480 (04.56) 1,446,003 (06.45)/var/spool/mail 3,836,074 (05.94) 2,311,208 (10.32)/usr/local 1,455,692 (02.26) 965,364 (04.31)/usr2 21,561,247 (33.41) 10,895,621 (48.63)/packages 7,464,579 (11.57) 3,934,663 (17.56)write/ 4,468,655 (20.20) 3,010,049 (10.68)/var/spool/mail 549,714 (02.49) 831,031 (02.95)/usr2 17,099,266 (77.31) 24,355,792 (86.38)Table 4: Total data, read data and write data transferred per �le system as measured by snooper andrpcspy/nfstrace.read-tra�c in general. While di�erences betweenvalues for read between snooper measurements andthose of rpcspy can be explained as resulting fromthe cache mechanism �ltering read requests betweenclient and server, the read tra�c for the / partition isparticularly pronounced. This di�erence is likely toresult from a high usage of system �les located in the/etc directory being accessed, resulting in the corre-sponding cache entries always being valid. Examplesof such �les include /etc/passwd: the list of usersable to use a system, /etc/hosts: a static table ofthe systems known to this client and /etc/mount: a�le listing the �le systems that should be mountedon this client.The notable di�erence in the recorded quantitiesof read and write data for /usr2 is a reection ofthe volatile nature of �les on this �le system. Inparticular, software for image encoding was beingdeveloped and a cycle of1. edit program2. compile program3. run programexisted. This development cycle, during stage 1, re-sulted in source-code �les being written to the NFS

server (and seen by rpcspy) but not necessarily readfrom the NFS server. During stage 2, in addition tothe source-code �les, libraries will be read only oncefrom the server and then may remain in the localcache while being used repeatedly. Finally, duringstage 3, while �le transactions relating to the load-ing of the executable �le itself have been removed,this program takes as input a raw image stream andoutputs an encoded image stream. On consecutiveruns the raw image stream could have remained inlocal cache.It should be noted that the ratio of read-to-writetra�c already greatly favours the write-tra�c for/usr2 as measured with the snooper system but thecache activities, �ltering tra�c, increase this ratio.Signi�cant di�erences between the amount ofwrite tra�c recorded by each monitoring systemfor both the /usr2 and /var/spool/mail �le sys-tems can be attributed to the block cache needingto transfer data to and from the �le system in block-sized pieces. The result of this is that a modi�cationof one byte in a �le will result in the writing of awhole block (8 Kbytes for these �le systems).From this breakdown it is clear that, while activ-ities on the / �le system are responsible for a largepercentage of logical �le tra�c, block caching seems



to reduce the quantity of data transferred by a fac-tor of up to 6. By comparison, the /usr2 �le systemis responsible for a higher quantity of data transferand, in the development and balancing of �le sys-tems, it would be important to establish whetherthis is a transient condition or a regular trend forcommunications tra�c for that particular �le sys-tem.5.4 System usersTable 5 presents several values related to the numberof active users on the system and the amount of traf-�c generated by them. Such tabulations have beenmade in a number of previous studies and are usefulin the estimation of the load a user may impose ona system as well as the worst-case scenarios for thisload.The di�erences in Table 5 for the number of usersare most likely the result of snooper recording thereal User ID (UID) associated with each logical op-eration and rpcspy recording the e�ective User IDassociated each NFS transaction. This di�erencecomes about because programs such as inetd (theinternet service daemon) perform operations as oneuser and spawn programs that will run as anotheruser. The result is that counts of active users madethrough rpcspy/nfstrace usually di�er by a valueof one when compared with the active user countfrom snooper.Average-data-utilised per user indicates thatcache-hit rates are, once again, absorbing a substan-tial quantity of communications that would have oc-curred between each user and the �le system. It isinteresting to note that the maximum values recor-ded by each system are almost identical. This ismost likely due to the transfer of large amounts ofdata, causing the client's cache to be quickly overrunwith new data. As a result, only a minimal amountof data is cached during this time.5.5 FilesAs �les are the common unit of data accessed ona �le system, information about the range of �lesaccessed, as well as the working size of those �les,enables developers to determine the necessary sizeof �le caches, to establish common working-set sizesand to quantify other related measurements.

As has been mentioned earlier, the di�erence inthe average �le size for the / �le system was pre-dictable. This will principally be a result of a largenumber of small, system-related �les not requiringaccess from the NFS system. The di�erences in othervalues will have resulted from the caching of, and re-peated accesses to, active �les (even if these �les wereactive for only a short period of time). In this con-text, an active �le is one which is accessed one ormore times.Table 7 lists the number of di�erent �les recordedat the snooper, rpcspy and nfstrace levels. At therpcspy level, this is a count of every �le that had aread or write NFS operation performed on it. The�ltering characteristic of the cache is obvious whencomparing the number of �les that had logical oper-ations performed on them at the snooper level withthe number of �les for which data was read from orwritten to at the rpcspy level. Larger di�erences forthe / �le system will have been as a result of accessesto the large number of regularly-accessed system �leslocated there. These �les would be accessed oftenand be modi�ed infrequently and would, as a result,have a long cache life.The results in this table show an area wherethe estimation method used by nfstrace can gen-erate discrepancies. nfstrace must estimate tra�cto and from �les that have not caused any rpcspyread or write transactions. With the exceptionof /var/spool/mail, nfstrace must estimate ad-ditional operations for �les on each of the �ve �lesystems. nfstrace has estimated extraneous oper-ations on �les of /usr2 and underestimated theseoperations for the other �le systems, in particularthe / �le system.The rule base under which nfstrace operatesestimates operations on �les from a combinationof NFS read, write, setattr and getattr trans-actions. The estimates of �les which did not in-volve NFS read or write transactions would haveresulted from setattr or getattr operations. Byusing getattr transactions alone, there is potentialfor nfstrace to confuse getattr transactions causedby such operations as getting a directory listing withthose transactions being used to validate the con-tents of the client cache.In comparison, the graph of Figure 5, a normal-ised cumulative distribution of the number of �lesof each size, shows that the estimation calculated by



