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Abstract—We demonstrate that a small library of customizable
interconnect components permits low-area, high-performance,
reliable communication tuned to an application, by analogy with
the way designers customize their compute. Whilst soft cores for
standard protocols (Ethernet, RapidIO, Infiniband, Interlaken)
are a boon for FPGA-to-other-system interconnect, we argue
that they are inefficient and unnecessary for FPGA-to-FPGA
interconnect. Using the example of BlueLink, our lightweight
pluggable interconnect library, we describe how to construct
reliable FPGA clusters from hundreds of lower-cost commodity
FPGA boards. Utilizing the increasing number of serial links
on FPGAs demands efficient use of soft-logic, making domain-
optimized custom interconnect attractive for some time to come.

I. INTRODUCTION

FPGA systems are hard to scale. A designer can use the
largest FPGA money can buy but this comes with a significant
price penalty – as shown in Figure 1. Furthermore, the largest
FPGA available may only give a factor of two or four
improvement. A large workload may outgrow the FPGA by a
factor of a hundred or more.

Additionally a large FPGA does not necessarily increase
resources. If a problem is memory-bound, the number of
external memory interfaces may remain constant as the FPGA
gets larger. Packaging limits constrains the number of I/O pins
so more DIMMs cannot be attached. Sooner or later a designer
is forced to move to a multi-FPGA system.

In this paper we describe an approach to building FPGA
clusters at scale, using commodity parts to minimise costs
and engineering, and high-bandwidth serial transceivers for
interconnect. We then consider the protocols for interconnect.

A natural assumption would be to use a standard protocol
such as Ethernet using standard soft cores. We assess whether
such a standardized communication system makes sense, or
whether it is worth building a customized interconnect tailored
to the application requirements.

We illustrate the question with BlueLink, a custom FPGA
interconnect toolkit we designed for a specific application. We
compare this with standard soft IP cores to evaluate the merits
of a custom approach.

Furthermore we describe how custom interconnect can make
best use of the commodity FPGA platforms available and
continue to scale in the future.

II. BUILDING AN FPGA CLUSTER

When building a multi-FPGA system, the obvious approach
is to put multiple FPGAs on the same printed circuit board
(PCB). After all, FPGAs have hundreds of general-purpose
I/O (GPIO) pins which can be used to connect them.

However there are a number of pitfalls to a multi-FPGA
PCB. Firstly, designing such a board is a complex task. FPGAs
have upwards of 1000 pins to route, many at high speed. The
Altera Stratix V PCIe Development board has 16 layers [3].
FPGA power design is also complex – this single-FPGA board
has 21 power rails with the highest current being 28 A. This
requires complex design and simulation – for professional
designers a board takes about one man-year of effort to
design. FPGAs are typically found in advanced ball grid
array packages – which also makes manufacturing difficult. In
addition there is the headache of managing the whole process
of parts procurement, production, test and debug.

Secondly, many such boards (especially commercial prod-
ucts) are not regular – each FPGA is not connected to the
same peripherals. That means a separate synthesis run for each
FPGA in the cluster, which makes it difficult to scale to large
numbers of FPGAs. Testing such boards is difficult, a fault
may cause the whole board to fail, and repair is complex.

For example Mencer et al. [11] used 64 Spartan 3 FPGAs on
a large 8-layer PCB (320×480 mm). With 64-bit connections
at 100 MHz between FPGAs they achieved 6.4 Gbps inter-
FPGA bandwidth. They had to employ fault tolerance because
replacing a faulty device is difficult. Furthermore, the engineer-
ing required for such boards makes them niche commercial
products with high price tags. The DINI Group quote ‘below
0.1 ¢ per [ASIC] gate’ for a ‘130 million ASIC gate’ system
containing 20 Stratix IV 530 devices – which makes the board
cost around US$130,000 [5].

Meanwhile, FPGA evaluation cards have become a com-
modity. These are boards commonly sold to engineers to
prototype their design before the final product, but they are
increasingly being used as standalone platforms for research
and development. The non-recurrent expenditure (NRE) from
design and tool costs is amortized across the thousands of
units being shipped, reducing the unit cost. If a board fails, it
can simply be swapped out for another costing a few hundred
or thousand dollars. It therefore makes economic sense to use
many commodity cards with some kind of interconnect. If this
allows smaller FPGA parts, that ship in greater numbers and
have better yield, it will further reduce cost. For example, in
Figure 1 the Cyclone V parts are roughly one sixth of the
price of the comparable Stratix V.

