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Abstract

Motivated by the importance of accurate identification for a range of apiolits this
paper compares and contrasts the effective and efficient classificHtiogtwork-based
applications using behavioral observations of network-traffic ancethesg Deep-Packet
Inspection.

Importantly, throughout our work we are able to make comparison with datsepsing
an accurate, independently-determined ground-truth that describasttla applications
causing the network-traffic observed.

In a unique study in both the spatial-domain: comparing across differembrielocations
and in the temporal-domain: comparing across a number of years of datlstrate the
decay in classification accuracy across a range of application-clagisifianechanisms.
Further, we document the accuracy of spatial classification without tgaotdta possess-
ing spatial diversity.

Finally, we illustrate the classification of UDP traffic. We use the same clasmfica
approach for both stateful flows (TCP) and stateless flows basedipBrimportantly, we

demonstrate high levels of accuracy: greater than 92% for the worstrtstance regardless
of the application.

Key words: Traffic classification, Application identification, Deep packet inspection,
Machine learning, Temporal decay, Spatial stability.
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1 Introduction

Network-security, accounting, traffic engineering, and reéass-of-service offer-
ings — each is an example of a network-service facility tsahade possible by
the accurate identification of network-based traffic. Aeotexample of the need
for accurate identification would be the desire of some frege6ervice Providers
to cope with the continual rise of peer-to-peer (P2P) usageniottling network
traffic identified as P2P file-downloading. The challengesepofor organizations
faced with the development of new types of network usagesfesattention on the
use of application-identification and the need to do so ately.

In this paper we explore the effective and efficient classiifon of network-based
applications using only the observed network-traffic. Wedrect a four-way com-
parison of application-identification methods: contmragtommon industry-standard
methods such as known port numbers and Deep-Packet Irapeciih Ndve
Bayes and the C4.5 decision-tree method.

We conduct an assessment of our method using real traffieatetl over a num-
ber of years on two different sites. This enables both asssssof the individual
accuracy and, more usefully, the temporal and spatiallgyabf our models. The
temporal stability measures how accurately traffic is bedemtified for each pe-
riod, thereby revealing how accurate a method will remaierdime. The spatial
stability describes how models will perform across différgtes. Both assessments
serve to provide insight into what is required to build mad#blat will remain ac-
curate regardless of such time and location heterogeneity.

1.1 Motivation

Traffic classification remains a fundamental problem in tsgork community. As
noted above, this supports numerous network activities fietwork management,
monitoring, Quality-of-Service, to providing traffic mddand data for simulation,
forecast and application-specific investigations.

However, the continual growth in the diversity of applicais, number of hosts and
traffic volume on the Internet has been a challenge for mattmdlassify network
traffic according to the applications. The level of continsi@evelopment is only
predicted to continue to grow.

Despite a number of approaches on traffic classificationenpist, for example,
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[1,2,3,4,5,6], the problem continues to be a significant challenge. lgdarart this
is because:

(1) Internet traffic is not easily classified using the staddaternational As-
signed Number Authority (IANA) port number list]. Emerging applications
and proxies often avoid the use of standard port numbers.

(2) Further, port numbers and protocol signatures may hdfiogent to deter-
mine the actual application. There is, in principle, nodiggound between
applications and the underlying protocols. For examplelie@tions such as
MSN Messenger, BitTorrent and Gnutella may explicitly use #TTP pro-
tocol and port 80; while Skype clients may operate serverpaits 80 and
443.

(3) There is a growing proportion of encrypted or encapsdlataffic. Examples
include SOCKS proxies, VPN and VPN-like solutions, tunngland appli-
cations that encapsulate data using a different protoagl, @etByMail B]).
Encapsulation will change the patterns in the original geot, while packet
encryption renders the payload inspection mechanismsabieis

1.2 Classification of Network-based Applications

While relevant to all classification work, a discussion of pinecise nature of clas-
sification and the many applications of classification isdmel/the scope of this
paper. However, we feel it appropriate to mention that tasgification may take a
variety of forms — often related to how the class informai®being used.

The uses of classification-systems may also have diffeegptirements dependent
upon different fidelity of recall (different numbers of ct&s) and different levels

of precision. An operation-console system may be tolerbatl®% error rate but a

scheme for application-differential billing may need ayjnumber of classes and
a high precision.

A motivation of this work is the classification of network digption traffic into
discrete application categories in a real-time envirortm@ar specific underlying
motivations for such classification is to (a) monitor the laggion-mix in the traf-
fic using a low-overhead (payload-less) mechanism, (b)leradplication-specific
handling of traffic, and to (c) derive application-specifiaftic models and study
the impact of each type of applications on the network.

Further, we focus on application categories instead of égpéar protocol or appli-

cation. This is because: (a) a protocol only implements dsegh of an application
but is not bounded by it; one can design a range of networlopots that imple-

ment the same functionality, the HTTP protocol is an exaropthis where people
use HTTP as a transport service for many different purp@ses(b) there is ample
opportunity for change and adaptation in the specific detdibn application over
time. There exists considerable variety among both themifft implementations



of an application and variety across the different protdmaviors that may be
used within an application. However, it is our assertiornt #maapplication exhibits

a behavior or family of behaviors that are specific, and raaiple, irrespective of
the implementation specifics. It is not desirable to be sjge@bout each protocol
or each application since they may change in popularitygdes simply disappear
from use. Instead, we categorize each application into aestatlmber of related
classes, which can cover all the Internet traffic accordinthé application’s pur-

pose (e.g., classify to CHAT rather than to “GoogleTalk”). Wipe the classifiers
and the models thus abstracted from the traffic will captheeinherent nature of
the types of applications, and exhibit both a high level @iaacy and a predictable
level of stability over time.

In our classification scheme, the basic object is a flow defased bi-directional
session between two hosts uniquely identified by the IP fipéet{ protocol (UDP

or TCP), client-IP, server-IP, client-Port and server-Parhe TCP, being connection-
oriented, cleanly defines the beginning and end of flow. A floay ioe further de-
lineated based upon which end is server or client: observafithe SYN packet is
sufficient to determine this. For UDP there is no specific mheieate for the start
and end of a flow. A timeout mechanism, like that of Cisco Netklis used to
provide boundaries for flows based on the state-less UDBqobor for flows of
TCP where explicit flow-start or termination is not observed.

We define a number of mutual-exclusive application categorsuch as WEB-
browsing, BULK transfer, MAIL activities, etc. The first aohn of Table4 re-
ports the full list of categories. This kind of taxonomy haeb previously used
in [7] and [9]. It has been updated following the rise in popularity or eyeace
of new application types such as Voice-over-IP (VolP) arstiant messengers. It is
intended that every network application would fall into afe¢he categories. Our
goal is to be able to label each flow with the category of thdiegion to which

it belongs. The label will depend only upon the actual agpion that generates
the traffic: for example, a flow carrying an advertisementuseNapster would be
labeled as P2P, even though it may use the HTTP protocol.

1.3 Contributions

This paper provides a number of unique contributions.

e We conduct a comparison among a number of classificatiomseheSignifi-
cantly, we only use data where we have already establiskeagrtiund-truth: the
actual applications causing the network-traffic observed.

e We train accurate models from data with a high-confidencargtdruth and an
efficient, small, feature set derived from the reduction tzrge flow feature list
using a sophisticated feature selection mechanism.

e We demonstrate the use of sub-sampling using start-of-ftowniable online
classification; further, we demonstrate the resultaninentiassification method



has high accuracy.

e We carry out a unique temporal and spatial stability studyherfour classifica-
tion methods using data collected over a four year periodrama two different
sites.

¢ In contrast with much of the past work we examine the use ofiptetapplication
classifiers for both stateful flows (TCP) and stateless flogsth@apon UDP.

e We document the computational complexity and measure thts eathin the
classification pipeline.

2 Network Traffic Data

We examine network-data from two different sites. Thesesies are bothesearch-
centricbut conduct research in very different disciplines and ecated in two dif-
ferent countries. We refer to these two different sites &s/&iand Site B. Each of
Site A and Site B have over a thousand local users from a ptipuilef researchers,
administrators and technical support staff. From Site Ausethree day-long data-
sets taken on three weekdays in 2003, 2004, and 2006 (deswi2aly1, Day2, and
Day3 respectively). From Site B, we use one data-set recandedveekday in late
2007 (denoted as SiteB). In both cases the sites are conrtedtezlInternet via a
Gigabit Ethernet link. Each data-set captures full-dupda#ic at the site border to
the Internet.

For this paper, we selected 10 non-overlapping, randorslyibduted periods, each
approximately 30 minutes long, from each of Dayl and Day2.al§e randomly
selected two 30 minute periods from Day3, and a 30 minuteogerirom SiteB.
Tablel summarizes the data-sets volume breakdown by IP protogel ty

Further, as the TCP protocol semantic allows for a precisaitiefi of start and
end of a flow, we concentrate upon complete TCP flows: those iacchaboth the
SYN handshake and FIN handshake packets are observed —ehawowd the bias
from flows which have started before the selected period.atlegnize the incom-
plete flows have included a number of long flows (e.g., FTP doads) however,
we are confident the use of such censored data has not overcied our com-

Data-Set Packets [%] Bytes [%]

TCP | UDP | Other| TCP | UDP | Other
Dayl |93.49| 1.60| 4.91|98.18| 0.72| 1.10
Day2 | 97.87| 1.59| 0.55|99.33| 0.42| 0.25
Day3 |96.91| 2.19| 0.90|98.16| 1.44| 0.41
SiteB | 91.22| 8.24| 0.54| 97.94| 1.97| 0.09

Table 1
Data-Set duration and volume breakdown by IP protocol type.



Data-Set| Duration | Flows | Packets| Bytes

Dayl | 10x 30 min| 377K 42M | 31GB
TCP | Day2 | 10x 30min| 175K 35M | 28GB
Day3 2 x 30 min | 260K 30M | 18GB
SiteB 1 x 30min | 250K 11M | 7.1GB
Dayl 1 x 30 min 25K 197K | 41MB
UDP | Day3 1 x 30 min 46K 592K | 242MB
SiteB 1 x 30min | 774K 1.6M | 180MB

Table 2
General workload dimensions of our data-sets.

parisons due to the small amount of total data by packet @ thytt it represents.
We also observe that incomplete TCP flows are often composedrimius kinds

of scans and unsuccessful connection attempts resultsiggte SYN packets and
no payload data. This is a common phenomena in the Interattppwhat may be
referred to as thénternet Background Radiatioand is well described inlfJ].