interval length snooper rpcspyNumber of active usersMaximum 10 minute 4 4Average 1.6 2.2Maximum 10 second 3 1Average 1.0 1.0Total bytes transferred per active userMaximum 10 minute 6,342,850 5,477,752Average 263,535 109,820Maximum 10 second 5,120,000 5,048,320Average 11,422 18,404Table 5: The maximum and average number of active users over given intervals and the total quantity ofdata transferred per active user in those intervals.File system snooper nfstrace/ 43,378 227,880/usr 437,123 287,006/var/spool/mail 267,887 201,417/usr/local 10,226 12,310/usr2 42,713 46,067/packages 1,316,180 440,371Table 6: A comparison of the average size for �lesaccessed on each particular �le system.nfstrace compares well with the results of snooper.The two signi�cant di�erences between the resultsof nfstrace and those of snooper which lead todisparities in the graph are for the number of zero-length �les and the number of �les which were ap-proximately 700 bytes in length.In the �rst case, nfstrace is not able to gener-ate accurate estimations of accesses to various zero-length �les and creates records of many more ac-cesses than actually happened. This may most likelybe due to nfstrace being unable to di�erentiate be-tween getattr transactions for directories and thoseresulting from the opening of a zero-length �le. Inthe second, related case, nfstrace has underesti-mated the number of accesses to various �les whichwere approximately 700 bytes in length. In additionto the reasons above, it is possible that nfstraceevaluates many of the 700-byte �le accesses as beingzero-byte �les accesses because of the block cacheabsorbing the small-�le transactions.Files with a short life-span can also present aproblem to nfstrace. This is because given a short

0

50

100

150

200

250

300

350

400

450

1 10 100 1K 10K 100K 1M

N
um

be
r 

of
 fi

le
s

Size of file (bytes)

Cumulative distribution of the number of files of each file size

snooper
nfstrace

Figure 5: Cumulative distribution of number of dif-ferent �les accessed versus �le size. From this graphwe can deduce the number of times di�erent �les lessthan a given size have been accessed. For exampleboth techniques suggest that over 150 of the �les ac-cessed are 1 kbytes in size or smaller. Note: the �lesize axis is logarithmic.enough life-span between �le creation, the writingand reading of data, and �le deletion, no NFS reador write transactions may occur during the open-close session. As a result nfstrace is not easilyable to record data transfer operations on �les witha short life-span.The following table, 7, gives a breakdown of thenumber of di�erent �les accessed by the system dur-ing the measurement period. These values are con-sistent with the hypothesis that nfstrace was un-able to evaluate correctly the number of accesses tozero length �les. The average �le size for / would



strongly con�rm this, although the /packages re-sults run counter to this. This strong counter-exam-ple could be due to the unusual nature of �les onthat particular �le system. We note also that nfst-race results count one less �le for that �le system;a single large �le would have modi�ed this averageconsiderably.While there are notable di�erences in each ofTables 6 and 7, the results from them, in addi-tion to those of Figure 5 show that nfstrace wasable to give results broadly comparable with thoseof snooper.5.6 File open-close sessionsThe open-close session of a particular �le is a conceptaround which a number of measurements are based.A number of studies have used such measurements;examples include �le sharing, �le utilisation and var-ious cache studies [20, 2, 12, 13, 25].Such open-close session measurements include thelength of time a particular �le is open, the amountof data accessed in that time, the amount of data po-tentially accessed (the size of the �le opened), whatsort of open-close session was involved, whether the�le was opened for read and/or write operations, etc.The number of open-close sessions as well as abreakdown of the relative types, are tabulated inTable 8. The implementation of NFS under Ultrixincludes the synchronous writing of modi�ed datablocks to the �le system at the close of a �le. Thismeans that nfstrace can potentially miss write op-erations on �les that ultimately leave the �le withzero length, for example some sort of temporary �le.nfstrace will not be able to generate results forreads on �les that occur in close succession (wherethe cache contents are still valid). Additionally,nfstrace may not correctly interpret getattr NFStransactions used to validate the cache. The resultis nfstracewill either miss some open-close sessionsaltogether, incorrectly interpret NFS transactions asnot being an open-close session, or incorrectly con-sider that the NFS transactions from two or moreseparate open-close session are from the same open-close session.The larger number of writes recorded by nfst-race will certainly include the read-write operationssnooper recorded. nfstrace is unable to detectread-write sessions and would consider each of such