A. Application Partitioning
When building a cluster, we must consider the applications

to run on it before we design the interconnect.
Some applications do not require any communication be-

tween FPGAs. These can be described as loosely coupled.
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Arria V ST Arria V SX Artix 7

Cyclone IV E Cyclone IV GX Cyclone V E

Cyclone V GT Cyclone V GX Cyclone V SE

Cyclone V ST Cyclone V SX ECP3

IGLOO2 Kintex 7 Spartan 6 LX

Spartan 6 LX XA Spartan 6 LXT Spartan 6 LXT XA

Stratix IV E Stratix IV GT Stratix IV GX

Stratix V E Stratix V GS Stratix V GT

Stratix V GX Virtex 5 FXT Virtex 5 LX

Virtex 5 LXT Virtex 5 SXT Virtex 5 TXT

Virtex 6 CXT Virtex 6 HXT Virtex 6 LXT

Virtex 6 SXT Virtex 7

Fig. 1. FPGA pricing trends. Devices cluster in two board categories: smaller budget ranges with a lower cost per logic element, and premium parts which are
considerably more expensive for the same number of elements. Within the budget range larger parts are cheaper per element. In some families in the premium
range larger devices are disproportionately more expensive. Economics suggests that a cluster should use budget ranges wherever possible or alternatively
smaller premium devices. Data: digikey.com [4]; we plot the median of prices for a given model and size, combining options of package and speed grade
into a single point.

MapReduce fits this model, while FPGA examples include
Bitcoin mining or OpenCL-based accelerators. It only needs a
connection to a host PC, and scale is achieved by buying more
PCs with FPGAs. Such an FPGA cluster is easy to build.

Other applications are tightly coupled. One example is
gate-level system-on-chip simulation. This is very latency-
dependent: node operating in lock-step require single-cycle
interconnect latency. This makes partitioning a hard problem,
compounded by many possible fine-grained partitions.

To allow scale, it is better to have a coarser-grained ar-
chitecture. If the number of possible subdivisions is reduced,
partitioning becomes simpler. A higher level of abstraction
may also permit relaxation of the latency requirements, though
latency can still be a major bottleneck. Less efficient area
usage can be compensated as more hardware is easier to add.

Additionally, a tiled approach can reduce FPGA synthesis
times. If the FPGA bitfile is the same for each node, it only
needs to be synthesized once. Different behaviour for each
node can then be configured with different software, datasets
and runtime configuration.

B. Physical Interconnect

We wish to build a cluster at scale, using hundreds of
FPGAs on multiple boards. If connections between FPGAs
are required, how should such a cluster be interconnected?

The simplest approach would be to connect the GPIO pins.
These can be driven either single-ended or with low-voltage
differential signalling (LVDS). However, the frequency they
can be driven is limited (to about 1 GHz in LVDS mode).
Long parallel links are subject to signal integrity (constrains
cable geometry for a good quality signal) and skew (signals
arrive at different times). This means such cables are typi-
cally short (centimetres) and must employ careful (expensive)
construction. This limits the size of cluster that can be built.
Kono et al. [8] achieved a data rate of 4 Gbps per link using
the HSMC connectors on a Terasic DE4 board using expensive
proprietary ribbon cabling. With only two ports per board their
cluster topology was forced to be a ring.

FPGAs now incorporate increasing numbers of high-speed
serial transceivers. A device can have up to 96 transceivers
each capable of up to 56 Gbps (though 14 Gbps is a more
realistic maximum for lower cost parts). Many commodity I/O
standards have shifted from parallel to serial interconnect (such
as USB, SAS, SATA, PCI Express, etc). This means there are
now cheap passive multi-gigabit serial cables on the market.
Active repeater and optical cables are also available for longer
distances. Such cables can be used as physical-layer bit-pipes,
without using the intended protocol along them. All that is
required is point-to-point cabling between whatever connectors
the board manufacturer provided.
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Therefore we suggest that a cluster can be built at scale
with the following properties:
• Commodity FPGA boards, to reduce cost and develop-

ment time.
• Serial interconnect using FPGA transceivers.
• Low cost commodity passive copper cabling between

boards. If necessary, optical cabling for longer distances.
• Multiple-hop routing, so that a fully-connected network

is not required.