Table2 lists the durations and workload dimensions of our data-sgtcomplete
TCP traffic and UDP traffic.

TCP traffic constitutes the great majority of the traffic in data-sets, thus in the
following we focus upon TCP traffic to investigate the clasaifion schemes. We
show in Sectio.6 the classification of UDP traffic using similar techniques as
those introduced for TCP.

2.1 Traffic Features

A feature is a descriptive statistic to characterize anabgnd, ideally, each ob-
ject exhibits different feature values depending on thegaty to which it be-
longs. Based on the features, models can be established msicigine learning
techniques.

The features of a flow that we use for classification are cotelyléerived from the
packet headers: UDP, TCP and IP. These features describerieeagibehavior of
a flow, for example, the size of transferred data in eithexation, the packet size
and inter-arrival time distributions, entropy in the flowgethe first 10 components
by FFT of packet inter-arrival times. Features include sbigéer level heuristics
such as the data exchange behavior in forms of flow-idle, Jedigp, interactive,
or transferring data from one end to the other. The compkdéufe set is fully
described in11], and a sample of features are listed in Takle

Figure 1 shows how different types of service exhibit different bebain two
groups each of two features: (1) variance of total bytes okees (client to server)
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Fig. 1. Scattered plot of 5,000 random selected samples from Day1.

by the total number of bytes sent in the initial window (cti¢m server), and (2)
count of packets with PUSH flag set in the TCP header (servdraiotcby min-

imum segment size (client to server). There is a clear oppityt to discriminate
between the flows of each application class using a combimafithese features.

Collecting each feature from live traffic is associated withomputational cost
equal or less tha®(n x log, n), and a memory footprint equal or less thafwn),
wheren is the number of packets in a flow used for extracting the feaflhe total
cost of collectingk’ features is bounded ©O(K x n x log, n).

In order to improve the classifier performance and to redueebdmputational cost
of the classification work-flow, we select a feature subske 3election criterion

chooses features that are most relevant for the discrimmmaf application classes
while having the minimum redundancy with respect to eacterothhis feature-

reduction process is fully described in the Sectoh

We applied the correlation-based filtering mechanism td ezfcthe ten Dayl
periods. We observed that the feature subsets selectedelbgigbrithm possess
moderately good stability, and we manually picked 12 fesgwrhich appear in at
least one third of the feature subset. TabBlgives a list of the feature subset. The
selection-criteria here is to identify the best-possilelgtfire set which is both sta-
ble over time and independent of the location in the netw®dHe feature subset
are almost entirely dependent upon the actual applicabartbe end-hosts. Thus
any classification model is able to maintain its accuracy tivee and be applied
in different network locations.

Without using the IANA port list or any prior knowledge of papplication map-
ping, we still use port numbers as two of the feature-suldsebur classifiers are
built upon pre-classified data — for which we know the grotmudh — the port-
number features used in the final classifier will maintainetbgociation (as actually
observed) between pre-classified application classes@hdpmbers.



Abbreviation Description SU Memory Overhead| Computational
Complexity

pushpkts.serv Count of all packets with push bit setin TCP 0.3165 | O(1) O(n)
header (server to client)

init-win_bytescInt | The total number of bytes sentin initial | 0.2070 | O(1) o)

init_win_bytesserv window(client to server & server to client)| 4 3499 o) o)

avgsegsizeserv Average segment size: data bytes divided|pby).3390 | O(1) O(n)
#packets. (server to client)

IP_bytesmedcint Median of total bytes in IP packet (client tp 0.2011 | O(n) O(n x logy n)
server)

actdatapkt_cint Count of packets with at least 1 byte of TCIP0.1722 | O(1) O(n)
data payload (client to server)

databytesvar_serv | Variance of total bytes in packets (server t00.2605 | O(n) O(n)
client)

min_segsizecint Minimum segment size observed. (client 100.2131 | O(1) O(n)
server)

RTT_samplescint Total numbers of RTT samples found (client0.2434 | O(1) O(n)
to server), see alsd ]

pushpkts.cint Count of all packets with push bitsetin TCP 0.2138 | O(1) O(n)
header (client to server)

senport Server Port 0.8378 | O(1) o)

clnt_port Client Port 0.0760 | O(1) o)

Table 3
Properties of the subset of TCP features selected using 5-paclestvatisn window.SU
is the Symmetrical Uncertainty measurement, as fully described in S&:6on

2.2 Ground Truth

Ground-truth information is fundamental when assessatf{j¢rclassification mech-
anisms and to provide trustworthy results. Therefore, wee ltggven a significant
attention to obtaining accurate ground-truth for our congom data-sets. Every
flow in each data-set has been labeled with a correspondipigcation category.
This is done using a (human) supervised semi-automatedshetased, data ver-
ification process. The process is detailedlié] [however, we provide an overview
of the process in this section. The use of a supervised, aatoimated, procedure
does not replace the manual verification process but sugpiesmt — allowing
identification of the ground-truth without sacrificing caténce.

The procedures for the computation of ground-truth are dag®n a variety of
sources of the information about each flow. However, as leetdielow, none of
these pieces of information are used in isolation — crodiglai@on forms a crit-
ical part in the establishment of ground-truth. Without mewating the derivative
information: multiple-flow behavior or hosbles, base sources of data include (in
no particular order):

e packet payload contents,

e well known port numbers,

¢ well known host names and addresses (&mkernel.org, and

e background information about particular users, hosts, spetific application



behavior, e.g., P2P-networks.

We observed that flows belonging to the same service or atiglic often share
a subset of the IP five-tuple, notably, tKiBstlp, DstPor}, {Srclp, Dstlg, and
{Srclp, SrcPort sub-tuples. Such an observation allows us to consid@ws
bearing the same sub-tuples may belong to the same servaygbcation. With
this, the traffic can be classified at a high level of aggregativhich may signif-
icantly accelerate the process. The consistency betweeapplication label and
the sub-tuples was validated using two day-long tracesiwigwe been previously
classified with the methodology described ifj, [and using several segments of
new hand-classified data. The assumption holds for moss eeiie the exception
of (1) tunneled traffic (e.g., VPN or SOCKS proxies), (2) npliiapplications be-
tween a server and a client (e.g., a server operating bothamadiweb services),
and (3) HTTP traffic where the HTTP protocol is used to relay-aeb traffic (e.g.,
BitTorrent signaling traffic). Aside from a VPN subsystem wéhéhe application
was independently established, we didn’'t observe othereeal traffic in our data.
However, in future such traffic that could be grouped int@ws category. For (2),
we observe that th€Srclp, Dstlg sub-tuple can complement thBstlp, DstPor}
sub-tuple after the latter has been used to identify stalhskwvices. We addressed
(3) by verifying (through manually derived signatures)lI TP requests and re-
sponses to find out what type of content they carry and what &frapplications
have been causing them. This process was document&d]in [

A set of payload signatures (derived frdifxfilter [14]) was used to provide an
initial indication of an application based upon its packettent. Extensive tests
were carried out to evaluate the signatures based on pstyiband-classified data
against several segments of new data. These results allsnedune the signature
set making it capable of identifying 35 of the most populastpcols. Of course,

the signatures only provide one piece of evidence that nieels cross-validated
within the process that determines the ground-truth.

The verification process is accelerated by exploiting a remalb heuristic rules,
(e.q., tuple-based rules), and by working upon larger traffigregations (e.g., ser-
vices rather than individual flows) whenever possible. Heuewe followed the
principle of making decisions only with very high confideneeg., when supe-
rior evidence from two or more mutually-independent infation sources are val-
idated.

Firstly, we consider whether the signature matching resatta specific server:port
appear to be strongly consistent, in which case we can rahoassume that we
have identified a particular service on that server:portefs criteria are used to
guantitatively justify the consistency: thresholds arecsfred to guarantee that at
least a certain percentage of flows as well as a minimum nuwib#ows have

2 We re-iterate that this process relies on heavy human supervision. &opéx human-
supervision takes the form of verification/confirmation of a sample of floaissiich infer-
ences are true and valid.



matched a specific signature. Additionally, only an exeleisubset of signatures
is allowed to have matched the flows. This avoids situationsre;, for example,
HTTP caused by BitTorrent being labeled as web traffic. Weia@his heuristic
widely and particularly for those applications with a weditablished signature.

Based on the assumption that flows between the same IP adkdpesismay be due
to the same application, we can verify such situations as tiaffic between two
hosts or HTTPS traffic as in many cases a web server runs lzottiesd and secure
HTTP services. We derived similar heuristics for streanand VoIP applications:
for example, RTSP appear within a TCP control channel whaedthta are relayed
on a unidirectional UDP stream; while a VolIP application nu@g a SIP session
and a bi-directional UDP stream.

A great amount of information can be inferred from the hoshes. We base fur-
ther heuristics on accumulated knowledge about partiqdaular services (e.g.,
Google, MSN, eBay): for example, we may have a heuristic tiditates HTTPS
traffic to MSN servers is due to MSN messenger clients instéadowsers.

Finally, we consider the behavioral characteristics otfiasay be (subject to ad-
ditional verification) due to overlay networks. This is peutarly useful for the
identification of P2P traffic. Although a counter-exampleHis rule is that SMTP
traffic has a strong P2P-like behavior: SMTP servers may sitiogh the recipi-
ents and the senders of emails. The assumption is that iftashas SMTP server,
all the flows generated from this host towards port 25 are treffic. In general,
this heuristic is applicable for P2P traffic as long as thermiation about the port
number can be utilizet], and the assumption of the heuristic can be validated. We
applied this heuristic to verify a large number of eDonkeg &itTorrent flows on
port 4662 and 6881 respectively. Additionally, for P2P &gilons that use ran-
dom port numbers, we started from an initial set of identipedrs and identified
new peers that are contacted by previously known peersxaon@e, initial Skype
participants were identified using the information of calited login servers, and
new Skype nodes could be inferred by considering the hoathesl by a number
of (e.g., at least three) known Skype peers.