operations as a separate read and write session. Nullopen-close sessions, where no data are transferredand the �le is simply closed, would not be able tobe detected by nfstrace. Instead, nfstrace inter-prets any �le open, if that were the only operationon a particular �le, to be a reading of an unknownamount of data from the client cache.Because the borders between read and write op-erations cannot be determined accurately, nfstracewill tend to collect successive open-close sessions to-gether, interpreting them as one, longer, open-closesession. As a result of this, the average duration ofthe open-close sessions reported by nfstrace maybe higher than the durations reported by snooper.Tables 9 and 10, record the open-close sessionson a type of open-close operation per �le system ba-sis, and by �le system per operation. Firstly, Ta-ble 9 shows the full e�ect of the cache �ltering, com-bined with nfstrace incorrectly interpreting infor-mation available, causing open-close sessions to beremoved. This is especially the case for the / �le sys-tem. The results for /var/spool/mail are a goodexample of where nfstrace has misinterpreted theNFS getattr transactions as open-close sessions be-cause mail �les are often checked for new mail result-ing in getattr transactions. By way of comparison,a better result is given for the /packages �le sys-tem. Files from this �le system are unlikely to beable to be kept in cache for long periods. The resultis that nfstrace is able to give a better result foropen-close sessions because the NFS transactions forthis �le system were more complete.Because the cache is removing the need for a largenumber of the read operations to result in NFS trans-actions, the read:write ratio is closer to unity forthe results of nfstrace than the results of snooper.While this ratio is expected, even desirable, for themeasurements of data transferred, these values areincorrect for open-close sessions resulting in higher�gures for average data transferred per session andincorrect information about the characteristics of thesessions.However, while the ratios of the various types ofopen-close sessions produced by nfstrace are notparticularly close to those of recorded by snooper,adding the �gures for null sessions to the read open-close sessions improves the comparison for all �le sys-tems except for /.For Table 10, all write values are increased by



File System snooper rpcspy nfstrace/ 111 (24.89) 68 (17.13) 98 (22.37)/usr 10 (02.24) 8 (02.02) 8 (01.83)/var/spool/mail 3 (00.67) 3 (00.76) 3 (00.68)/usr/local 49 (10.99) 46 (11.59) 48 (10.96)/usr2 269 (60.31) 269 (67,76) 278 (63.47)/packages 4 (00.90) 3 (00.76) 3 (00.68)Total 446 397 438Table 7: A breakdown per �le-system of the total number of di�erent �les accessed during the trace period.The values in parentheses are each count as a percentage of the total number of �les.snooper nfstraceread entries 7442 (88.07) 1749 (68.51)write entries 557 (06.59) 804 (31.49)read-write entries 35 (00.41) - -null entries 416 (04.92) - -Total 8450 2553Table 8: The count of open-close sessions each monitoring system interprets. Additionally, a breakdownof these open-close sessions into read-only, write-only, read-write and null open-close sessions is shown. Anull session is where no data are read from or written to the �le (although the �le was opened). Values inparentheses are the percentage of the total number of �les each type represents.File System session type snooper nfstrace/ read 6415 (90.33) 818 (63.21)write 354 (04.98) 476 (36.79)read-write 35 (00.49) - -null 298 (04.20) - -/usr read 123 (73.21) 61 (100.00)null 45 (26.79) - -/var/spool/mail read 18 (40.91) 75 (91.46)write 4 (09.09) 7 (08.54)null 22 (50.00) - -/usr/local read 146 (100.00) 100 (100.00)/usr2 read 731 (74.52) 686 (68.12)write 199 (20.29) 321 (31.88)null 51 (05.20) - -/packages read 9 (100.00) 9 (100.00)Table 9: A breakdown of the open-close sessions on each �le system by type of open-close session. Valuesin parentheses are each type of operation as a percentage of the open-close sessions on that �le system.



nfstrace, particularly in the case of /usr2. Thiserror will partly be because nfstrace interprets thecreation of any �le and any subsequent writing tothat �le as two separate write events. Additionally,nfstrace can incorrectly interpret multiple writesto the same �le as consecutive open-close sessions.Because nfstrace interprets an access to the �rstbyte of a �le as the start of a new open-close session,nfstrace can interpret multiple writes into the samelocation in a �le as multiple open-close sessions onthat �le. As an example, this situation can arise withthe vi editor. vi uses log �les that check-point theedit operations as they occur on the �le, so vi canbe continually writing small changes to the log �le.These collections of small writes will result in blocksbeing written to the server and if there are a numberof writes made to the �rst block, the �rst block maybe written to the server several times. Each time the�rst block is written nfstrace could potentially mis-interpret the writing of data as separate open-closesessions on the log �le. It is worth noting that theactual number of extra sessions is quite small and,in comparison with values for all open-close sessions,will be overwhelmed by the quantity of other open-close sessions (read sessions in particular). However,for open-close sessions writing to a �le, these extraopen-close sessions can be signi�cant.Some of these problems are a result of the algo-rithms used by nfstrace. While some assumptionshave been made by nfstrace so as to produce anopen-close session record, this particular situationmay be resolved with a more sophisticated nfstracealgorithm.The duration of an open-close session is impor-tant in determining the amount of time a particular�le is in use. This, in turn, is important in calcu-lating the amount of time �les are shared betweenusers and, in a distributed �le system, between sys-tems. Figure 7 shows that duration of open-close ses-sions recorded by rpcspy will be longer than thoserecorded by snooper. The longer open-close sessionsthat cause the di�erences in average durations arelikely to be a result of transactions that are partof separate open-close sessions being interpreted aspart of the same open-close session.Additionally, the calculation of duration fromNFS tra�c means that lead and lag times (times inwhich the �le is open but no operation occurs) willbe di�erent from the average length of the open-closesession. These situations are represented graphically