III. CUSTOM COMMUNICATION?

The question that remains is: what protocol should be used
on this interconnect? Should it follow a standard, or is it worth
designing your own? An FPGA designer may be comfortable
with the idea of custom compute, where their compute is
optimized for the workload. This usually works much better
than simply using a standard CPU soft-core on their FPGA.
A natural extension of this would be custom communication,
where the communication is similarly optimized. Is it worth
optimizing your communication, or is standard IP sufficient?

We shall consider a number of application examples, and a
communication system that was designed for them. We will
then compare with existing standards to identify the merits
and pitfalls of each system.

IV. APPLICATION CASE STUDIES

The compute and communication requirements of a FPGA
cluster may be different from other clusters such as datacen-
ters or PC-based scientific compute. The following examples
describe two applications that are suited to FPGA clusters and
their communication requirements.

A. Memory interconnect

Consider a massive multiprocessor system using shared
memory. A number of CPU cores (such as NIOS-II/Microblaze
or custom processors) are located on each FPGA. Each FPGA
board contains up to 8 GB of DRAM. When a CPU core needs
to access memory stored on another board, it must request a
cache line from the other board. Each cache line might be 256
bits which is set by the width of the interface to the memory
controller. Thus a memory read consists of sending a 64-bit
address and receiving a 256-bit response, or writing a 64-bit
address and 256-bit value. Superscalar CPU architecture can
mask a limited amount of memory latency, up to a few tens
of cycles. A lost or further delayed memory transaction will
cause a CPU to give an incorrect result or stall.

B. Neural computing

The human brain has approximately 1011 neurons with 1014

synaptic connections. Each neuron fires at about 10 Hz. In
some neuron models, neuron updates can be represented by
a simple differential equation, but there are approximately
1015 synaptic messages per second. To achieve real-time
operation the network must compute the state of every neuron,
accounting for its 103 incoming messages, every millisecond.

The need for timely delivery of large numbers of small,
low-latency messages rules out classical CPUs, which do not
have enough compute, and GPUs, which do not have enough
communication, but is a good target for FPGAs.

Using the Izhikevich neuron model, the state of each
synaptic message can be represented in 48 bits [12]. Critical
neuron parameters fill the FPGA BRAM, so space for packet
buffers (for both message coalescing and retransmits) is very
limited. With 128K neurons per FPGA, each FPGA generates
1.28M 48-bit synaptic messages per millisecond with a real-
time deadline of arriving by the end of the next millisecond.

The worst-case throughput is therefore 1.28 billion mes-
sages per second from each FPGA. Due to spatial locality,
some of these messages are for neurons that reside on the same
FPGA and so can be stored in off-FPGA DRAM – the exact
proportion depends on the neural network being simulated.
The throughput requirements are therefore some percentage
of this figure.

V. COMMUNICATION SYSTEM REQUIREMENTS

In these application examples payload sizes are small (48 to
256 bits) and the application is latency critical. Furthermore,
the application does not have inbuilt support for retransmis-
sion: if a cache line request is dropped the CPU will simply
stall, while a neural message being dropped will cause an
inaccurate computation.

When building our FPGA cluster, these applications led us
to list the following requirements:

1) Small message sizes: the interconnect must be able to
efficiently deal with messages between 32 and 256 bits.

2) Low latency: cluster applications are often more con-
strained by latency than bandwidth.

3) Reliable: with thousands of links each running at giga-
bits per second, errors are inevitable and could cause crashes
or invalidate results.

4) Hardware-only: the interconnect must support reliable
packet delivery in hardware, without leaving reliability to
software layers (as in TCP/IP).

5) Lightweight: the interconnect must take minimal FPGA
area. This leaves more space for compute and permits smaller
cheaper FPGAs.

6) Ubiquitous: the interconnect must maximize use of the
FPGA’s transceiver resources. More links and higher link rates
means more bandwidth and fewer hops across the system.

7) Interoperable: the interconnect should be able to con-
nect FPGAs of different types to build a heterogenous cluster.