We show the application category breakdown of TCP traffic foxhedata-set in
Table4. As noted above, thmetaclasses described in this table aggregate a num-
ber of specific applications — a full application breakdowmpiovided in 2] —
although WEB deserves special comment. Throughout our werkefer to the
application-class as meaning web-browsing alone. It ighwvigiterating that this
class of traffic does not refer to data moved via HTTP, nor to-bmwser applica-
tions (such as a webmail server providing data to Outlook -hglata would be
classified as MAIL.)

3 We observed that many P2P nodes still use the well-known port numbers.
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TT

Class By flows [%] / packets [%] / bytes [%0] Applications

Dayl Day?2 Day3 SiteB
WEB 84.558/22.529/29.438380.198 / 16.383 / 17.62884.077 / 27.381 / 25.456 85.557 / 70.876 / 69.456 web browsers, web applications
MAIL 8.682/ 6.777/ 7.904 9.384/ 1.884/ 1.763 1.530/ 0.867/ 0.811 4.377/ 7.506/ 6.683 mar rop,sure
BULK 3.800/69.483/60.569 6.146/80.850/79.372 2.058/67.201/69.881 0.223/ 8.310/11.90% Fre, wget
ATTACK 0.787/ 0.084/ 0.132 0.562/ 0.016/ 0.002 0.013/ 0.002/ 0.001 1.614/ 0.578/ 0.075 jPe?:;itosnians,worms,viruses,sqlin-
CHAT -/ -/ - -/ -/ -| 0.025/ 0.013/ 0.004 0.204/ 0.195/ 0.059 wmsn Messenger, Yahoo IM, Jabbe
P2P 0.589/ 0.331/ 0.567 1.572/ 0.548/ 0.777 8571/ 0.745/ 0.433 7.188/10.455/ 9.735% Napsier,Kazas, Grutelia, sDorkeY,
DATABASE 0.862/ 0.387/ 0.703 1.483/ 0.253/ 0.400 3.531/ 3.589/ 3.196 -1/ -1/ - | MysQL, dbase, Oracle
MULTIMEDIA 0.137/ 0.112/ 0.196 0.002/ 0.000/ 0.000 0.007/ 0.105/ 0.145 0.004/ 0.165/ 0.232 Windows Vedia. Plyer, Redl
VOIP -/ -/ - -/ -/ -| 0.036/ 0.018/ 0.002 0.420/ 0.483/ 0.169 skype
SERVICES 0.555/ 0.135/ 0.194 0.633/ 0.026/ 0.009 0.027/ 0.003/ 0.000 0.187/ 0.078/ 0.041 xa1,0ns, IDENT, LDAP, NTP
INTERACTIVE | 0.027/ 0.156/ 0.285 0.021/ 0.040/ 0.053 0.124/ 0.076/ 0.071 0.128/ 1.261/ 1.552 ssH, TELNET, VNC, GotoMyPC
GAMES 0.002/ 0.006/ 0.013 -/ -/ - -/ -/ - | 0.060/ 0.027/ 0.007 wicrosoft Direct Play
GRID -/ -/ - -/ -/ - -/ -/ - | 0.037/ 0.066/ 0.084 crid computing

r

Table 4. Composition of TCP traffic in our data-sets. Applications shownrayeexamples for demonstration. “-” denotes non-existing traffic.



3 Classification Methodologies

Several methods exist for classifying network-traffic atidbathem fall into two
broad classes: deterministic (hard) and probabilisti¢tsdassification. As the
name suggests, deterministic classification assigns datéspto one of several
mutually-exclusive traffic-classes. This is done by coasith some metric that de-
fines the distance between data points and by defining the letagidaries. On the
other hand, probabilistic classification method classdi@s by assigning it a per-
class membership-probability. The per-class memberngitapability may be based
on an artificial allocation of probabilities or be based upgriori experience. For
example after trying to classify a flow using this methodoitilci be observed that
with a probability of 0.8 this flow belongs to the MAIL classitiwprobability 0.1
to WEB class and with probability 0.1 to BULK class. Class assignt is done by
considering the class with the largest probability. In tkaneple, the flow will then
be considered a member of the MAIL class.

In this paper, we document four methods for network-traffassification. Two
methods: Port-number and L7, a classifier based upon desyefpaspection, are
both deterministic. While two alternatives: Na Bayes and the use of a C4.5 are
probabilistic in nature.

We primarily focus on using C4.5 to capitalize on the followiproperties of the
decision tree algorithm:

(1) Sufficient accuracy. It is suggested @ fhat C4.5 is among the most accurate
method for the problem of traffic classification. Further, fivel it the most
accurate one in a range of most popular supervised learfgogtams, using
our particular feature set and observation window setup.

(2) Extremely low computational cost for classificatiors. dtassification process
only involves several conditional statements, which isdingplest form that
a classifier can be. This property ideally supports time asdurce-critical
tasks such as real-time application operations.

Alongside the two probabilistic classification schemes,alg® utilize a feature-
reduction mechanism: the Fast Correlation-Based Filtes ift@chanism allows us
to significantly reduce the computational cost in collegtithe features and also
helps to overcome the overfitting problem in each of the pooistic schemes.

We also note that our traffic classification work relies ugmnaggregation of pack-
ets into flows based upon the IP five-tuples. We are aware dfistigated data
structure and algorithm work such aso[. Further, work in L6] shows that min-

imal hardware can permit tractable implementation for liagdLO Gigabit/s live

traffic. While not within the scope of this paper, such apphesccombined with
our methodology would effectively yield a line-rate remh¢ traffic classification

solution.

12



SOURCE DESTINATION
ADDRESS| CLIENT IP SERVER IP
PORT CLIENT PORT|SERVER PORT

CLIENT E = 00d E‘ré SERVER
[

K {Dg OO0 <= |

SOURCE DESTINATION
ADDRESS|SERVER IP CLIENT IP
PORT SERVER PORT CLIENT PORT

Fig. 2. Relationship between client and server and source and destipatiorumbers.

3.1 Port-number

The port-based method relies on the use of well known pdrésseérver port num-
ber maybe used to identify traffic associated with a paricapplication.

This method sees common use as state of the art in many apetatnvironments
and requires access only to the part in the packet headecangtins the port
numbers.

As illustrated in Figure, one should note that the server port number is not equiv-
alent to the destination port number of the packets. Thaycude only for packets
sent in the client to server direction. For example, theidagbn port number is

80 for a packet directed to a Web server, while the sourcemuortber is 80 for a
packet sent from a Web server. However, port based claggificases the server
port number which is determined by observing the first packatflow in the client

to server direction.

In this paper, we use a list of well known ports derived frora dfficial port as-
signments established by IANA. In particular, we considely adhe official ports
for port numbers< 1023. In this subset only 35 distinct ports appear in oufitraf
traces, and for just 16 of them the traffic is actually usirghotocol associated to
the official port assignment.

3.2 Deep-Packet Inspection

The Deep-Packet Inspection (DPI) method examines whethewaarries a well
known signature or follows well known protocol semanticacls operations are
accompanied by higher complexity and may require accesste than a single
packet’s payload. According t@], specific flows may be classified positively from
their first packet (with payload data) alone. Nonethele$grdlows may need to
be examined in more detail and a positive identification maly be feasible once
up to 1 KByte of payload data has been observed.
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Signatures can be obtained from protocol specifications iShelatively easy for
open and published protocols. However, proprietary patoare often neither
open nor published, thus signatures must be derived froersewengineering of
the protocols, (e.g.1]7]). Such a process is arguably going to produce signatures
that do not fully capture the underlying protocol semantyesiding to inaccurate
estimates of the traffic associated with those protocols.

Aside from the need for payload access, a major drawbaclegfdalload-inspection
method is that it can not handle traffic with encrypted pagtod his has become
increasingly problematic as common and increasingly popapplications turn to
the use of encryption to evade detection by deep-packetatigm techniques.

To classify the traffic in our traces we use the identificati@chanisms of the open
source DPI tool7-filter [14]. Because this tool is not intended as an off-line, trace
processing tool (it is intended to be deployed as part of thexLiptables firewall
for traffic shaping purposes), we use a user-space versibsdabol [18]. We refer

to this off-line version as L7. This classifier re-assemkihesdata content of a flow
and identifies the application via pattern matching usirguia expressions. A
flow is marked as identified as soon as a known pattern is fauadl least one of
its directions. Only the first0 packets of each flow are considered.

3.3 Ndve Bayes with kernel estimation

In order to describe Nge Bayesian classification it is useful to consider a data

samplex = (xi,...,x,). This is a realization oX = {Xj,..., X, } such that

each random variabl&’; is described byn attributes{A,, ..., A,,} (referred to
; N\ T

as features) that can take numeric or discrete valkies- (Aﬁ”, ...... : Aq(;)) IS

then a random vector. As an example, for Internet traﬂjﬁ), may represent the
mean inter-arrival time of packets in the flaw

Assume now that there afeknown classes of interest. Lét= {ci,...,c;} rep-
resent the set of all known classes. For each observed ogstam z, there is a
known mapping”' : x — C representing the membership of instancéo a partic-
ular class of interest. The notati@r(z;) = ¢; stands for “the instance; belongs
to the class;”.

Bayesian statistical conclusions about the classf an unobserved flow are
based on probability conditional on observing the flowhis is called the posterior
probability and is denoted hy(c; | y). The Bayes rule gives a way of calculating

this value:
_ () [y )
2p(ei)fy ] e)

wherep(c;) denotes the probability of obtaining classindependently of the ob-
served data (prior distribution),(y | ¢;) is the distribution function (or the proba-

plej [ y) (1)
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bility of y givenc;) and the denominator acts as a normalizing constant.

The goal of the supervised Bayes classification problem istimate f(y | ¢;),

j = 1,...,k given some training set. To do that, Nave Bayes makes certain
assumptions orf(- | ¢;) such as the independence4fs as well as the standard
Gaussian behavior of them. The problem is then reduced tplgiestimating the
parameters of the Gaussian distribution and the prior fn@ibes of ¢;’s. In fact,
Naive Bayes is also capable of dealing with discrete randonuffest which could
represent the state of some flag of a flow, by treating thenpiergently and using
the frequencies of occurrences to estimétte| ¢;), j = 1,..., k.