10

20

30

40

50

60

70

80

90

100

1ms 10ms 100ms 1s 10s 1min 10min 1Hr 10Hr

%
 o

f o
pe

n-
cl

os
e 

op
er

at
io

ns

Duration

Cumulative percentage of open-close operations against duration

snooper
nfstrace

Figure 7: Normalised cumulative distribution of thenumber of open-close sessions versus the duration.From this graph we can deduce the longest of theopen-close sessions for a given number of those ses-sions. For example, the snooper technique recordsthat 70% of the sessions have a duration of about100 milliseconds or less. Note: the duration axis islogarithmic.in Figure 6. The �gures show that the block oper-ations upon which nfstrace's record will be basedmay not correspond with the logical open and closeoperations in an open-close session.Figure 8 graphes a comparison of the data-tran-sfer rate as measured by snooper, as per Figure 4,with the amount of data nfstrace estimates was po-tentially available to the system (the sum of the sizesof �les accessed). While not directly comparable, itis worth noting that the sum of the sizes of �les isable to give enough information to estimate with fairaccuracy the trends of data transfer between clientand server.Figure 9 shows a cumulative distribution ofopen-close sessions versus the amount of data trans-ferred. It is important to note that one reason thatnfstrace di�ers so signi�cantly with snooper is thatnfstrace was unable to detect the large percentageof open-close sessions during which approximately1 Kbyte was transferred. Additionally, snooper re-sults estimate that fewer than 500 of the open-closesessions transferred one or zero bytes, whereas nfs-trace results estimate those circumstances existedfor more than 1,000 of the sessions it recorded.A primary reason nfstrace does not record thelarge number of sessions transferring approximately80, 750, 900 and 1,100 bytes is because those �les



File System session type snooper nfstraceread / 6415 (86.20) 818 (46.77)/usr 123 (01.65) 61 (03.49)/var/spool/mail 18 (00.24) 75 (04.29)/usr/local 146 (01.96) 100 (05.72)/usr2 731 (09.82) 686 (39.22)/packages 9 (00.12) 9 (00.51)write / 354 (63.55) 476 (59.20)/var/spool/mail 4 (00.72) 7 (00.87)/usr2 199 (35.73) 321 (39.93)read-write / 35 (100.00) - -null / 298 (71.63) - -/usr 45 (10.82) - -/var/spool/mail 22 (05.29) - -/usr2 51 (12.26) - -Table 10: A breakdown of the open-close sessions of each type, breakdown is by the �le system of the �le.Values in parentheses are each �le system's operations as a percentage of the open-close sessions of thattype.
Block Read

Open

Read

Close

Block Read

Open

Read

Close

nfstrace open-close sessionreal open-close session

Close

Read
Read

Read

Open

Block Read
Block Read

Block Read

Case 1
Block Write

Block Write

Open

Write

Close

Write

Case 2 Case 3

Figure 6: Several open-close sessions as generated by nfstrace are compared with the actual open-closesession that occurred. The open-close session generated by nfstrace depends heavily on the type of NFStransaction each block access will invoke.



0 Mbyte

5 Mbyte

10 Mbyte

15 Mbyte

20 Mbyte

11:00 13:00 15:00 17:00 19:00 21:00 23:00 01:00 03:00 05:00 07:00 09:00 11:00

B
yt

es
 tr

an
sf

er
re

d

Time of day

Data over day (10 minute samples)

snooper read (data transfered)
nfstrace read (filesize)

0 Mbyte

2 Mbyte

4 Mbyte

6 Mbyte

8 Mbyte

10 Mbyte

12 Mbyte

11:00 13:00 15:00 17:00 19:00 21:00 23:00 01:00 03:00 05:00 07:00 09:00 11:00

B
yt

es
 tr

an
sf

er
re

d

Time of day

Data over day (10 minute samples)

snooper write (data transferred)
nfstrace write (filesize)

Figure 8: These graphs compare the transfer rate measured with snooper, to the total amount of datanfstrace has calculated the client has had access to in each �le from which it has read data. As a low-orderapproximation, these values are comparable giving the same characteristics for data utilisation over timeof the trace.



0

1000

2000

3000

4000

5000

6000

7000

8000

9000

1 10 100 1K 10K 100K 1M

N
um

be
r 

of
 o

pe
n-

cl
os

e 
op

er
at

io
ns

Data transferred (bytes)

Cumulative number of open-close operations against data transferred

snooper
nfstrace

Figure 9: Cumulative distribution of the number ofopen-close sessions versus the data transferred foreach open-close session. From this graph we can de-duce the amount of data transferred per open-closesession for a given number of those sessions. Forexample, the snooper technique records that over7,000 sessions transfer about 1,100 bytes of data.Note: the data transferred axis is logarithmic.are in the cache and no data are transferred betweenserver and client. This reasoning is strengthened bythe fact that nfstrace gives trends similar to thoseof snooper for other transfer values (even if the ac-tual number of sessions is greatly reduced).The di�erences between snooper and nfstracein Figure 10 have resulted from nfstrace being un-able to interpret frequent accesses to �les of a certainlength, in particular, �les which are 80, 750, 900 and1,100 bytes in size. Accesses of such �les accountfor a large percentage of the overall open-close ses-sions for regularly-accessed �les but nfstrace is notrecording an open-close session for them. This re-sults in an exaggeration in the graphs for the num-ber of open-close sessions for common data-transferand �le-size values. This situation is probably exac-erbated by the inability of nfstrace to record manyof the open-close sessions in which no data transferis made.5.7 Losses due to rpcspyDuring this study, the recording of all Ethernet traf-�c by the rpcspy machine was not possible (a lossof 1.5% was recorded). This implies a loss of 0.6% ofthe total NFS transactions from the recorded trace,if we assume a ratio of NFS to non-NFS tra�c at

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

1 10 100 1K 10K 100K 1M

N
um

be
r 

of
 o

pe
n-

cl
os

e 
op

er
at

io
ns

File size (bytes)