VI. BLUELINK: A CUSTOM INTERCONNECT TOOLKIT

To address the communication requirements of the appli-
cations on our cluster we created the BlueLink interconnect
toolkit. An overview of the interconnect is shown in Figure 2.
It has five major layers, written in Bluespec SystemVerilog:

1) Serial Transceiver: A hard IP block provided by an
FPGA manufacturer. It is assumed that it implements 8b10b
coding and can be configured to send and receive 32-bit
words with a 4-bit k symbol indicator. BlueLink makes no
assumptions about the properties of a transceiver beyond its
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ability to successfully send and receive these 8b10b symbols.
Alternatively another coding scheme such as 64b66b could be
used. We have versions for Altera Stratix IV and Stratix V –
it should be straightforward to wrap FPGA transceivers from
other manufacturers.

BlueLink can use whatever transceivers are available on
the FPGA board, over any physical medium. Currently SATA,
PCIe, SMA, SFP+ copper and SFP+ optical cabling has been
tested.

2) Physical: Transforms a FIFO-like stream of words from
the Link layer into a continuous stream of words for the serial
transceiver. Idle symbols and any alignment symbols required
by the serial transceiver are inserted and removed as needed.

3) Link: Serializes 128-bit flits into 32-bit words on trans-
mit and aligns these words back into flits on receive. Also per-
forms clock crossing between the main FPGA clock domain
and the transmit and receive clock domains of each transceiver.

4) Reliability: Implements reliable transmission with order-
ing and back pressure.

5) Routing and switching: Uses a hop-by-hop routing
scheme to direct packets to a given FPGA and port.

6) Application: Provides primitives for applications.
The Reliability and Application layers are described in

further detail below.
The unit of reliable data transmission is a flit with a 64-

bit payload and 12-bit addressing field. This is expanded to
120 bits by the reliability layer by addition of a 32-bit CRC, a
sequence number and an acknowledgement field. The physical
layer adds a further 8-bit header, so that 128-bit flits are sent
and received by the FPGA transceivers, often split into 4×32-
bit words.

A. Reliability layer
The reliability layer is the first layer in the stack which is

more than transforming and aligning symbols. It is tailored to
meet the requirements identified in Section V.

It implements a reliable communication channel with FIFO
semantics, providing a similar service to the TCP layer of
an Internet stack. However it is customized for small packet
transmissions and for low FPGA area. This means it must be
economical with both header fields and memory buffers.

Reliability is implemented using a CRC and sequence
number in each flit, which are validated by this layer in the
receiving reliable transceiver. A 32-bit CRC is used because
the probability of false-negative is high in a large cluster with
billions of flits per second. An acknowledgement number may
also be appended to a flit to acknowledge correct receipt of
a flits with that sequence number. If the receiver receives a
flit which either fails the CRC or that is out of sequence,
it does not send an acknowledgement. If there are pending
acknowledgements to be sent but no input flits, an empty flit
is sent for each acknowledgement.

Reliability is window-based, with transmitted flits that have
not yet been acknowledged being stored in a replay buffer. If
a flit is not acknowledged after a timeout (because the receiver
detected an error or because an acknowledgement was lost),
the flit at the head of the replay buffer is sent continuously until
it is acknowledged, followed by every other flit in the buffer
until the whole window of flits has been acknowledged. New
flits are then accepted from the input. With 4 bit sequence
and acknowledgement numbers the replay buffer only needs
to hold 8×64 bit flits to store a whole retransmission window,
a major contributor to the reduced FPGA area requirements
compared to other protocols that have longer flits/packets and
larger windows.

Backpressure is achieved by sending acknowledgements
with a flag to indicate that no more flits can be accepted.
This prevents any further flits being transmitted, and so leads
to the reliable transceiver’s input FIFO becoming full.

B. Application abstractions

The Reliability layer provides an Avalon Streaming in-
terface to its clients. On top of this we have implemented
a number of application abstractions which match different
communication paradigms and levels in the design hierarchy,
for ease of programming.

1) Bluespec FIFO: Bluespec is a dataflow hardware de-
scription language. Hardware modules are often connected us-
ing a FIFO abstraction rather than Verilog wires. This enables
them to be easily decoupled at the same time as reducing to
simple logic structures. BlueLink provides a Bluespec FIFO
type that can be used to join two modules on different FPGAs.
The only difference is 10-20 extra cycles of latency compared
with an on-chip FIFO.

2) Packet abstractions: BlueLink is also usable as packet-
based interconnect from software on custom processors. Hard-
ware provides access to flit send and receive buffers. Tradi-
tional polling or interrupt mechanisms may be used to inform
a target machine of packet delivery.