3.4 C4.5 Decision Tree

C4.5 is well-known as a discriminative decision tree aldnitwhere the classi-
fication will be definitive (to assign each data point one & thutual-exclusive
classes).

Input to C4.5 consists of a collection of training cases, d¢wsiing a tuple of values
for a fixed set of feature$” = F, Iy, ..., F), and a class. A featuré, can be
described as continuous or discrete according to whethgalties are numeric or
nominal. The clas§’ is discrete and has valuég, (s, ..., C,.

The goal is to learn from the training cases a function
DOM(A;) x DOM(As) x ... x DOM(A;) — DOM(C).
that maps from the feature values to a predicted class.
As such the decision tree is a recursive structure where:

e aleaf node is labeled with a class value, or
e atest node that has two or more outcomes, each linked to esubt

To classify an object using C4.5, imagine the object to besdlad is initially at
the top (root) of the tree. The object will go iterativelyard subtree as below, until
it reaches a leaf node:

e if it is at a leaf node, the label associated with that leafopees the predicted
class;

e if itis at a test node, when the outcome of the test is detexdjiit is moved to
the top of the subtree for that outcome.

When training a model, the C4.5 learner uses information @aio to decide which
feature goes into a test node. The information gain ratiefdd as the normalized
information gain ), which is based on the entrop§)(of the random variables. It
measures the correlation between two random variablestaréeand a class label
in this case.
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Given discrete random variabléSandY :

GAINRATIO(X | V) = 50X . ©)
IG(X |Y) = H(X)— H(X |Y). )
where
H(X|Y)= —;p(yj) Zi:p(ﬂ% | yj) logy p(wi | ), (4)
and
H(X) == _plw;)log, p(zi), (5)

wherep(z;) = P[X = x|, p(y;) = P[Y = y;] andp(z; | z;) = P[X = 2; | YV =
yjl-

In principle, the learner iteratively looks for the bestttea to partition the data
points in a node. The one with highest information gain ratibbe used to make

the decision in the node. The division continues until théenbecomes a leaf node,
or the number of training data points in the node is smallan th given number.

Moreover, C4.5 has incorporated a large number of improvésmarch as error-
reduced pruning, avoiding over-fitting, and dealing witrssmg values. We refer
the reader to19] for further reference.

3.5 Feature-space reduction

We use Fast Correlation-Based Filter (FCBF) 28][along with a variation of a
wrapper method in determining the value of the thresholdddeed later in this
Section). The FCBF filter method performs very well in impraythe performance
of Naive Bayes when contrasted with other related technic@@s [

The correlation measure used in FCBF is based on the symnhetricartainty.
Using equations3) and 6), symmetrical uncertaintys defined in the following
way:

(6)

su<x,y>:2[ [eX 1Y) ]

H(X)+ H(Y)

Symmetrical uncertainty takes values|in1], where the valud means that the
knowledge of eitheX or Y can induce the other, whilésuggests that features
andY are wholly independent. By this point, Equatid) bas only been defined
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for nominal feature value's therefore FCBF will discretize continuous features
before the core analysi&().

The FCBF algorithm selects good features via a two stage mtgesientifying:

¢ the relevance of a feature, and
¢ the redundancy of a feature with respect to other features.

To describe these concepts mathematicallyCledenote the random variable of
traffic classes taking values th Further, letSU; . and SU; ; denote the value of
the symmetric uncertainty betweels andC' and betweem; and A, respectively.
AfeatureA, is believed to be relevant §U; . > ¢, whered is some threshold value
to be determined by the user.

Identification of redundancy is often done by computing the@wise cross cor-
relations between features. Howeve@Q][note that this method is quite computa-
tionally expensive and so the solution they propose corsitlEé values, because
symmetrical uncertainty captures pairwise cross coioglahformation. As a re-
sult, FCBF works in the following way. Initially5U; ., 1 < j < m are calculated
and features are ordered in descending order according t@thes ofSU. A setS

is created, containing;s that satisfySU; . > 4. Then, the feature with the largest
SU; . (callit A,) is compared t&U, ,, whereAd, € S\ A,. If SU,, > SU,., the
featureA, is considered redundant and is therefore removed olhe procedure
is repeated for all,’s in S. The complexity of this algorithm i®(nm logm).

At last, the question arises as to how to determine the optiahae of the threshold

0. To overcome this difficulty, we use a wrapper method basexh INdve Bayes
algorithm, i.e. computational results of theida Bayes algorithm will be used to
estimate the optimal value of the threshold. This approashthe goal of maxi-
mizing some measure of accuracy (e.g., percentage of tlgrdassified flows).
The advantage of this approach is that it is less comput@tioexpensive than the
“forward selection” or “backward elimination”, since onty cases are needed to
be checked compared 28" — 1. In addition, this method significantly improves the
predictive capability of Nive Bayes technique, and may also improve the accuracy
of other machine learning mechanisms.

The following procedure is used to identify the best numlddeatures to be used
for a particular training set.

1. All features are ranked in order of importance as caledlay the FCBF method.
2. We now wish to identify the most valuable features, to ds &m independent
set of test data is chosen and it is used to evaluate the pexrfme of Néve Bayes
classifier trained on different number of features.

3. We train N&ve Bayes on the training set with wheren € 1...m (recallm is
the total number of features) and evaluate the resultirggsiglar on the test set.

4. Finally, we select the optimum value forsuch that it provides maximum clas-

4 Although it is possible to define it for continuous random variables; the estimaf
probabilities is then much harder.
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sification accuracy while minimizing the total number ofttgas required.

This algorithm uses both filter and wrapper methods to determie optimal set
of features. 21]

4 Results and Discussion

Using information collected from the first several packdtshe flow, we aim at
building real-time classification models. These modelsteamed offline due to
the need of hand-classified ground-truth data. The testiage however, can be
automated and involves the following three-phase pipeline

(1) grouping packets into flows,
(2) calculating features from the flows, and
(3) classifying the flows using the features and labelingfliwes.

Apart from accuracy, there are two further objectives indbsign of such a classi-
fication system:

Latency Firstly, for certain tasks such as application-specifidirgy monitoring
or anomaly detection, it is desirable for the latency prooidentifying a flow be
as low as possible.

Overhead Both the memory footprint in aggregating the packets and tmepei-
tational complexity in calculating features increase prapnally with the num-
ber of packets in each flow object. Thus it behooves an aathibeminimize
the quantity of link-data required. Collecting all packettéwe traffic on a high-
speed link will quickly exhaust the memory space for any cadity hardware.
However, by keeping less packets of a flow in the memory, tiséegy will be
able to exchange a small error for a higher throughput, byeeeabling the clas-
sification systems’ operation on a high-speed link.

4.1 Observation Window

Theoretically, a flow classifier will be more accurate wheregimore relevant in-
formation collected from each flow. However, the latency eachputational over-
heads in collecting features will increase in proportioth® observation window
size. This observation window may be bounded in time, in ttal number of
packets, or both.

To provide a reasonable trade between accuracy, latencthemughput, one can
choose to limit the number of packets at the beginning of a flmm which to
collect the set of features. Formally, we define an obsemwatiindow as a fixed
window of a given number of packets from the first packet in e f{oe., a SYN
packet). For example, the feature “average payload bysesélculated using the
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sum of payload bytes in these packets divided by the numbeaiakets seen in the
observation window.

To demonstrate how one might attend the accuracy/latémoyghput trade-off
and to evaluate the performance of such a classification amesin, we use a subset
of 12 features and the C4.5 algorithm to identify an appro@oaservation window
size. When collecting features we also use a 15 seconds tiralemgside the limit
to the number of packets, that is, the observation windomiteates when either
the number of packets sums to the window size or the timeautrec

The classifier accuracy for different observation windozesivarying from four to
ten is shown in Figur@. For these results and in common throughout this work,
we perform our C4.5 and N&e Bayes evaluations using the Wel®][ toolkit.

For all data-sets, the accuracy achieves a high value witimnelow size of five
packets. The accuracy is comparable to the accuracy of asimgplete flows or
larger observation windows. This indicates that the bedrashown in the first five
packets contains rich information to classify the flows.

The idea of early-flow “fingerprinting” is also used by Bertait al. [1] where
they use a feature set composed of the sizes and directiaihe dirst four data
packets of each flow. In comparison, our method collects mdogmation from
fewer packets: our five observed packets include the these-aftflow packets
common at the beginning of each TCP flow. This results in lowerleeads and
lower latency for our methods. We choose a window size of fevekpts for the
results presented in the rest of this paper.
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Fig. 3. Relationship between accuracy and packet-limit using C4.5.
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4.2 Methodology

In Sectiond, we show both a range of results and comparisons. These s@npr
1. a 4-way accuracy comparison between the classificatidghads (Tableb),

2. per-class accuracy on Dayl, Day2, Day3, and SiteB, for Ggd&rithm (Ta-
ble 6),

3. a 4-way general accuracy comparison between the temgecaly property of
classification methods (Figurds5 and 6),

4. per-class temporal decay between Dayl-Day2, Dayl-CayBDay2-Day3, for
C4.5 algorithm (Tablg),

5. a 4-way comparison between the spatial stability of diaaion methods with
cross-site (Tabl8) and multi-site (Tabld.0) training on Day3 and SiteB data-sets,
along with per-class accuracy for C4.5 algorithm (TaBlesd11),

6. a 4-way accuracy comparison on UDP traffic (Tabig with detailed per-class
results (Tablel5) and temporal and spatial stability (TablEsand17), and

7. a comparison of training and testing time between C4.5yéNBayes and L7
methods (Tabld.8).

To evaluate the accuracy of the classifier on the same dayaand site (Subsec-
tion 4.3), for each flow we randomly place it into one of two data-sitséxample,
with a probability of 0.5 to create comparable-sized data)s One data-set serves
as training set and the other data-set as testing set. Weepaatrthe division of
data-sets using a different seed for the random-numberg@nd his allows a re-
peating of the process as many times as required, for examglee computation
of standard-deviation or confidence intervals. The acqufigires represent an
average of each experiment conducted where each experaoemtacy figure is
the total number of correctly identified flows divided by tlogal number of flows
within that particular data-set.