Cumulative number of open-close operations against file size

snooper
nfstrace

Figure 10: Cumulative distribution of the number ofopen-close sessions versus the size of the �le accessedin each open-close session. From this graph we candeduce the maximum size of �les opened for eachopen-close session for a given number of those ses-sions. For example, the snooper technique recordsthat over 7,000 of the sessions access �les containingless than 1,100 bytes of data. Note: the �le size axisis logarithmic.the same ratio as was recorded during the testing ofrpcspy network packet capture mechanism. While asource of potential error, this data loss is overshad-owed by the errors introduced by certain aspects ofthe operation of nfstrace. While this error shouldnot be discounted, it can be considered to have lowoverall signi�cance in the results.6 Comparison SummaryThe preceding results show that, while the two setsof results are not directly comparable, nfstrace isable to make a �rst order approximation of a num-ber of values traditionally measured by systems suchas snooper such as the total I/O transferred by amachine or the quantity of data written. Addition-ally, other estimated values, while estimated impre-cisely by nfstrace in the current version, could po-tentially give accurate enough results to be able toreplace systems such as snooper outright in a num-ber of circumstances including measuring the num-ber of active users per machine or the distributionof �le size compared with �les accessed. Most dis-crepancies in the interpretation by nfstrace whencompared with results from snooper relate to the



identi�cation of open-close sessions. Minimisationof these errors would improve the estimation of bothopen-close session duration and data-size results.A number of the results collected by nfstraceare not comparable with those collected by snooper,e.g. the amount of data transferred. While valuesfor the maximum data transferred and write opera-tions can be comparable, values a�ected by signi�-cant caching (e.g. reading of data, particularly smallamounts repeatedly from the same �le) will di�er sig-ni�cantly.In addition to measurements which can be com-pared, the unique nature of both snooper and rpc-spy means that each has access to di�erent typesof information. Snooper is ideally suited to record-ing information about processes, an area from whichnetwork monitors are unable to retrieve information.On the other hand, nfstrace is ideally suited to col-lecting information about all machines on a partic-ular network including, for example, all the tra�cfor a particular server. These di�erences mean eachtechnique has a role to ful�l but there is certainlypotential for network monitoring to be able to makemeasurements for which kernel instrumentation hastraditionally been used in the past.Additionally, it is worth pointing out that theinformation rpcspy generates and that nfstrace inturn uses, is not in error. The di�erences betweennfstrace output and that of snooper occur becausenfstrace attempts to estimate the operations on theuser side of the cache from the operations that occuron the �le system side of the cache. Improvementsin the performance of nfstrace would come aboutfrom improvements in this estimation process.7 rpcspy/nfstrace problemsFor nfstrace to be a more useful tool, the accuracyof its estimations needs to be improved. There are anumber of areas where nfstrace either makes errorsor does not have enough information with which towork.nfstrace problems to be addressed:1. nfstrace treats the creation of a �le as twoseparate open-close sessions.2. Underestimation of the number of open-closesessions. This also means nfstrace can over-

estimate the data transferred per open-closesession, particularly in the case of writes.3. nfstrace is unable to observe logical datatransfer.4. nfstrace has no record of open-close sessionsthat transfer no data at the logical level.5. nfstrace has no record of open-close sessionsthat both read and write data.6. The nfstrace method used for summation ofread operations and write operations can resultin transferred data not being counted.7. The method used for estimating the purpose ofan NFS getattr transaction is simplistic.8. nfstrace does not estimate the contents of aclient cache. As a result nfstrace will assume�les in cache are being accessed when this isnot the case.9. nfstrace is unable to detect short open-closesessions.To a large extent these problems are also a resultof NFS not making enough information available fornfstrace to be able to estimate the operations thatare occurring. The lack of data supplied by NFS alsomeans nfstrace acts as a �lter removing short, con-secutive, open-close read sessions. Such operationsare absorbed by the cache and as a result �ne-grainsporadic operations are missed.8 Improving rpcspy and nfs-traceImprovements to rpcspy will be achieved by us-ing a high-speed machine with a high-speed, low-loss network interface to be dedicated to the task ofdata collection. The improvements to nfstrace cannot be stated quite as concisely. Smaller changes tonfstrace include:� adding the ability to interpret other signi�cantNFS transactions such as create,� using a simple ratio multiplier to obtain an es-timate of data transfers at the logical level,



� modi�cation of nfstrace to keep informationabout �le truncation giving the ability to in-terpret �le re-write events� separately recording data read from and writ-ten to the server for all open-close sessions,� recording information on which blocks of a �lehave been accessed, and� interpreting NFS getattr transactions thatimmediately follow a �le being read or writtenas another open-close session.While some of these changes, such as the lastitem listed, would need to be tested to ensure theresulting extra records were correct, others in the listwould give immediate improvement in the abilities ofnfstrace.More signi�cant changes to nfstrace include� pre-loading information about programs thatcause stat system calls such as ls,� build a block cache simulator into nfstraceIn order to pre-load information about common-ly-used programs that cause stat system calls, itmay be necessary to pro�le the system prior to anysigni�cant tracing activity. In most systems, com-monly-used programs such as ls could be expectedto generate potential problems and could be addedby default. However, the need to do a pro�ling op-eration would not only increase the complexity ofpassive network monitoring but might also negateany advantage of network monitoring by potentiallyrequiring access to the machine being monitored.Another alternative, or addition, to pre-loaded con-�guration information is for nfstrace to charac-terise programs such as ls as it processes the NFS-transaction data. nfstrace would locate ls typeprograms by noting programs which, once executed,caused clusters of NFS lookup and getattr trans-actions, typically for �les sharing the same sub-directory. In this way, nfstrace would be simul-taneously processing the data and gaining enoughinformation to locate programs causing extraneousNFS getattr transactions thus improving the pre-diction of ls type programs during the course of therun.The incorporation of a block-cache simulatorinto nfstrace o�ers the best potential for increasing