3) Blocking reads and writes: A lower-latency alternative
to polling or interrupts is for a read or write to the flit buffer
to block the application until it is performed successfully. This
has lower overhead than polling as it is not necessary to spin in
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a loop until an operation can be performed. There is, however,
a deadlock risk. Additionally it is possible to indicate a target
FPGA and port by using part of the address of a write, which
allows a flit to be sent in a single clock cycle.

A simple demonstration of this has been achieved by having
a NIOS-II CPU executing code from DRAM located on
another board. When the link cable is unplugged, the CPU
pauses. When the cable is re-attached, the links resynchronize
and the CPU continues.

4) Remote DMA: A higher-level abstraction maps a wide
region of memory addresses on each FPGA to a hardware
module that performs remote DMA. Any read or write is
translated to a read or write to a region of memory (or a
memory-mapped peripheral) on a remote FPGA. A series of
packets is sent to the hardware module on the remote FPGA,
which performs the operation and returns the result as if it
were a local operation.

Burst reads and writes are supported, enabling block trans-
fers. Since it is not possible or desirable for an application to
be aware of the details of the remote FPGA’s memory map,
such as the word size of a given memory device, bursts are
translated into an appropriate sequence of operations at the
remote device, including using byte enables with writes if a
request does not align with word boundaries.

5) Software pipes: We also have an abstraction layer that
emulates Linux pipe semantics. An application can be tested
on a PC using Linux pipes between processes, then ported to
the cluster and run unchanged.

Using the different abstractions provides a variety of prim-
itives for partition. For example, the FIFO abstraction allows
a hardware dataflow architecture to be split across FPGA
boundaries, while the remote DMA abstraction means parti-
tions can be viewed as nodes in a cluster-wide shared memory
architecture.

VII. IP FOR STANDARDIZED PROTOCOLS

IP cores for standard communication protocols are commer-
cially available from a number of vendors.

A natural assumption of a designer building a FPGA cluster
would be to use a popular protocol such as Ethernet. Ethernet
is today a switched serial interconnect with data rates up to
100 Gbps. Interface IP, switches and cabling are commodity
items. It is well understood, and is a convenient way to connect
an FPGA cluster to a host PC. Some FPGA clusters such as
the image retrieval accelerator in [10] are loosely coupled with
no inter-FPGA communications. In this case Ethernet to a host
PC may be a good fit for their application.

There are other protocols for which FPGA IP is available:
Serial RapidIO, Infiniband, Interlaken, Fibre Channel, PCI
Express and many more. We compare characteristics of a
selection of standard IP in Table I.

Notably the field can be divided into those protocols that
support in-built reliability by packet retransmission, and those
that do not. The performance of these vary widely, both in
terms of physical link rate1 and area requirements.

1The computation of achievable bandwidth for diverse protocols is complex,
so we use link rate as a simple yardstick in this section. We provide more
detailed case studies in our evaluation in Section VIII.

Ethernet has some restrictions for applications with tighter
coupling. For example, [14] uses 37-bit payloads over Ether-
net. To use the links efficiently they must aggregate these into
packets, which results in latencies of 10 µs or more.

In addition Ethernet provides no native guarantee of packet
delivery. In a cluster there may be thousands of links sending
gigabits per second, so errors are inevitable and reliability is a
necessity. TCP/IP is the conventional means of retransmission,
but is very expensive to handle in hardware [7]: clusters [10]
and [14] did not consider it. For latency-sensitive applications,
handling reliability in software is not an option. An alternative
reliable protocol could be implemented on top of Ethernet –
another example of a custom communication system.

PCI Express is commonly used for connecting FPGAs to
a host PC. However it introduces a lot of complexity, being
an emulation of traditional PCI over switched interconnect.
For this reason FPGAs often have PCIe hard cores – but it is
unusual for an FPGA to have more than one.

Interlaken is commonly used as a backplane interconnect
in high-end switches. It is also very scalable, and relatively
lightweight. There is also an optional retransmission extension.
We tried to implement an Interlaken layer as an alternative to
BlueLink, but came across the constraint that Altera’s Stratix
V IP requires groups of eight or twelve bonded links to
implement 50G or 100G channels. This was incompatible
with the physical topology of the commodity Stratix V boards
available to us. Altera also provide an alternative Interlaken
core which requires groups of four or more channels, but only
works on the Stratix IV and has no reliability support.

