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Abstract— Online traffic classification continues to be of long-
term interest to the networking community. It serves as the
input for practical solutions such as network monitoring, quality-

of-service and intrusion-detection. In this paper we present a
machine-learning approach that accurately classifies internet
traffic using C4.5 decision tree. Accuracy is not our only concern;
the latency and throughput are also of extreme importance. With-

3) The proportion of encapsulated or encrypted traffic is

increasing. Examples include proxies, VPN, tunneling,
and applications using a different protocol to exchange
data (e.g. GetByMail [2]). Encapsulation would change
the pattern of the original application level protocol,

while encryption of packet payload also renders the

out inspecting packet payload, our method can identify traffic
of different types of applications with 99.8% total accuracy, by
collecting 12 features at the start of the flows.

identification mechanisms based on payload inspection
inefficient.

. INTRODUCTION However, the nature of each Internet application allow®it t

be classified into one of several discrete categories. Ebemp
The Internet is evolving towards a vast, ubiquitous infiast Nclude: web-browsing, multimedia data such as VOIP, email
ture, supporting an increasingly-huge market of data comm@ctiVities, peer-2-peer and FTP file transfers and mal&iou
nication and digital media and producing trillions of deda traffic. This taxonomy, originating Wlth the “Class of Searsf
of revenue each year. The data transmission is governed ((S) [3], was further extended in [1]. It was noted that
simple end-to-end transmission protocols such as TCP dfffférent kinds of applications have diverse objectivesl an
UDP, without efficient monitoring, auditing and intelligen characteristics, which may also cause diverse behaviotirein
control over the traffic, but the success of the Internet h#&ffic flows, i.e. “traffic patterns”.

led to the emergence of a seemingly-uncountable variety ®fqeq ypon observed traffic patters, we developed a classif
applications. cation scheme providing near-real-time classification pta

Along with the development and evolution of the applicasion?9-8% Of traffic, using behavioural features and C4.5 deuisi
on the Internet, an efficient application classificationesnh is tré€ algorithm [4]. This approach is fundamentally differe
highly desirable to support various solutions such as achen from traditional traffic classification approaches in that:
network monitoring, network resource management, anomaly
detection, application-specific strategies and netwoxkitag 1) It does not rely on port numbers. Further, we presume
activities. Moreover, the application-level knowledge toe no prior knowledge about port-application mapping in
Internet is extremely useful for those who set out to model  our approach.

Internet traffic or to investigate the long-term changes and2) Our approach does not require the inspection of traffic

requirements for the Internet. payload.

3) The behavioural features, e.g. distribution of the size
of packets, TCP window size, TCP flag bits and packet
directions, are derived from the packet-headers, the same
source of information that is expected to be used by the
routers of the Internet.

The Internet traffic, in principle, is the product of a comple
multifactor system involving a range of networks, hosts; ap
plications and different people closely interacting withclk
other. The complexity is continuously increasing as people
keep producing a vast variety of network applications and
application layer protocols that, in many ways, break the
traditional assumptions: In this paper we document the machine learning approach as
well as a traffic classification system operating in near-real
1) [1] reported that only 50-70% of the Internet traffidime. In addition to the demonstration of accuracy, thedratf
was classifiable using the official International Assigneldetween accuracy and complexity which is a significant prac-
Number Authority (IANA) list. Emerging applications tical issue is also fully discussed. The remainder of theepap
and proxies often avoid the use of standard host portss organised as follows: the next section is a review of eglat
2) Port-based schemes are also overly simplistic confusimgrk. Section 11 illustrates our classification approaahda
applications. For example, VoIP telephony system, chatystem complexity for online traffic classification. Sentik/
messenger systems such as MSN Instant Messenger, presents detailed results and evaluation. Section V cdeslu
regular web-page browsing would use the same port.the paper and outlines our future work.