the accuracy of nfstrace. Unfortunately, severalsigni�cant items of information would be needed torecreate accurately the block cache of a client. Thesewould include the cache size on the client, the num-ber of cache entries and the size of the data blocks be-ing transferred between client and server. Addition-ally, the programming and testing of a cache simula-tor is not a simple task and because of resources used(memory, etc.) would potentially mean nfstracecould not be run simultaneously with rpcspy whichis a preferred operating mode (in order to reduceoutput data).The addition of the simulator would mean thatnfstrace would be attempting to model a partic-ular type of block cache. While there is a com-mon ancestry for the method used by block cachesin UNIX and its derivatives, there are notable dif-ferences. The introduction of such facilities as thedemand-paging of executables as well as subtle chan-ges in the cache system means the behaviour of thecaches of systems being monitored will di�er, some-times dramatically. The result is that nfstracemaybe required to incorporate models for several di�er-ent block-cache systems. While this would add tothe complexity of nfstrace, the common ancestryof block caches means much of the code used in eachsimulator would be common to all. It is conceivablethat such an nfstrace could read a con�guration�le containing information on which cache methodeach client was using. Without appropriate con�gu-ration information, nfstrace could assume a partic-ular model, perhaps the most common cache methodused or the worst-case simulator model.Such a pre-loaded con�guration �le would alsocontain information about NFS parameters such ascache and attribute timeouts, thereby increasing theaccuracy of the simulator. This information, on a�le-system by �le-system basis, could also give in-formation about the characteristics of access to a �lesystem, e.g. mail �le systems can potentially causeopen-close sessions to be generated when none was,and so on.A block-cache simulator would increase the accu-racy of the open-close session predictions nfstracemakes and allow nfstrace to be used for other pur-poses. nfstrace has the potential to simultaneouslysimulate the caches of all the machines on a networkso it could be used to study interactions between thecaches of di�erent machines. For example, such a fa-cility would enable a comprehensive study of block



sharing among NFS clients.An extension to nfstracewould enable it to keeptrack of information about the directory systems ina distributed �le system. Modi�cations to directoryinformation are written synchronously back to theserver as the modi�cations take place but the direc-tory information itself is cached on the clients. Be-cause changes are written synchronously, it is pos-sible for nfstrace to maintain an accurate simula-tion of the state of the �le system. Additionally,nfstrace could incorporate a directory-name cachesimulator in the same style as a block-cache simula-tor and be able to simulate the contents of this cacheamong many clients. As in the case of a block-cachesimulator, a directory-name cache simulator wouldenable nfstrace to be used to study interactions be-tween the caches of the clients and track the historyof changes to the �le system. The use of such a modi-�cation may enable a follow-up study to Shirri� andOusterhout's work on name and attribute caching([26]).Many of the limitations in nfstrace, indeed, thevery need for nfstrace to have to estimate open-close sessions, are caused by the fact that this infor-mation about open or close is not transmitted in theNFS protocol. Other distributed-system protocols,such as Sprite [19] and the Andrew File System [12],transmit information related to the state of �les inthe distributed �le system. If nfstrace was modi-�ed to work with such a state-orientated distributedsystem, the accuracy of nfstrace output could po-tentially be as high as a full kernel instrumentationtrace. The potential for accurate rpcspy/nfstraceanalysis of distributed systems should also hold truefor any distributed �le system that transmits enoughstate information across the network. This methodeven has the potential to work on theoretical dis-tributed �le systems, such as xFS [36, 9], which de-part from a central �le server model completely. Itis conceivable that during the development of suchmonitoring systems, methods based on the passivemonitoring of network tra�c would become a pri-mary tool for assisting in the development and ulti-mately the management of such systems.Another technique for increasing the accuracy ofnfstrace is to add simulated state operations toNFS. This would involve modifying the kernel ofeach client to output extra NFS transactions for sys-tem calls such as open, close and seek. It wouldnot be necessary for the server to act on or even

acknowledge these calls but the transmission of theextra information through the network would poten-tially give nfstrace enough information to be ableto establish when �les were opened and closed. Ofcourse, such modi�cations are contrary to many ofthe concepts of passive network monitoring, requir-ing modi�cations to perhaps many client machines.However, this technique would maintain the bene�tthat the collection of the trace data would be inde-pendent of the server and clients. It would imposeno extra workload directly upon them. This methodof adding additional information to the communica-tions tra�c between client and server, for the pur-poses of monitoring, was used in Baker et al. [2] asone of a number of modi�cations they made to col-lect data for their work.Distributed computer systems do not consistsolely of distributed �le systems. Systems in thestyle of Sprite [19] and Amoeba [30] enable the mi-gration of processes among CPU elements (typicallya CPU element is a computer workstation). A moni-toring method for such a system might involve mon-itoring the network's interconnecting processing ele-ments and tracking the movement of the processes inthe same way that nfstracemonitors the movementof �le data among workstations. In this way, passivenetwork monitoring has possible applications in ar-eas other than just the monitoring of distributed �lesystems.9 Summary commentsSystem monitoring has a signi�cant role in the de-velopment of computer systems.A common method of monitoring systems is touse full kernel instrumentation, involving the modi-�cation of the source-code for the operating systemof the machine. Passive network monitoring can be apreferred choice over kernel instrumentation for cer-tain system monitoring work, particularly where thesource-code of the operating system is not available.Additionally, other advantages of passive networkmonitoring include:� an independence of the collection of resultsfrom the machines being monitored on the net-work,� the ability to monitor simultaneously multiplemachines on a network; the passive network