Altera’s SerialLite is an example of a lightweight vendor-
provided protocol. SerialLite shares some similarities with
BlueLink: SerialLite II provides packet retransmission of small
packets. However it has been somewhat neglected - while it
has been ported to modern FPGAs, its maximum channel
rate is 6 Gbps. Published area numbers are for Stratix II,
and it is commercial IP for which a license is required. It
is also incompatible with non-Altera FPGAs. We managed
to synthesize a 6G SerialLite II core on a Stratix V, but the
licensing restrictions did not allow us to test it on an FPGA.

SerialLite III is a modern version that runs at 10 Gbps and
beyond, however the protocol has been changed to support
forward error correction preventing single bit errors. Across a
cluster, where there may be thousands of links, cabling faults
causing more substantial errors are likely so this protection is
insufficient for our requirements. It is therefore only useful as
a layer that does not guarantee correct packet transmission.

Aurora is Xilinx’s equivalent to SerialLite, but has no
reliability layer. This was used in systems such as an FPGA
cluster [2] and an SoC prototyping system [9]. In both cases
bit errors limited the usable interconnect data rate.

It became clear that using standard communication cores in
an FPGA cluster can be fraught with practical difficulties:

1) Configuration constraints: available parameters such as
data rate and number of bonded lanes may not be appropriate.

2) Fitting requirements: a standard may require particular
clock frequencies, PLLs or clock routing.

3) Bonded links: useful on a custom PCB with skew-free
parallel lanes between FPGAs. A commodity board and serial
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cabling may not have suitable configuration, either by not
enough lanes, unsuitable placement, or skew over different
cables. Bonding can reduce the dimensions of the cluster
compared with single links, adding hops and thus latency.

4) Manufacturer specific: some protocols such as SerialLite
and Aurora are only supported by one FPGA manufacturer.
It is possible to implement these protocols on other FPGAs
by reimplementing their specifications, but this would involve
another IP vendor or a custom implementation.

5) FPGA support: IP may only support some FPGA fam-
ilies, may be withdrawn in new tools, or not updated for new
devices. It may require extensive reworking or prohibit using
a newer FPGA.

6) Licensing: designers must license IP from vendors,
which can be expensive and can make evaluation difficult,
particularly as a simulation of a link does not capture physical
effects and so a license may be required for evaluation on a
physical FPGA.

VIII. EVALUATION

We evaluated BlueLink by synthesizing it on a Stratix V
GX FPGA on a Terasic DE5-Net board and comparing with
an implementation of Altera’s existing 10G Ethernet MAC.
The Stratix V platform was chosen to make a fair comparison
between Ethernet and other existing standards that use 10G
links – BlueLink is also capable of using lower-speed, lower-
cost FPGAs at 3G or 6G where Ethernet is often limited
to 1G. Ethernet does not provide reliable transmission while
BlueLink does, so in practice another layer would be required
above Ethernet. We attempted implementations of SerialLiteII
and Interlaken but these were frustrated as described above.

The area comparison can be seen in Table II. 10G BlueLink
is 65% of the logic and registers of 10G Ethernet – indeed 40G
BlueLink using bonded lanes will fit in about the same area as
a single 10G Ethernet MAC. BlueLink also uses 15% of the
memory of 10G Ethernet. By comparison with standard IP on
Stratix V in I BlueLink is more efficient than all the standards
that support reliability and the majority that do not.

In terms of throughput, we have shown the overhead of
BlueLink and Ethernet-based packet structures in Figure 3.
Our focus is on small packets, but BlueLink has higher
throughput up to 256 bits. Using IP and/or TCP over Ethernet
for reliability only serves to add additional overhead.

We plot the latency of BlueLink compared with Ethernet in
Figure 4. We compare the latency of a link where the input
queue is empty, and one where the link constantly receives
input as fast as it can transmit. Both are tested on short
physical links that have low error rates. Despite addition of
a reliability layer with CRC checking, BlueLink’s latency is
about equivalent to Ethernet in the fully-loaded case. In the
lightly-loaded case, BlueLink’s latency is much lower as flits
can be accepted in a single cycle, rather than nine cycles that
Altera’s Ethernet core takes. As more transceivers are used on
an FPGA it becomes more likely that links can be operated in
this state where they are not fully congested.