Il. RELATED WORK From the results in terms of accuracy we may assert that the
combination of a small number of flow-behaviour features al-

i , ready has strong discriminative power to differentiatevieers
In recent literature, many different methods have been ig network applications. For non-anomalous traffic and imith

troduced to solve the traffic classification problem. The m%— small scale of time (eg in the magnitude of within a day)
jority of_current classification approaches still relies ®  iese classification mechanisms can be considerably pirgnis
information of host port numbers, IPs and signatures f?\Fvith an accuracy up to 98% and real-time potential shown).

classification and intrusion detection, such as light-itgd However, the results in the past remained incomplete. Some
intrusion detection systems including Bro [5] and Snort [6] major concerns and open problems included:

Moore and Zuev in [7] presented a statistical approach to
classify the traffic into different types of services. A raiv
Bayes classifier, combined with kernel estimation and a
correlation-based filtering algorithm was used to solve the
classification problem on offine TCP traces. The resulting
accuracy, up to 96% (which degrades to 93% after 8 months),
demonstrated the discriminative power of a combination of
10 flow-behaviour features, with an unsophisticated maehin
learning mechanism.

1) The accuracy is still insufficient. For general purpose
classification, the volume of Internet traffic is huge
and is dominated by a few major traffic classes (Web-
browsing in terms of flows, or Peer-2-Peer and FTP in
terms of bytes or packets). In terms of composition, the
major traffic is comparably easy to discriminate. How-
ever, those hard ones such as encapsulated, ambiguous,
non- standard, misused or anomalous traffic, would only
comprise a not large proportion. An overall error rate of

Williams et al. in [8] carried out an empirical study of conrpa several percent would mean either the major traffic is
ing five widely-utilised machine learning algorithms to sla not efficiently classified; or the hard objects are unable
sify Internet traffic. Among these algorithms, AdaBoost+&£4 to be classified.

achieved the highest accuracy in their results. This serves?) Insufficient understanding has been taken into account
as a guidebook for algorithms, but their feature set used of which features can be used and how to use them.
is relatively unsophisticated, containing only packetglis, Further, little understanding between the accuracy and
total bytes, total packets, inter-arrival times, flow digatand the use of different types of features (port numbers, IP
protocol. Based on the mechanism in this work, [9] further ~ Addresses, flow-behaviour) has been presented in the
moved on to classify game traffic with an observation window  past.
of no more than 25 packets, which is also looking forward to 3) Limited practicability. Notably, real-time implementa
real-time classification. tion is highly desirable, but insufficient work has been
done to show the feasibility and the system performance.
Bernaille et al. presented an approach to identify appboat  4) |nability to quickly discover and correctly identify i
using start-of-flow information in [10]. The authors utdis$ the ical flows, such as intrusions and network anomalies.
packet size and direction of the first 4 data packets in each |ntrusion detection systems would ideally require zero
flow as the features with which they trained Gaussian and false-negative rate and low-latency identification of ma-
Hidden Markov Models respectively. These models received |icious traffic.

98.7% overall accuracy when assisted by an expanded ports) The incompleteness of data. Many past works selected
number list, and 93.7% overall accuracy using simple predic  thejr classification object from a few applications such

further specialised their work to the identification of eyuted whole Internet.

traffic in [11].
- ' . : : Finally, the practical criteria for real-time online traffclas-
Another statistical fingerprinting mechanism was propoged ... -~ . : -

. . ; . sification systems can be different and remains application
[12]. The information they use include size of the IP packets . . . .
; ) . .~ Centric. A trade-off potentially exists between the fourtrnos
inter-arrival time and the order of packets seen on the lin

.0f system accuracy, completeness, latency and throughput.
A number of other works attempted the same problem wif . . L
Iso, algorithm would play a key role in optimising such a

different machine learning mechanisms such as clusteti8p [ . )
[14], LDA and k-NN [3]. system where [17] has provided a lot of experience.