To evaluate the temporal stability (Subsectid), we train the model using the
Day1l (2003) and Day2 (2004) data-sets, and test the modehadna Day2 and

Day3 data-sets. Recall that Day2 and Day3 were collected 0d 201d 2006 re-

spectively.

To evaluate the spatial stability (SubsectibB), we first train the model using a
subset of each of the Day3 and SiteB data-sets. We then teabdah model against
the remaining data-set from that site.

To create a multi-site model we combine one half of each ofthg3 and SiteB
data-sets to use as a training set producing the multi-sige \We evaluate this
model on the remaining half of each data-set. Using the seand@m) mechanism
as above, this process is repeated to obtain standard idevéatd confidence in-
tervals. In this way the results show the overall accuracy@th halves for Day3
and SiteB respectively. This represents the spatial gabil the multi-site model
on specific, different data-sets.
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It is important to note that in each case, there is no overtdyden the training set
and the testing set — we do not test the accuracy on the samasiatas used to
train the model. Further, each of the experiments is redaatdtiple times using

multiple different random-number seeds to divide data-seb different training-

sets and testing-sets. In each case we present the ovenalbag along with con-

fidence intervals where these are significant.

The following metrics are used to quantify the accuracy a$sification models:

e Overall Accuracy— the percentage of correctly classified instances over the
total number of instances,

e Precision— the number of class members classified correctly over tAériam-
ber of instances classified as class members for a given elags

¢ Recall— the number of class members classified correctly over tiaériamber
of class members for a given class.

4.3 Classification Accuracy (Same Site, Same Day)

In this subsection, we present results contrasting theathaccuracy across four
classification methods: C4.5, Na Bayes, IANA port numbers and L7 signatures.
The results are shown in Tabte Note that C4.5 and Nee Bayes classifiers are
using the features computed with the five-packet obsenvatiodow; instead, for
ideal effectiveness, L7 classifier is searching the paytmadent for known signa-
tures in up to the first 10 data packets of a flow.

It is well known that the port-based classifier is likely tadeto inaccurate esti-
mates of the amount of traffic carried by different applicas given that certain
protocols, such as HTTP, are frequently used to relay otpast of traffic, e.g.,
MSN Messenger over HTTP, whereas other protocols make ysaraliel connec-

Data-Set C4.5 Naive Bayes| IANA ports | L7 Signature| L7 Signature
Set (2008)|  Set (2003)
% flows 99.80A4-0.021 | 96.663+0.064 95.29 88.93 72.27
Dayl | % packets| 99.71H-0.026 | 82.050:0.093 34.25 30.18 27.13
% bytes 99.714+0.025 | 83.91H1-0.091 31.72 27.66 25.89
% flows 99.895+0.012 | 95.845+0.066 91.79 87.63 70.63
Day2 | % packets| 99.886:0.013 | 86.152-0.089 23.96 23.39 21.24
% bytes 99.884+-0.013 | 86.341:0.088 16.21 16.31 15.39
% flows 99.937A-0.010 | 98.30H-0.049 84.66 78.03 60.14
Day3 | % packets| 99.843+0.016 | 80.93G+0.095 21.07 19.94 17.93
% bytes 99.842+0.016 | 80.203:0.107 17.55 16.51 16.22
% flows 99.665+:0.021 | 97.630Q:0.055 89.67 94.28 56.08
SiteB | 9% packets| 99.4410.029 | 94.570+0.068 79.39 86.61 57.87
% bytes 99.422+0.033 | 93.70Q£0.077 77.53 84.59 61.13
Table 5

Overall accuracy comparison across 4 classification methods.
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Class Dayl Day2 Day3 SiteB
Precision% | Recall% | Precision% | Recall% | Precision% | Recall% | Precision% | Recall%
WEB 99.878 | 99.945 99.985| 99.989 99.955| 99.992 99.771| 99.962
MAIL 99.954 99.982 99.642 99.648 99.899 99.899 99.862 99.871
BULK 99.003 99.654 99.861 99.880 99.627 99.794 97.830 97.478
ATTACK 95.845 81.668 94.147 94.529 60.000 8.571 99.950 99.751
CHAT - - - - 95.313 | 92.424 96.056 | 81.818
P2P 96.456 | 96.595 99.201| 98.914 99.892 | 99.861 99.204 | 99.154
DATABASE 99.892 | 99.463 99.808 | 99.693 99.967 | 99.978
MULTIMEDIA 97.206 | 98.185 0.0 0.0 100.0 | 94.737 100.0 | 72.727
VOIP - - - - 88.095 79.570 90.523 87.920
SERVICES 100.0 99.502 99.641 99.910 100.0 45.714 71.823 27.957
INTERACTIVE 100.0 100.0 97.222 97.222 100.0 99.071 97.792 97.792
GAMES 100.0 | 40.000 - - - - 100.0 100.0
GRID - - - - - - 96.875 100.0
Table 6

Per-class accuracy for online classification using C4.5.

tions which use dynamically assigned port numbers, e.gP, ffdnsfers in PASV
mode. In addition, emerging services typically avoid the aswell known ports,

e.g., some P2P applications, while other popular apptinatdeliberately use well
know ports to masquerade their traffic through firewalls,,e&Sgype. These have
led to only 31% of byte accuracy in Dayl and further 16% and by®% accuracy

in Day2 and Day3 respectively.

The general performance of payload signature matchingeis ewrse because (a)
even the most up-to-date signature set is far not enoughver @l the applica-
tions, (b) some of the signatures do not match sufficientlly wiaile (c) others are
significantly over-matching.

Compared to conventional port-based and signature-baasdifeérs, the overall
accuracy of our method is much higher in terms of flows, packed bytes. To
fully describe its performance, Tabedetails the per-class performance for each
application class. The accuracy is high90%) for the major application classes.
However, because the classifier tends to converge towagdsdghest overall accu-
racy, classes containing a small number of members mayrmirasewer accuracy
as the class distribution of the training data-set is nofioum.

Also, some of the classes are presumably more difficult thiaers. The ATTACK
class comprises of a variety of malicious activities targgat different vulnerabil-
ities. This complex variety leads to a number of false prgahs to and from other
classes, e.g., some of them are classified as WEB in Day1 art] dajle in Day2
some MAIL flows are classified as ATTACK. However, the resutisvg that these
models may still achieve either good precision or good tdoalATTACK class
within Dayl, Day2 and SiteB.

Ideally, the accuracy obtained by two-fold cross-validain the same data-set can
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be an indication of accuracy for classifying the traffic c #ame day or in a short
period after the model is built.

We are also interested in seeing how the classifier decaydgiowe which is pre-
sented in the next subsection; and how the classifier pesforma totally different
network or across various networks, which is presented bs&ctiord.5.

4.4 Temporal Decay of Model Accuracy

In Section3 we note that each classification scheme involves the creati@model
that provides an identification of each network-based appbn. Such models may
be the table of port-numbers relating to (groups of) appbes, the signature set
for specific applications, or the probabilistic priors gomg flow-features as used
by machine-learning algorithms. In each case a model wiihdehow traffic is
classified.

With changing applications and network-host behavior, dheuracy of such a
model for traffic classification will change over time, as Wasitrate in the fol-
lowing for several different methods.

We study the temporal decay of the model accuracy by apptieagrodels created
from Dayl and Day?2 data-sets to classify the Day2, Day3 an@Daspectively.

The gap between Dayl and Day2 is one year (2003 to 2004), ichvthe variety

of application and composition of traffic did not change gigantly; whereas be-
tween Day2 and Daya3 it is roughly two years (2004 to 2006) wihene is a rise

on the number of different applications (e.g., more kindB2® clients, web appli-
cations, instant messengers and Voice-over-IP clients®.cbmposition of traffic
also changed accordingly.

Figures4 and5 show a 4-way comparison of the decay of the overall accuracy
from 2003, 2004 to 2006 for correctly classified flows, andketx and bytes re-
spectively. We used the same IANA port number list as befoueadded an old
version of L7 signature set (September 2003) alongside th&t op-to-date L7
signature set. The two signature sets would represent ttay ad signature-based
mechanisms under different assumptions. Besides thosdiometbe results using
C4.5 and Nave Bayes models built upon the Dayl data-set to classify Ren®
Daya3 traffic.

It is shown that while conventional classifiers such as paged and signature-
based degrade by around 5% of flow accuracy each year, the @4%fier has
only a decay of less than 2% each year in all three measuresvad, fpackets
and bytes. The standard deviation in the results is relgtsraall. For example, the
standard deviation of C4.5 Day1 vs. Day3 is 0.079 antv&lBayes Dayl vs. Day3
is 0.130. These values are invisible in the resolution ofitiee therefore the error
bar is not shown.
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Fig. 5. A 4-way accuracy comparison of correctly classified packetbgtes for Dayl vs.
Day2 and Day1 vs. Day3.

Further, Figure6 shows a comparison Day2 vs. Day2 and then Day2 vs. Day3.
From this we can see the decay of C4.5 anivB®ayes classifiers, between 2004
to 2006. Results are given in terms of flows, packets and byteserror bar is not
shown due to the same reason as described above. It is d¢énehe is significant
decay in the quality of classification provided by theiw¢aBayes — still better
than the L7 and port methods (Figukebut significant nonetheless. In contrast the
C4.5 loses less than 3% of accuracy for all metrics.

Finally, Table7 presents the precision and recall values of the resultg @in5.

Most of the classes are very accurate from 2003 to 2004, angl odasses are still
very accurate from 2003 to 2006 and from 2004 to 2006, e.g., VWEBL, BULK
and P2P.