Any FPGA system designer is faced with an
area/performance tradeoff. This is particularly acute in modern
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FPGAs which have many transceivers. For comparison we
take a Stratix V GX A7 FPGA, which is the lowest cost
Stratix V that Terasic sell on an evaluation board. This FPGA
has 48 transceivers each rated at 14.1 Gbps. We consider
the situation that the designer wishes to use all the available
transceivers. In Figure 5 we plot the area of FPGA that will be
required for the different standards, against the raw bandwidth
it will provide. All standards are limited to 10 Gbps per lane
because this is the limit of commodity cabling (in theory
BlueLink and SerialLite III will go higher). As can be seen,
many standards have a considerable area penalty compared
to a lightweight custom protocol such as BlueLink.

A. Application example

We used BlueLink as a key enabler for the Bluehive neural
computation engine [12]. BlueLink was implemented on the
DE4 Stratix IV 230 GX FPGA board from Terasic, which was
chosen to maximise the number of DDR2 memory channels
available. This is the middle of the Stratix IV range, much
lower cost than high-end parts. To interconnect the boards
we designed and open-sourced [17] a PCB to break out
transceivers using PCI Express connectors into 6 Gbps SATA
links (Figure 7). This enabled us to create a pluggable topology
of low-cost SATA cables. Additional SATA cables were used
directly in the FPGA boards’ own SATA sockets.
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System Raw external Configuration Constituent LUTs Registers Memory
link rate lane rate bits

Systems with reliable transmission
TCP/IP (in hardware) + Ethernet [7] 10G 1 lane 10G <30000 Not quoted Not quoted
TCP datapath acceleration [6] (Virtex 6) 10G excluding CPU/MAC/PHY 6875 3889 221184
SerialLite II (Stratix II 16 bit CRC) 6G 1 lane 6G 1448 1236 90624

24G 4 lanes 6G 2573 1659 176640
PCIe hard IP 5G 1x Gen 2 5G 100 100 0

40G 8x Gen 2 5G 200 200 0
PCIe soft IP (Stratix IV) 5G 1x Gen 2 5G 5500 4100 82944

20G 4x Gen 2 5G 7100 5100 239616
Serial RapidIO 5G 1x 5G 5700 7885 737280

20G 4x 5G 7200 10728 901120
Fibre Channel (Stratix IV) [13] 8G 1x 8G 3300 3900 6144
Infiniband [15] 40G LLC+TCA QDR 4x 10G 64105 63185 1584846
Systems that do not implement reliable transmission
Infiniband [15] 40G TCA QDR 4x 10G 36658 39912 1536807
SerialLite II (Stratix II) 6G 1x 6G 863 818 50688
SerialLite III ab 120G 12 lanes 10.3125G 5600 6200 983040
Aurora 8B/10B [16] 12G 4 lanes 3G 3473 3319 75776
Aurora 64B/66B [16] 14G 1 lane 14G 1600 1600 37920
Aurora 64B/66B [16] 56G 4 lanes 14G 3500 3900 43172
1000Mb Ethernet MAC (external PHY) 1G 1 port RGMII 125Mx4 DDR 1184 1704 204976
1000base-X Ethernet MAC 1G 1 lane 1.25G 1805 2365 204976
10/100/1000Mb Ethernet MAC (ext. PHY) 1G 1 port RGMII 125Mx4 DDR 3155 3522 328064
10/100/1000Mb Ethernet MAC (ext. PHY) 1Gx12 12 port GMII 125Mx8 SDR 27360 29272 1479168
10Gb Ethernet MAC 10G 1 lanes 10.3125G 2001 3077 0
40Gb Ethernet MAC 40G 4 lanes 10.3125G 13600 23500 184320
100Gb Ethernet MAC 100G 10 lanes 10.3125G 45100 87700 573440
Interlaken 100G a 124G 12 lanes 10.3125G 18900 36800 778240
Interlaken 50G a 50G 8 lanes 6.25G 12200 26300 942080
Interlaken 20G (Stratix IV) 25G 4 lanes 6.25G 12229 16774 479232
a Figures not available for optional reliability extension b Provides insufficiently robust optional single bit error protection

TABLE I
PUBLISHED AREA OF STANDARD INTERCONNECT IP. DATA IS FOR STRATIX V DEVICES AND FOR ALTERA IP FROM [1] UNLESS OTHERWISE STATED.