Karagiannis et al. [15] studied multi-level behaviour ogth !!l. SEMI-AUTOMATED MACHINE LEARNING APPROACH
traffic such as analysing interaction between hosts, pobtoc

usage and per-flow average packet size. Their results showVda use a semi-automated machine learning approach to build
ability of classifying 80%-90% of the traffic with 95% accu-the classifier which classifies the Internet traffic into &ppl
racy. In their recent work [16] they presented an interegtircation classes. A series of mechanisms are applied to select
investigation to profile the users activity and behavioanrsd the feature set, the classification algorithm and the size of
to analyse the dynamic characteristics of the host behesziowbservation window before the final classifier is built.



Firstly the total traffic-mix is divided into classifiable jelots. and challenges of online real-time or near real-time traffic
In this paper, the basic object of our classification system élassification. Our concerns are no longer solely focusexhup

a TCP flow, defined as a bi-directional session between tile accuracy but also upon the latency and throughput of the
hosts with the same 5-tuple host-1P, client-1P, host-Rtignt- system. Since many applications would benefit from early
Port and timestamp of the first packet. The server and thetcliédentification of the traffic, our approach considers feasur
of a flow are decided based on observation of SYN packettaken from an observation window of only a few packets,

) rather than those based upon the entire flows.
Two real traces are used to derive and evaluate our appréach.

rich set of 248 flow features are collected from the beginnirig theory, in order to more accurately classify an object,
of individual network flows with different observation wioe it would require collecting more information (entropy) for
sizes. Using this data, we are able to apply feature-setecticlassification. However, collecting more information, fex-
algorithms to find a best subset of the features, to justiéy tlample: more packets or a larger number of features may
classification algorithm. Finally, we train a model uponsthiintroduce higher latency and higher cost in both computatio
feature subset, and apply this model to classify unknowndlonand memory usage. For the traffic classification system to be
) ) ] o operated at near real-time with a considerable throughpeit,
Fig. 1 shows how different types of services exhibit différe g,,1q capture an appropriate, small number of features, an
behaviour in two group each of two features: 1) variance @fom 5 small number of packets and a limited duration, rather
total bytes in packets (client to server) by the total NUMb@Ean from a complete flow. It means, in order to gain the real-
of bytes sent in initial window (client to server) and 2) cOUnjme quality, an amount of information has to be sacrificed

of packets with Push bit set in TCP header (server to clieffy the complete-flow objects which in theory would result
by minimum segment size (client to server). One can obseresome level of degradation in accuracy.
that it is applicable to discriminate between the traffic fow

of each class, using a combination of these features. In this way, the trade-off between accuracy, latency and
throughput becomes the key of our choice of subset of feature
and size of the observation window and the classification

. i ) algorithm.
Our experimental data consists of two consecutive weelk-day

of Internet traffic with an 8 month interval. The traces wer€. Feature Selection

collected using a high speed monitoring box [18] installed

between a research campus and the Internet. The campus @ua complete feature set contains 248 different features as
research-facility with about 1,000 employees and is cotatkec detailed in [19], each of which has varied distribution in
to the Internet via a full-duplex Gigabit Ethernet link. Thehe datasets and has associated with it different collectio
datasets, Dayl and Day2, consisting of TCP traffic only, acemputation costs. Now what we want is to find a subset of this
chosen from a collection detailed in [19]. Every flow in theotw set of features within an upper bound of cost but containing
datasets was hand-classified using a content-based mechasufficient information that leads to the desired accuracy.

into one of the 10 applications classes.

A. Data

In general, we limit the cost by reducing the number of
We left a number of TCP traffic in the datasets unconsideref@atures in the feature set, utilising a correlation-bd#esting
those we havent seen their start of the flow (typically thase amethod. The output of such method is an approximately-best
with very long duration) and junk flows. The resulting tracesubset of features.

contain 31 GBytes and 42 million packets in 377 thousand . ) ,
TCP flows in Dayl, and 28 GBytes and 35 million packet@“r feature selection procedure is as follows: firstly, Dayl

in 175 thousand TCP flows in Day2. Hence, a moderate%‘?"taset is divided into 10 different entries each représgra
complex mix of applications exists in the traffic, as shown ifolume of traffic at different hours of the day; then corriat
Table I. Note that for some traffic classes such as Multimedf2Sed filtering is applied to each entry. We observe thaethes