monitoring system requires no modi�cations tothe operation of the monitored systems, and� the collection of data with passive networkmonitoring does not impact on the machinesbeing monitored.Through the comparison of these two techniques, itis shown that passive network monitoring is satisfac-tory as a partial replacement for full kernel instru-mentation.In addition to this, passive network monitoring isnon-invasive, platform-independent and has the abil-ity to simultaneously monitor many network users.This gives it the potential for use in many systemsstudies using a broader cross-section of machines.Only through such a broad analysis can new systemsbe built based on information gained from more thanjust test systems and theories.10 Future workIdeally, future work would broaden the base overwhich the comparison of the two systems was made.The improvements could encompass both the inclu-sion of all tra�c types, instead of the restriction toonly non-executable �le tra�c, and the performingof the comparison on machines in a variety of oper-ating circumstance. By comparing over a variety ofsystems, any peculiarities of the load the test systemwas placed under would be highlighted or, at least,minimised.With the current system, a further study estab-lishing the accuracy of the rpcspy/nfstrace systemfor the recording of block tra�c communicated be-tween client and server would prove useful.Using a more accurate nfstrace, a comprehen-sive analysis in the style of Ousterhout et al. [20],Baker et al. [2], Howard et al. [12] and Spasojevicand Satyanarayanan [29] could be possible. Such ananalysis would not only form an interesting compar-ison and contrast with those studies but also enabledata to be collected from a variety of systems ratherthan the traditional limitation to academic or re-search installations.A comparison of nfstrace with a similarly-des-igned RPC transaction processor analysing other dis-tributed �le systems based upon RPC communica-tions would give an interesting point of comparison

between NFS and those systems.The incorporation of a cache simulator into nfs-trace would o�er the potential for an increase in theaccuracy of nfstrace estimations and the possibil-ity for nfstrace to be used to perform other systemstudies directly without the need for any extensiveresults processing. Such a study could cover per-formance issues, while another study could be madeinto the sharing of �les and blocks among clients. Inthe case of a performance study, the cache simula-tor could be used to establish relationships betweenblock lifetimes and cache e�ectiveness with the sizeof caches and timeout characteristics of the NFS sys-tem.An extension of this work could take the form ofa study which would also be possible with a suitably-enhanced nfstrace system into the utilisation of�les and sub-directories, including lifetimes, usagedistribution, etc. By combining such a modi�ednfstrace system with data about the �le systembefore and after the trace period, it would be pos-sible for nfstrace to accurately simulate and trackoperations on the directories of the �le system. Sucha facility would allow studies into �le-naming struc-tures and the caching of those structures in the styleof Shirri� and Ousterhout [26].AcknowledgementsThe authors would like to thank Matt Blaze formaking the original suite of rpcspy/nfstrace soft-ware available. The authors are equally grateful toSongian Zhou and Chris Siebenmann for the accessto the original snooper code. Thanks are extendedto Cameron Blackwood and Ralphe Neill for com-menting on drafts of this paper. A. W. Moore wasthe recipient of a Monash University PostgraduateWriting-Up Award.References[1] Anderson, P. E�ective Use of Local Work-station Disks in an NFS Network. In USENIXLISA VI October 19-23, 1992 (October 1992),pp. 1{8.[2] Baker, M. G., Hartman, J., Kupfer, M.,Shirriff, K., and Ousterhout, J. Measure-



ments of a Distributed File System. In Pro-ceedings of the 13th Symposium on OperatingSystem Principles (Paci�c Grove, CA, October1991), ACM, pp. 198{212.[3] Blaze, M. NFS Tracing by Passive NetworkMonitoring. In USENIX Conference Proceed-ings, Winter 1992 (San Francisco, CA, January1992), USENIX, pp. 333{344. Also availableas a Technical Report with the Department ofComputer Science, Princeton University.[4] Blaze, M. Caching in Large-Scale distributed�le systems. PhD thesis, Princeton University,January 1993.[5] Blaze, M., and Alonso, R. Issues inMassive-Scale Distributed File Systems. InUSENIX File System Workshop, May 21-22,1992 (Ann Arbor, MI, 1992), pp. 135{136.[6] Boggs, D. R., Mogul, J. C., and Kent,C. A. Measured Capacity of an Ethernet:Myths and Reality. Tech. Rep. 88/4, DigitalWestern Research Laboratory, April 1988.[7] Carson, S., and Setia, S. Analysis of theperiodic update write policy for disk cache.IEEE Transactions on Software Engineering 18,1 (January 1992), 44{54.[8] Carson, S., and Setia, S. Optimal WriteBatch Size in Log-Structured File Systems. InUSENIX File System Workshop, May 21-22,1992 (Ann Arbor, MI, 1992), pp. 79{92.[9] Dahlin, M. D., Mather, C. J., Wang,R. Y., Anderson, T. E., and Patterson,D. A. A quantitative analysis of cache poli-cies for scalable network �le systems. Tech.Rep. UCB:CSD-94-798, Department of Com-puter Science, University of California, Berke-ley, February 1994. Also appeared in 1994ACM SIGMETRICS Conference on Measure-ments and Modeling of Computer Systems,Nashville, TN, May, 1994, pp 150-160.[10] Floyd, R. A., and Ellis, C. S. Directoryreference patterns in hierarchical �le systems.IEEE Transactions on Knowledge and Data En-gineering 1, 2 (June 1989), 238{247.[11] Hartman, J., and Ousterhout, J. Zebra:A Striped Network File System. In USENIX