IN EACH CASE THE MINIMAL DESIGN HAS BEEN TAKEN – EXCLUDING PERFORMANCE COUNTERS AND OTHER OPTIONS.
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Fig. 5. Stratix V GX A7 logic utilization when instantiating each system as
many times necessary to use the full transceiver resource. Protocols in black
implement reliability, those in orange do not, area numbers from Tables I and
II. Multi-lane systems can share area between multiple transceivers and hence
have lower area overall, but have additional fitting and routing constraints that
make them more difficult to use in practice.

We put 16 DE4 boards together into a single Bluehive
box (Figure 6), with the intention the system can scale to
further boxes using eSATA cables. We are currently working
on building enclosures for 150 FPGAs.

For a portable version of the system we designed a PCB to
join three FPGA cards linked by their PCIe 8× connector
(Figure 8) - this is able to additionally connect Stratix V
FPGAs with 40 Gbps BlueLink bidirectional channels using
groups of 4×10 Gbps lanes. SFP+ cables can also be used.

Each FPGA hosts two custom soft vector processors each

System LUTs Registers Memory bits
10G BlueLink reliability layer 1663 1277 2090
10G BlueLink link layer 179 413 960
10G BlueLink PHY 167 248 0
10G BlueLink total area 2009 1938 3050
40G BlueLink reliability layer 1965 1355 2090
40G BlueLink link layer 1127 1970 2736
40G BlueLink PHY 289 585 0
40G BlueLink total area 3381 3910 4826
10G Ethernet MAC 2986 3817 20972
10G Ethernet PHY 100 94 0
10G Ethernet total area 3086 3911 20972

TABLE II
AREA OF OUR IMPLEMENTATIONS OF BLUELINK AND ETHERNET ON
STRATIX V FPGA. BLUELINK USES LESS OF ALL RESOURCES BUT

PARTICULARLY MEMORY.

driving a DDR2-800 memory channel. These compute neural
state updates and generate synaptic messages. The messages
are then routed via BlueLink to the other processors.

The system will successfully simulate two million neurons
in near real-time. The application scales well – the limit on
scaling is primarily compute bound, indicating that network
bandwidth and latency have ceased to become a bottleneck.

IX. CONCLUSION

In this paper we have described how to build FPGA clusters
at scale using commodity FPGA boards, high speed serial
transceivers and commodity cabling. This resolves economic
and physical problems, which leaves the decision of which
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Fig. 6. Bluehive prototyping system
Fig. 7. PCIe to SATA breakout
board

Fig. 8. PCB for
BlueLink over PCIe
connectors

protocol to use. The interconnect must be lightweight and
flexible to maximise use of transceiver resources on the FPGA.
It must also support reliable transmission of messages, because
probabilities of error in a cluster are high and applications in
hardware are not designed to handle packet error or loss.

We propose custom communication, by analogy with custom
computation. A designer should consider their communication
requirements at the same time as considering their compute re-
quirements. A communication system should then be designed
from the ground up to support the application.

IP for standard protocols is seductive. It gives the promise
of a ‘drop-in’ communication system, a black box where the
user need not be concerned with the internals. However, many
FPGA-FPGA applications are different to those for which the
protocols were designed. Standard IP brings with it a host of
practical restrictions that make implemention an arduous task.

Using the example of BlueLink, a custom interconnect
toolkit we designed for a specific application, we have shown
how FPGA application requirements can differ significantly
from standard networking. Ethernet, which is a natural choice
for networking, imposes significant overhead and latency
penalties for the small packets used in our FPGA application.
It also takes more area and is lacking in reliable transmission.

We have also evaluated a selection of other IP. Either it does
not support reliability, leaves little area for the application,
has bandwidth limitations, or has other restrictions. Resolving
these problems can involve additional layers or wrappers to
meet the application’s requirements: an example of custom
communication. A custom approach does not preclude the use
of standard IP where it has the necessary properties; it may
be one part of a multi-layer stack. Such a stack should be
designed from the beginning. The designer should not reach
for the standard IP as the panacea for their needs. As the
number of transceiver links on modern FPGAs continues to
multiply, we suggest a custom communication approach will
be increasingly necessary to make best use of this growing
communication resource. We expect this trend to continue for
some time to come.
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