Services, Games and Attacks, a greater amount of traffic mgRiUre subsets selected by the algorithm possess mdgerate
used other transport layer protocols such as UDP. good stability, and we manually picked 10 behaviour-fesgur
which appear in at least 1/3 of the subsets, and each subset

B. Online Classification Approach would at least contain 1/3 of these features. The intentfon o
this criterion is to look for a best-possible feature setahihgan

Our online traffic classification methodology was origitatebe more stable and independent to the condition of the end-

in previous offline methodology where the features wet®-end link. The resulting features are almost all deperated

collected from complete TCP flows [7] [20]. the applications on the end-hosts. It mirrors this consitilen.

. ) ) Table Il lists these features, as well as the information and
However, if we performed our analysis of flows offline, th%omplexity properties of these features.

practicability of such a system would be very much limited
to merely analytical and auditing purposes. For a much widenrelated to the IANA port list or any prior knowledge of port
application prospect, we moved on to investigate the proble application mapping, we still adopt port pairs as two feasur
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Fig. 1. Scattered plot of 5,000 random selected samples frayilD
i By flow By Packets By Bytes Applicati
ass “Dayl (%) | Day2 (%) | Dayl (%) | Day2 (%) | Dayl (%) | Day2 (%) | ~Pplications
Web-browsing 84.558 80.198 22.529 16.383 29.438 17.623 | http, https
Mail 8.682 9.384 6.777 1.884 7.904 1.763 | imap, pop2/3, smtp
Bulk 3.800 6.146 69.483 80.850 60.569 79.372 | ftp
Attack 0.787 0.562 0.084 0.016 0.132 0.002 | portscan, worms, viruses, imail attacks
P2pP 0.589 1.572 0.331 0.548 0.567 0.777 | napster, kazaa, eMule, gnutella, eDonkey
Database 0.862 1.483 0.387 0.253 0.703 0.400 | mysqgl, dbase, Oracle SQLNet
Multimedia 0.137 0.002 0.112 0.000 0.196 0.000 | windows mediaplayer, realmedia
Service 0.555 0.633 0.135 0.026 0.194 0.009 | X11, dns, ident, Idap, ntp
Interactive 0.027 0.021 0.156 0.040 0.285 0.053 | ssh, telnet, klogin, rlogin
Games 0.002 0.0 0.006 0.000 0.013 0.000 | microsoft direct play
TABLE |
COMPOSITION OF DATASETS
Abbreviation Description Collection Time | Symmetrical Uncertainty] Memory Overhead| Complexity
sen.port Server Port S 0.8398 o(1) o(1)
cInt_port Client Port S 0.0742 o(1) o(1)
pushpktsserv Count of all packets with push bit set ih D 0.2137 0o(1) O(n)
TCP header (server to client)
init_win_bytescint | The total number of bytes sent in initial | D 0.1993 0o(1) 0o(1)
init_win_bytesserv | window(client to server & server to client) D 0.3040 o(1) o(1)
avgsegsizeclint Average segment size: data bytes dividede 0.1949 0O(1) o(n)
by #packets. (client to server)
IP_bytesmed.clint Median of total bytes in IP packet (client E 0.2574 O(n) o(r?)
to server)
actdatapkt_serv Count of packets with at least 1 byte of D 0.1680 0(1) O(n)
TCP data payload (server to client)
databytesvar_cint | Variance of total bytes in packets (client o E 0.2195 O(n) o(n)
server)
min_segsize serv Minimum segment size observed. (server|tdD 0.2996 o(1) o(n)
client)
RTT_samplesserv | Total numbers of RTT samples found D 0.5022 0o(1) o(n)
(server to client), see also [19]
pushpkts cint Count of all packets with push bit set in D 0.2360 O(1) o(n)
TCP header (client to server)
TABLE Il

PROPERTIES OF THE SUBSET OF FEATURES SELECTES=START OF OBSERVATION D=DURING OBSERVATION, EZEND OF OBSERVATION SYMMETRICAL

UNCERTAINTY GENERALLY EVALUATES THE DISCRIMINATIVE POWEROF INDIVIDUAL FEATURES WHEN USED SEPARATELY




Naive Bayes| C4.5 AdaBoost+ . T .