We also observe that in certain cases the precision is signtfiy higher than recall.
This indicates that some new types of applications of tlassimay have emerged
during this period. These applications are difficult to beognized by the model
trained using an earlier data-set. For example, a reasothéorecall of MAIL
class losing 11% accuracy is that more mail servers tunnARMommunications
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Class Dayl vs. Day2 Dayl vs. Day3 Day2 vs. Day3

Precision% | Recall% | Precision% | Recall% | Precision% | Recall%
WEB 99.917 | 99.868 99.851| 99.713 99.941| 99.866
MAIL 94.362 100.0 99.606 | 88.914 100.0 | 87.934
BULK 83.545 99.259 35.101 92.543 86.623 97.178
ATTACK 0.0 0.0 0.0 0.0 0.0 0.0
CHAT - - 0.0 0.0 0.0 0.0
pP2pP 92.690 | 97.791 96.219 | 99.578 98.471| 98.856
DATABASE 96.893 19.148 51.741 4.531 100.0 99.967
MULTIMEDIA 0.0 0.0 0.0 0.0 0.0 0.0
VOIP - - 0.0 0.0 0.0 0.0
SERVICES 99.541 97.570 43.750 30.000 4.636 30.000
INTERACTIVE 97.222 97.222 100.0 8.050 100.0 8.050

Table 7

Per-class accuracy temporal stability for online classification using C4.5.

through SSL in Day2 and Day3. Moreover, we can see differatglthse manage-
ment system servers on the site increased between year 8@084: the recall
is low for Dayl vs. Day2 and Dayl vs. Day3, while nearly all tedabase flows
are correctly identified in Day2 vs. Day3. Similarly, it altoled to identify the
network monitoring applications built upon HTTP (they astegorized into SER-
VICES) and several remote control applications in the INTERA class, such
as PCAnywhere and GotoMyPC that appeared between 2004 aGdRGOCHAT
and VOIP traffic are not successfully classified becausesthiesses do not even
exist in the training sets. This observation also raisestansting problem of how
to identify a whole new class of traffic which is previouslyolnserved. Further,
poor temporal stability is shown for ATTACK as the maliciouaftic is of totally
different types in the training and testing data-sets.
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4.5 Spatial Stability of Model Accuracy

Our spatial stability study comprises of two experimerts:first is using the model
trained on one site to measure the accuracy on anothertstegtond is building
a model on the traffic from both sites and test on them sepwrate

In the first experiment, we measure the accuracy of a modeglsgplied to clas-
sify the traffic in a totally different network where no prioformation is available.
In the second experiment we are measuring the effectivasfesgeneric model
across different, specific networks. Both experiments serustrate the spatial
property of the classification methodology.

4.5.1 Training on One Site and Testing on Another

The accuracy here shown are for models trained on Day3 ae@ Sispectively
and applied to test the accuracy on the other data-set. Baldmpares the model
accuracy with L7 and port numbers. The results under “Dai8BSis using Day3
as training set and SiteB as testing set; the results und®&B'SDay3” is using
SiteB as training set and Day3 as testing set.

Since the majority of traffic in SiteB is web-browsing trafaad the HTTP sig-
nature works relatively well, the L7-signatures yield goedults. However, in all
cases the result using C4.5 is advantageous compared wéh ro#thodologies.
Notably, the Day3 C4.5 model shows better results in termsuwisi| packets and
bytes on SiteB which is from a totally different network 19 mtfus later.

Table 9 reports the results for each application class using C4.¢er8emajor

classes, namely WEB, MAIL, BULK and MULTIMEDIA have shown ot#sding

recall values on both directions; this means the model ig eéfective for most
traditional services. However, we notice that there argslin some other traffic
classes.

Model: Data-Set C4.5| Naive Bayes| IANA ports | L7 Signature
Set (2008)

% flows | 94.466:0.095| 89.8210.122 89.67 94.28

Day3: SiteB| % packets| 93.294+-0.103 | 84.417:0.263 79.39 86.61
% bytes | 94.035:0.094 | 84.725+0.394 77.53 84.59

% flows | 95.790:0.080 | 84.454+0.149 84.66 78.03

SiteB: Day3| % packets| 94.967:0.086 | 73.226+-0.337 21.07 19.94
% bytes | 95.345:0.082 | 73.162+0.340 17.55 16.51

Table 8

Accuracy of models trained from one site and applied to each other siteedmrtivay3
(2006, Site A) and SiteB (2007, Site B).
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Class Day3: SiteB SiteB: Day3
Precision%| Recall% | Precision%)| Recall%
WEB 98.586| 99.748 99.917| 99.526
MAIL 99.697| 99.981 91.270| 99.346
BULK 11.307| 91.172 37.421| 98.206
ATTACK 0.000 0.000 0.000 0.000
CHAT 50.629| 63.636 91.379| 80.303
P2P 88.610| 58.355 98.172| 99.520
DATABASE - - 0.000 0.000
MULTIMEDIA 0.578| 90.909 100.000| 94.737
VOIP 33.019| 26.845 3.022| 11.828
SERVICES 0.079 0.430 0.333 1.429
INTERACTIVE 52.917| 80.126 17.266 7.430
GAME 0.000 0.000 - -
GRID 0.000 0.000 - -

Table 9
Per-class accuracy of C4.5 models trained from one site and appliedhotec site.

ATTACK: because of the difference in both location and tinie, attack traffic
in the two data-sets are totally of different types, whichszd that none of the
models can identify the ATTACK traffic in the other data-set.

P2P: the identification is highly accurate from SiteB to Dal@t it drops to
58% when using Day3 model to test on SiteB. As a matter of fagthawe only
found 9 internal hosts in Day3 running a P2P application (€lfa; eDonkey
or Azureus). However in SiteB there were 30 internal hoststhe variety of
the clients are larger (eDonkey, BitTorrent, DirectConnéattid, Gnutella and
Pando) and are probably of newer versions. Further to ouwlatlge, a major
part of Site A is running a firewall that severely throttlePReaffic. Such throt-
tling produced a lot of failed attempts for connection, whinay lead to some
skewness in the model.

DATABASE and GRID: there is no networked database traffic teEhi which
caused the failure in identifying them in Day3. Similarlyete is no Grid com-
puting traffic in Day3 which caused the failure in identifgithem in SiteB.
VOIP: neither of the two data-sets have many samples of Skgpes in TCP.
Also, the result is not ideal due to the different Skype \@rsi(version 2 in Day3
and version 3 in SiteB).

5

In Day3 the ATTACK class contains a small number of flows by SQL injectioer ov

HTTP while in SiteB it contains traffic generated by botnets and a MS-RP@wor
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Data-Set C4.5| Naive Bayes| IANA ports | L7 Signature

Set (2008)

% flows 99.919+0.008 | 97.986+0.052 84.66 78.03

Day3 | % packets| 99.631-0.025| 79.281-0.309 21.07 19.94
% bytes | 99.62°#0.027 | 78.515+0.319 17.55 16.51

% flows | 99.662+0.032 | 97.884+0.053 89.67 94.28

SiteB | % packets| 99.558-0.035| 94.683£0.312 79.39 86.61
% bytes | 99.600t0.033 | 93.906+0.456 77.53 84.59

Table 10
Accuracy of the dual-site model trained on half of the two data-sets and @sthe other
half of each data-set.

e SERVICES: this class comprises of only a small amount of fl@amsl, in Day3
many of them is network monitoring traffic over HTTP. Thisdeao a number
of false negatives and false positives on both ways.

e INTERACTIVE: this class incoporates ssh connections and s¢seral remote
access software, e.g. GotoMyPC/expertcity. While ssh iees&sidentify from
packet stream behavior, the INTERACTIVE traffic in the two &gaare signifi-
cantly different in their behavior.

4.5.2 Multi-site Training

Now we evaluate the model trained with combined data fromdifferent sites. In
this experiment, a half of each data-set is randomly selexntd combined together
as the training set to train the model. Then the model isdestethe other half of
each data-set.

Table10 shows the overall accuracy comparison and Talilshows detailed per-
class accuracy on each data-set. The resultant accuracglatitly decreases in
comparison to models trained specifically for a given sitésTndicates that there
are very little conflict when combining the data-sets in ordetrain a model for

multiple sites; and the features, as we discussed befardaitinfully representing

the behavior of the applications rather than specific netsvor different situations
in the network communication.

Most of the classes are very accurate except few classefwhlg have a very
small amount of flows. This is because the classifier tendsotwerge toward
higher overall accuracy during training, and the numbeaafigles in these classes
might be insufficient to build a good model. There are methodsde-off between
the accuracy of a certain class with the overall accuraa/vanrefer readers to re-
lated machine learning literature.
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Class Day3 SiteB
Precision%| Recall% | Precision%)| Recall%
WEB 99.964| 99.982 99.746| 99.968
MAIL 99.924| 99.949 99.963| 99.862
BULK 99.663| 99.495 96.654| 98.919
ATTACK 29.411| 14.285 99.626| 99.825
CHAT 94.736| 81.818 97.852| 81.028
P2P 99.668| 99.887 99.314| 98.964
DATABASE 99.923| 99.934 - -
MULTIMEDIA 100.0| 94.736 90.909| 90.909
VOIP 80.303| 56.989 89.509| 89.166
SERVICES 71.428| 50.000 72.992| 21.505
INTERACTIVE 99.047| 96.594 97.763| 96.530
GAME - - 99.337 100.0
GRID - - 95.876 100.0

Table 11
Per-class accuracy of C4.5 dual-site model trained on half of the twoséttaand tested
on the other half of each data-set.

4.6 UDP Classification Accuracy and Stability

Although in recent years the UDP traffic has not increasedrtoch in the propor-

tion of total traffic volume, we have seen a significantly eased variety of ap-
plications over UDP, such as VoIP communications, multimegbplications, P2P
file-downloading and networked games. Accordingly theamigncreasing need to
understand and technically support such variety of apjptica.

For this study, we selected three 30 minutes traces of UDiictheom Day1, Day3
and SiteB respectively (as detailed in Sect®)nAll the three traces are collected
at around 10:30 AM of a weekday.

Since the UDP flows do not maintain a state machine like in T@R se an inac-
tivity time-out. We elect to use the default inactivity tiroet of Cisco Netflow to

aggregate the flows, with the time-out value set to be 60 sicdlle acknowledge
this may not be the ideal value for all types of traffic and wiostiggest that a mul-
tiple time-resolution approach: using several differ@netout values, would make
interesting future work.