Workshop on File Systems, May 1992 (May1992), pp. 43{52.[12] Howard, J., Kazar, M., Menees, S.,Nichols, D., Satyanarayanan, M., Side-botham, R., and West, M. Scale and perfor-mance in a distributed �le system. ACM Trans-actions on Computer Systems 6, 1 (February1988), 51{81.[13] Kistler, J., and Satyanarayanan, M. Dis-connected operation in the coda �le system.ACM Transactions on Computer Systems 10, 1(February 1992), 3{25.[14] Lyon, B. XDR : External Data RepresentationStandard, June 1987. Network Working GroupRequest For Comment (RFC) : 1014, Written inassociation with DARPA and Sun MicrosystemsInc.[15] Lyon, B. RPC : Remote Procedure Call Pro-tocol Speci�cation, April 1988. Network Work-ing Group Request For Comment (RFC) : 1057,Written in association with DARPA and SunMicrosystems Inc.[16] Mogul, J. C., Rashid, R. F., and Accetta,M. J. The packet-�lter: An e�cient mecha-nism for user-level network code. In Proceedingsof the 11th Symposium on Operating SystemsPrinciples (Austin TX, November 1987), ACMSIGOPS.[17] Mummert, L., and Satyanarayanan, M.Long Term Distributed File Reference Tracing:Implementation and Experience. Tech. Rep.CMU-CS-94-213, School of Computer Science,Carnegie Mellon University, November 1994.[18] Ousterhout, J. K. Why Aren't OperatingSystems Getting Faster as Fast as Hardware.USENIX Summer Conference June 11-15 (June1990).[19] Ousterhout, J. K., Cherenson, A. R.,Douglis, F., Nelson, M., and Welch, B.The Sprite network operating system. IEEEComputer 21, 2 (February 1988), 23{36.[20] Ousterhout, J. K., DaCosta, H., Har-rison, D., Kunze, J., Kupfer, M., andThompson, J. A trace-driven analysis of theUNIX 4.2 BSD �le system. In 10th Symposium



on Operating System Principles (Orcas Island,WA, December 1985), ACM, pp. 15{24.[21] Reddy, A. L. N., and Banerjee, P. AnEvaluation of Multiple-Disk I/O Systems. IEEETransactions on Computers 38, 12 (December1989), 1680{1690.[22] Ritchie, D. M., and Thompson, K. TheUNIX time-sharing system. Communications ofthe ACM 17, 7 (July 1974), 365{375.[23] Ruemmler, C., and Wilkes, J. UNIXdisk access patterns. Tech. Rep. HPL-92-152,Hewlett Packard Laboratories, December 1992.Also published in the USENIX Winter '93 Tech-nical Conference Proceedings, San Diego, CA,Jan 25-29, 1993 pp 405-420.[24] Sandberg, R., Goldberg, D., Kleiman,S., Walsh, D., and Lyon, B. Design andImplementation of the Sun Network Filesys-tem. In USENIX Conference Proceedings, Sum-mer 1985 (Portland, OR, June 1985), USENIX,pp. 119{130.[25] Satyanarayanan, M. The Inuence of Scaleon Distributed File System Design. IEEETransactions on Software Engineering 18, 1(January 1992), 1{8.[26] Shirriff, K., and Ousterhout, J. A Trace-Driven Analysis of Name and Attribute Cachingin a Distributed System. In USENIX Confer-ence Proceedings, Winter 1992 (San Francisco,CA, 1992), USENIX, pp. 315{332.[27] Siebenmann, C., and Zhou, S. SnooperUsers Guide. University of Toronto, August1993.[28] Smith, A. J. Disk cache - miss ratio analysisand design considerations. ACM Transactionson Computer Systems 3, 3 (August 1985), 161{203.[29] Spasojevic, M., and Satyanarayanan, M.A usage pro�le and evaluation of a wide-areadistributed �le system. Tech. Rep. CMU-CS-93-207, School of Computer Science, CarnegieMellon University, October 1993. Also appearedin Winter USENIX Conference, San Francisco,CA, January, 1994.

[30] Tanenbaum A., et al. Experiences with theAmoeba Distributed Operating System. Com-munications of the ACM 33, 12 (1990).[31] Thompson, J. File Deletion in the UNIX Sys-tem: Its Impact of [sic] File System Design andAnalysis, April 1985. Computer Science Di-vision,EECS,University of California, BerkeleyCS 266 term project.[32] Thompson, J., and Smith, A. E�cient(stack) algorithms for analysis of write-back andsector memories. ACM Transactions on Com-puter Systems 7, 1 (February 1989), 78{117.[33] Thompson, J. G. E�cient Analysis ofCaching Systems. PhD thesis, EECS, Universityof California, Berkeley, September 1987. Alsoavailable as UCB/EECS technical report CSD-87-374.[34] Wang, R. Y., and Anderson, T. E. xFS: AWide Area Mass Storage File System. In FourthWorkshop on Workstation Operating Systems(October 1993), pp. 71{78.[35] Zhou, S., DaCosta, H., and Smith, A. J.A File System Tracing Package for BerkeleyUNIX. Proceedings 1984 USENIX SummerConference Portland Oregon June 12-14, (June1985), 407{419.[36] xFS : Serverless Network File Service, July18th, 1995. Available via the World Wide Webhttp://now.cs.berkeley.edu/Xfs/xfs.html.