+ kernel est. cas low as possible. For this, it is ideal to classify the flow
Overall 92.38%t 99.834%E 99.816%k early in its existence, except for special purposes.
accuracy 0.35% 0.052% 0.057% 2) Cost. The use of an observation window reduces both
Complexity 8&?:;‘;?5” (?égﬁs (?égf&ounds) the memory footprint in aggregating the packets and
Time taken| 1412s 15s 11s the computational complexity in calculating features. In
for testing other words, this enables a higher system throughput.
Time _ t_aken <8s 133s 1505s
for training Therefore, we calculate the features with a small number

TABLE III of packets in the observation window, and within a limited
duration. The observation window size (number of packets)
is tuned based on empirical results. 1 to 10 packets are
collected from the start of the flow (SYN packet), within a
max-duration of 5 seconds, to compare the resulting acgurac
The port number rules in our classifier are built upon handfig- 2 shows the result: from a total of 5 or 6 packets collécte
classification data, representing the association betwieen it can achieve the highest 99.842% ten-fold cross-vabdati
port numbers and those hand-classified application flows. accuracy in Day1 (99.834% for corresponding two-fold cfoss
validation). We also notice that the small-observationdoiw
D. Classification Algorithm accuracy is not lower than the accuracy of larger obsematio
windows.

ALGORITHMS FOR ONLINE TRAFFIC CLASSIFICATION

Concerning the classification algorithm, we utilised WeR#][

toolkit to compare between different algorithms. In our ap- -
proach, C4.5 decision tree exhibits highest accuracy 82949 -
among all the algorithms. AdaBoost [22]+C4.5 also exceeded
99.8%, while Logitboost, JRip, Nave Bayes Tree and Bayesian
Neural Network also achieved an accuracy of more than 99%.
Moreover, C4.5 decision tree has the lowest testing contglex
among these algorithms. In Table 1lI, the performance o6C4.
and Adaboost+C4.5 are shown compared with the Nave Bayes
method which was used in [7]. Note that the approach in [7]
did not incorporate many standard performance improvesent
for Naive Bayes method and the figure above is a worst case
bound. A similar comparison was seen in [8] based on a BT 3 a1 s & 7 & 8§ m
simpler set of Complete_ﬂow features. Number of packets in observation window

99.85

99.84

Accuracy%
@ @
& w @
o =2 m
@ w3

99.76

99.74

99.72

We also masked the port pa"'S and generated the models a@&n 2. Accuracy with different packet number limits (tendobross-
. . alidation)

purely with the 10 packet- and flow-level behaviour features

with an observation window of 5 max packets. The highest t%- c lexi q ¢ .

tal accuracy seen drops to 99.50% (C4.5 and Adaboost+C4.5). omplexity and memory footprint

This indicates that using port numbers in combination wi

packet- and flow-level features in such a way provides mo

information than only using packet-and flow-level features

e cost in our system pipeline has a complex composition.
we denoteM as total flows currently in the memory as

the average number of packets in a flow, ands observation
The accuracies are from two-fold cross validation on Dayindow size, then the total computational overhead would
dataset, using 12 features described in Section 11I.B, with comprise all the following (also note that roughly has a
observation window of 5 packets. Time values are for trajnirlinear relationship withV):

and testing 325,000 flows from Dayl, collected from Weka.
1) For capturing packet headers and aggregating packets

E. Observation window into flows, there will be a memory footprint ab (M)

to store M flows in the memory and computational
The requirement for online traffic classification necessga complexity of at leastO(logoM)) for each packet
the use of an observation window to collect the set of fegture ~ captured to find the flow it belongs to. Assumidgd
from a part of a flow rather than using full flows. There are  is proportional toN, for each flow, the complexity in
two major concerns: aggregating the packets is rough®(N x logaN).