The ground truth in the UDP data-sets is derived in a similay &s in the TCP
data-sets. The actual application breakdown in the UDRskettais shown in Table
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0 0 0
Class By flows [%)] / packets [%] / bytes [%)] Applications
Dayl Day3 SiteB

ATTACK 10.554/ 1.510/ 0.987 14.933/ 1.158/ 1.843 42.433/20.305/15.963 Port scans, ms-sql
worms

SERVICES 88.889/76.807/62.740 57.073/25.167/14.084 11.968/26.532/26.339 DNS, LDAP, NTP,
SNMP, middleware

P2P 0.036/ 0.022/ 0.007| 13.861/28.109/23.862 7.062/ 7.560/ 7.280 Kazaa, Gnutella, eDon-|
key, BitTorrent

MULTIMEDIA 0.522/21.661/36.266 1.268/42.521/59.498 0.000/ 0.396/ 2.287| windows Media Player,
Realmedia

VOIP -/ -/ 12.865/ 3.045/ 0.712 38.536/44.482/45.297 skype

GAME -/ -/ - -/ -/ 0.001/ 0.726/ 2.830 Second Life

Table 12

Composition of UDP traffic in our data-sets. Applications shown are onlynples for

demonstration. “-” denotes non-existing traffic.
Abbreviation Description SU Memory Overhead| Computational
Complexity
num.pkts Number of packets seen on both directions 0.3333 | O(1) O(n)
min_pbytecint Minimum payload bytes seen (client tp 0.3897 | O(1) O(n)
server)
min_pbyte serv Minimum payload bytes seen (server [00.4114 | O(1) O(n)
client)
maxpbytecint Maximum payload bytes seen (client 100.4032 | O(1) O(n)
server)
max pbyte serv Maximum payload bytes seen (server [[00.3803 | O(1) O(n)
client)
ini_pbytecint Payload bytes sent from client to server he-0.3353 | O(1) O(n)
fore the first packet coming back
maxcsctpktscint | Maximum number of consecutive packets0.3064 | O(1) O(n)
(client to server)
senport Server Port 0.6424 | O(1) o(1)
clnt_port Client Port 0.3676 | O(1) o(1)
Table 13

Properties of the subset of UDP features selected using five-paoketvation window.
SU is the Symmetrical Uncertainty measurement, as fully described in S&c&on

12, comprising of 6 major classés

Following the approach described in Sect®g, a machine learning approach is
applied to classify the UDP traffic. Like the TCP traffic, we e observation
window that limits us to the first five packets.

As the UDP header contains different information from the Té@Rder, it is neces-
sary to select a different feature set for UDP. Thereforeraplete set of features
similar to the TCP feature set (with the TCP-specific ones red@nd a few oth-
ers changed) are collected and then, applying the FCBF-bagpedaah described
in Section3.5, we select an optimal subset of features. The resultantireset
contains nine features and are shown in Taldéelow.

6 In theory there may also be instant messengers traffic (CHAT class)Uu@@y but it is
not found in these traces.
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Data-Set C4.5| Naive Bayes| IANA ports | L7 Signature
Set (2008)
% flows 99.956+0.011| 86.879+0.208 88.91 73.43
Dayl | 9% packets| 99.969:-0.010| 88.567-0.163 79.44 72.55
% bytes | 99.97#0.010| 90.529+0.157 64.38 59.58
% flows 99.62°A4-0.034 | 97.812-0.077 56.44 65.97
Day3 | % packets| 98.745:0.043 | 94.389:0.101 18.54 20.03
% bytes | 94.750t0.069 | 95.121-0.098 5.28 5.66
% flows 99.889+0.019| 97.964+0.075 10.50 53.15
SiteB | % packets| 99.052-0.036 | 96.224+0.101 22.96 71.30
% bytes | 98.937-0.037 | 92.25G0:0.100 23.35 72.34
Table 14
Overall accuracy comparison across 4 classification mechanisms.
Class Dayl Day3 SiteB
Precision%| Recall% | Precision%)| Recall%| Precision%, Recall%
ATTACK 99.772| 99.924 99.782| 100.0 99.994| 100.000
SERVICES 99.996| 99.964 99.905| 99.958 99.930| 99.923
P2P 100.0| 88.889 99.115| 98.601 99.147| 99.332
MULTIMEDIA 97.015 100.0 97.789| 98.797 0.0 0.0
VOIP - - 98.950| 98.916 99.896| 99.859
GAME - - - - 0.0 0.0
Table 15

Per-class accuracy for UDP classifier using C4.5.

Tablel4compares the overall classification accuracy across tesifitzation method-
ologies: C4.5 and Nge Bayes using five-packet observation window, IANA port
numbers and L7 signatures, using the same criteria as imopieVableb. It shows
that C4.5 achieves very good accuracy and works far bettarl &dA port num-
bers and L7-signatures.

Table15 shows the precision and recall results for each class in@dmtehset. Most
of classes are approaching 100% recall and precision, exeepminor classes
in SiteB with only few instances, which are probably too dn@lbe effectively
modeled.

We further evaluate the temporal and spatial performanteedf/ DP classifier and
the results are shown in Tallé.

31



Temporal Spatial

Class Day1 vs. Day3 Day3: SiteB SiteB: Day3

Precision%| Recall% | Precision%)| Recall%  Precision%, Recall%
ATTACK 36.493| 22.053 99.986| 96.516 99.965| 81.465
SERVICES 72.221| 99.862 95.366| 96.577 99.200| 99.501
P2P 24.625 1.289 67.106| 63.018 68.973| 86.469
MULTIMEDIA 10.204| 92.955 0.256| 50.000 0.0 0.0
VOIP 0.0 0.0 91.225| 95.252 84.958| 87.519
GAME - - 0.0 0.0 - -
Overall Flows% 61.428+0.358 92.149+0.157 93.67Gt0.144
Overall Pkts% 70.086t0.298 52.955+0.375 92.553+0.148
Overall Bytes% 65.275:0.334 36.772:0.434 89.725+0.161

Table 16
Per-class and general accuracy for temporal and spatial evaludtible &DP models

trained with C4.5.

The temporal study indicates that the diversity and varadtypplications over
UDP have significantly increased between Day1 and Day3.rédéibnal services:
DNS, NTP, SNMP and Windows Media Player traffic are correickntified. How-

ever, the new types of attacks, P2P filedownloading and Vpf#ications are not
able to be identified using the previous model.

Despite the Day3 and SiteB UDP date-sets are highly diffengthe traffic compo-

sition and the application-set, most of the classes arecibyridentified. The result
for P2P class is lower than SERVICES and VOIP due to the diiteapplication

variety on each data-set and the impact from firewall pdiagieDay3. Also, there
are only 2 multimedia flows in SiteB which is insufficient toilouthe model to

classify the MULTIMEDIA traffic in Day3.

Finally, a multi-site model is trained using combined UDRadaom two different
sites. A half of each data-set is randomly selected and cwmdhiogether as the
training set to train the model. Then the model is tested erother half of each
data-set. As shown in Table,

Again the result is much better than applying model from oitee t® the other.
A very small decrease is seen in comparison to models traipedifically for a
given site. However, the overall accuracy is still very goadd the recall value
of some classes such as VOIP and MULTIMEDIA in SiteB have eugroved,
probably because the additional training samples from QayB8plemented those
from SiteB.
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Class Day3 SiteB
Precision%| Recall% | Precision%| Recall%
ATTACK 99.971 100.0 99.989| 99.995
SERVICES 99.939| 99.958 99.912| 99.917
P2P 98.449| 97.768 99.221| 99.270
MULTIMEDIA 99.648| 97.251 7.143| 50.000
VOIP 97.767| 98.611 99.884| 99.864
GAME - - 0.0 0.0
Overall Flows% 99.453+0.043 99.884+0.019
Overall Pkts% 98.150:0.324 98.937-0.101
Overall Bytes% 97.815+0.500 95.888+0.572

Table 17
Per-class and general accuracy of the dual-site model trained orf iadf tovo UDP data-
sets and tested on the other half of each data-set.

4.7 Complexity and Memory Footprint

The cost in the online classification pipeline can be brokanmrdinto three parts.
Suppose we drop the later packets of a flow after classificatiohe flow. Then if
we denoteV/ as total flows currently in the memory andhs the number of packets
in the observation window, then the total computationakbgad would comprise
all the following (also note that roughly/ has a linear relationship with):

(1) For capturing packet headers and aggregating packetdlanvs, there will
be a memory footprint 0O (M) to storeM flows in the memory and com-
putational complexity of at leas?(log, M) for each packet captured to find
the flow it belongs to. Assuming/ is proportional ton, for each flow, the
complexity in aggregating the packets is roughlfh x logsn).

(2) For feature collection and calculation of each flow, eldéint features in the
complete set would cause a memory footprint varied ffofh) to O(n) and
computational complexity varied from(1) to O(n x logsn). Roughly, the to-
tal cost of feature collection of one flow would have a sujregdr relationship
with the number of features in the feature set.

(3) Presuming C4.5 is being used as the classifier, for cleagdn of each flow,
the computational complexity in the classifier is equal t® #iverage depth
of the decision tree, which is similar to the complexity ahpie port-based
rule-sets.

Clearly, we know from the cost breakdown above, as the coniplekthe classi-
fier is O(1), the bottleneck in this pipeline may be in reassembling the<land
calculating the features, instead of the calculations endlassifier. However, the
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total cost of classifying a flow can be bounded withifv. x logan + n x K') where
n is the number of packets in the observation window ani the number of fea-
tures collected. Such cost is considerably lower than a Baged string signature
matching system whemand K are both small.

Besides the complexity analysis, empirical results on the @R required for
training and testing are provided below.

4.7.1 CPU Time Results

The experiments are run on a Dell Poweredge 2850 equippéd2nlintel Xeon
3.5GHz CPU and 4GB of RAM. L7 signature matching and featuréectobn
are implemented in C++, whereas the training and testingeofrtachine-learning
models are performed using the Weka toolkit.

The CPU times are evaluated using data-sets on three differales: (1) one-tenth
of a 30-minute trace (2,476 flows), (2) one 30-minute tra&g20 flows), and (3)
ten 30-minute traces (377,000 flows).

Three different classification methods: C4.5)WeBayes and L7 are separately ex-
ecuted on these data-sets. The time in offline trainingnerfeature collection and
classification are measured separately for each of the matkarning approaches,
whereas for L7 we measure the time spent in classificatiarealéor each result of
machine learning methods, we classify each data-set usengbdel trained from
a data-set of the same time scale. Each experiment is rejpeatéimes. Tabld8
lists the CPU times normalized by the number of flows in the datihe size of the
trace varies, along with the standard deviations. The tonad@gregating packets
into flows is included in “online feature collection / clafgsation”.

The offline training time is less relevant to the online dl@ess performance: it
shows how long it takes for the model to be built up using aatedata-set size.

The feature collection time for machine learning algorighiand the classification
time for L7 are both nearly constant when normalized. Howethe feature col-
lection time is about one-third of the time spent in signatomatching by L7 (both
implementations are not optimized). The classificatioretiming C4.5 is very low:
13 us per flow for the largest data-set. Recall that the averag@utation needed

Data-Set Size C4.5 Naive Bayes L7
1/10 186.06+ 25.66 103.74+ 20.49
Offline training time ps] 1 130.20+ 8.19 24.65+ 1.97
10 337.714+ 2.88 32.28+ 0.53

1/10 | 673+£49/67.7911.09 | 673+ 49/610.25-40.43 | 1666+ 70
1| 692+ 101/19.36:1.05 | 692+ 101/1331.&13.76 | 1540+ 198
10 540+ 8/13.73:0.34 | 5404 8/4276.74375.76 | 1814+ 63

Online feature collection /
classification [is]

Table 18
Comparison of training and testing times between C4.%5y&Bayes and L7 schemes.
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in a C4.5 decision tree is the average depth of the tree. Asab@efkthe training set
increases, the average tree-depth in all our models rerhatngeen 4 and 5, due to
the effective pruning process of this algorithm. And so tbenmalized classifica-
tion time should remain constantIn contrast, the normalized classification time
is not constant for Nae Bayes with kernel estimation as the CPU time grows from
610us per flow (1/10 data-set) to 4276 per flow (ten data-sets). It is determined
that training on larger data-sets results in a higher coxitylef the model.

5 Related Work

The challenge in classifying the Internet traffic has arduse ever-widening in-
terest — whether among users concerned about their dateonrkebperators and
nations keen to embargo certain applicatiodd],[or researchers wanting to fur-
ther their understandin@{l], there has been a rich literature that drafted a range
of proposals and conducted a number of preliminary experisn® address this
interest.

The work in [7] quantitatively addressed the problem for conventionassifica-
tion methods based on port numbers to effectively deal withent Internet traffic.
It also described a content-based work to obtain the grawri &pplication infor-
mation for each flow in the traffic.

Traditionally another type of solutions came from the istom detection com-
munity, examples of this include Sno&9q and Bro P6]. Each of these systems
can identify the application layer protocols through the o$ content signatures
or connection patterns. The L7-filter, the deep-packetaospn filter described
in [14], is a signature matching system able to identify the apfibn layer pro-
tocols so as to enable per-application traffic managemehinvihe scope of the
Linux i pt abl es system.

There have been a number of previous works on statisticabctaization and
classification of different application traffic. Fundamanio these are papers to
characterize a network flow using a different variety of tees to describe its
behavior P7,11]. Their contribution provides an exploration of the diffet fea-
tures of application traffic. Such rich sets of featuresvalls to consider the abil-
ity to perform behavior-based classification by providihg tnput parameters for
traffic classification for a range of classification appraachs well as inputs to
application-specific modeling and simulation.

Meanwhile, several ground-breaking approaches emergefssification of cur-
rent Internet traffic. Roughaat al. [9] proposed a method, representing a traf-

7 However, there is a non-negligible model-loading time in our experiments, dscts
to higher normalized values for smaller data-sets. The normalized valueefdariest
data-set is closest to the actual cost in the classification.
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fic flow with some features (referred to as “descriptors”)isas packet size and
connection duration. They applied two supervised learteéahniques (k-NN and
LDA) to define the relationship between different valuesh&se descriptors and
different Class-of-Service (CoS) categories. However, mmmon with a number
of authors of the time, Roughaet al. created ground-truth data using IANA port
numbers as a criteria, i.e., 80=HTTP, 25=SMTP, 22=SSH. gdate this overload-
ing of the port information there is an assumption about treventional protocol-
application mapping such as HTTP=web browser, a mappingwikinow demon-
strated as wrong. In Sectidhwe summarize the process by which we calculate
ground-truth information, by making heavy use of manualfig&tion our pro-
cess breaks that protocol-application mapping and placeract reliance on port
number information.

Another interesting approach by kt al. [28] used a significant number of ma-
chines to create a known albeit artificial ground-truth. Wkrewledge the great
effort of the authors however, their approach can only sereempliment the cap-
ture of spatial heterogeneity among different networks site$, as what we have
done in this paper.

In a precursor of this paper, Moore & Zuev B] presented a statistical approach to
classify the traffic into different types of services. AiNa Bayes classifier, com-
bined with kernel estimation and a correlation-based iiiltealgorithm, was used
to solve the classification problem on offline TCP traces. ®silting accuracy
up to 96% demonstrated the discriminative power of a contionaof 12 flow-
behavior features with a classical machine-learning élyor Li & Moore [29]
extend this with the application of the C4.5 algorithm and uke of an “obser-
vation window”: to limit the total number of required packdtom the beginning
of each flow. These extensions allowed them to build an ise@accuracy while
also enabling online (real-time) classification. In costnaith the earlier work of
Moore & Zuev, we have also focused upon algorithms that netugh accuracy
and lend themselves to use in real-time.

Williams et al. [6] carried out a comparison of five widely-utilized machinarie
ing algorithms for the task of traffic classification. Amorigese algorithms, Ad-
aBoost+C4.5 was demonstrated with the highest accuracgdatonly as a guide-
book for algorithms, their feature set is relatively unsspbated, containing only
packet lengths, total bytes, total packets, inter-artivaés, flow duration and pro-
tocol. While a small feature set has computation and stordggages we demon-
strate in Sectiod that by considering a much wider range of features, and then m
imizing the feature set on the basis of quality of informaticomputation and stor-
age advantages can be maintained while accuracy and edfieesis is improved.

Bernailleet al. [1] presented an approach to identify applications using-sfar
flow information. The authors utilized the packet size an@ation of the first 4
data packets in each flow as the features with which theyada@®aussian and Hid-
den Markov Models respectively. These models achieved®®®xverall accuracy
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when assisted by an expanded port-number list, and 93.7%albaecuracy using
simple prediction heuristics. The authors have furtheemoed their work for the
identification of encrypted traffic ir30].

There have been a number of works that attempted the samleipralith different
machine learning algorithms and feature set such as unsseérclustering4,31]
and maximum likelihood with the first order Markov chain fbetstate space of
TCP control packet of a TCP connectio8].[A recent statistical-fingerprinting
mechanism was proposed by the authors2bf This work includes the descrip-
tion of features (described as as application-fingerpritsl included the size of
the IP packets, the inter-arrival time and the order of thekes seen on the link.
While useful in some circumstance, without extra work, su@cinanism are not
best suited to the classification of the majority of Interagplications. In contrast,
in Section3, we present results from a group of general-purpose cleasdn sys-
tems.

Differing from the per-flow classification approaches, otwerk utilizes informa-

tion retrieved from a higher level of traffic aggregation —e #nd host. Karagian-
nis et al. [32] combined information from multiple levels such as the iattion
between hosts on the host level, protocol usage and per-flevage packet size
on the flow level. The results show an ability of classifyir@®90% of the traffic
with 95% accuracy. In33] the authors present a related mechanism to profile user-
activity and the behaviors of the end-hosts, as well as alysinaf the dynamic
characteristics of host behaviors.

Notably there is also a lot of work focused on specific kindsalffic or applications

of interest. For examplel[] showed an interesting approach specifically intended
to identify Skype traffic by recognizing special charactes of Skype and Voice-
over-1P traffic. While a number of papers have been publislbedssing on the
identification of P2P applications34] effectively identified P2P traffic using sev-
eral sources of information taken from the IP-tuple conieeagraph. Further,d5]
proposed a way to identify P2P activities through the olet@m of the connection
graph property and the client-server property of an end host

6 Conclusion

Motivated by the importance of accurate identification feaage of applications,
we have explored the effective and efficient classificatibnetwork-based appli-
cations using only the observed network-traffic.

We presented results of a comparison among a humber offetatisin schemes.
Significantly, we only used data for which we have estabdstie ground-truth:

the actual applications causing the network-traffic obsgrbespite the burden of
computing accurate ground-truth, we summarize a methodawve tised to accu-
rately assess many hundreds of Gigabytes of raw data.
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We demonstrated the accurate training of models from ddtaanhigh-confidence
ground-truth and the use of an efficient, small, feature saved from the reduc-
tion of a large flow feature list using a sophisticated feagglection mechanism.
In combination with a small feature list, we further show tatirn of good results
with the use of sub-sampling based upon a limited obsenvatiadow. We con-
clude the combination of an observation-window and the nm&elearning method
(C4.5) is transformative: enabling this approach to makeimgaact in online, real-
time, classification applications.

We have documented a unique study in both the temporal atidlsg@mains: com-

paring classification performance across several yearaeatazation and across
several locations. These results are unequivocal in detnabing) the effectiveness
of C4.5 mechanisms, the brittleness of packet-content rdsthad the need for
samples of traffic from multiple sites to provide for acceratulti-site classifica-

tion.

We demonstrated the computational complexity and measheecbsts within the
classification pipeline, noting the non-linear trade-afisurred by some methods,
the limitations of deep-packet inspection, and the needbservation-window
based mechanisms.

Finally, while some past publications had investigated UEd#ic classification

within the scope of a single application, in contrast witerth we illustrate the
classification of UDP (and TCP) traffic using an applicatinddpendent classifier.
We use the same classification approach for both statefusflOWP) and state-
less flows based upon UDP. Importantly, we demonstrate leiggid of accuracy:
greater than 92% for the worst circumstance regardlessedblication.

Data

While anonymity needs and legal obligations limit an outitigelease of our raw
data-sets; we make available to the community anonymizéal fdes as well as
software atit t p: / / wwv. cl . cam ac. uk/ resear ch/ srg/ net os/ brasil/
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