2) For feature collection and calculation of each flow,

1) Latency. Firstly, for real-time applications such as different features in the complete set would cause
application-specific queuing, monitoring or anomaly de- a memory footprint varied fromO(1) to O(n) and
tection, the latency in identifying a flow should be as computational complexity varied fro®(1) to O(n?).



. Class | Precision (%) | Recall (%)

Roughly, the total co§t of featur.e colllectu_)n of one flow Web-browsing 59 8891 599538

would have a super-linear relationship with the number Mail 99.9703 99.9888

of features in the feature set. Buli (ftp)k gg-ggig Zi;g%i
. o . : ttac . .

3) Asfsumlng C4.§'de<':|3|on tree is being used as thg clas- Peer-2-Peer 97 2588 977225
sifier, for classification of each flow, the computational Database 99.6782 99.7853
complexity of the classifier is of the order of the average Mulgmedia 99-12253 ggggi

P : ervice . .
deth of the decision tree which (1) - the same order Interactive 100.0 100.0
of simple port-based rule-sets.
TABLE IV

Clearly we know from the cost breakdown above, as the  pgg.ciass TENFOLD CROSS VALIDATION RESULT FORDAY 1.
complexity of the classifier i3D(1), the bottleneck in this
pipeline may be in reconstructing the flows and calculatirey t

features, instead of the calculations in the classifier. i@ - Class PFECisgigg é‘?’s) Re;g'gg’f%
. 2 en-browsing . .
the total cost can be bounded within( NV x lgggNJrn x K) Mail 995364 |  96.4310
where N is average number of packets in a flow,is the Bulk (ftp) 99.8518 99.8888
number of packets in the observation window akidis the o AzttéFl)Ck gg-gégg ggggg?
eer-Z2-reer . .
number of features collected. Database 99 8848 99 8465
V. E Service 99.5520 100.0
- EVALUATION Interactive 97.2222|  97.2222
In this section, the model is trained from the first 5 packets TABLE V

seen at the start of every TCP flow. A duration limit of 5 PER-CLASS TEN-FOLD CROSS VALIDATION RESULT FORDAY 2. MINOR
seconds is also applied to enhance the real-time quality andcLASSES wiTH NO MORE THANS FLOW SAMPLES ARE NEGLECTED
system robustness. The set of features being used are the 12

features shown in Table 4. We believe it is valuable to examin

the per-class quality, the temporal stability, and theti@heship
between accuracy and the size of training set, so as toyus
the general methodology for wider practical application.

stability of the model is further examined. This illustrstihe
quality of this model after a significant period of time.

A. Per-class Accuracy For temporal stability we use the model generated with Dayl
dataset to classify the Day2 dataset, which was collected 8

The per-c|ass results shown in Table v, Vv demonstrate tmonths thereafter. The results are shown in Table VI. We
accuracy of C4.5 algorithm, using the 12 features describeiserve the accuracies of most of the major classes still
in the prior section. These features were taken from trafffgaintain to be at a high level; however, the temporal stgbili
with an imposed maximum limit of 5 packets and a maximurd®r Attack class is 0. This reflects the fact that Attack clisss
sampling duration of 5 seconds applied. The results are twgRecial type of traffic that is more dynamic than other classe
fold cross validations of dayl and day2 model respectively.and changes completely over a long period of time. However,

represents the accuracy of the model in the same network dhgugh it may not be possible to provide a long-term stable
same time when the datasets were collected. traffic model for Attack class, there can be alternative Sohs

such as:
The accuracy shown is sufficient for most of the major

application classes>99%), except for Attack class. As a 1) By re-training the traffic model on a regular basis;
general class, Attack is highly varied and complex; it corda 2) By combining this with other mechanisms such as
many different subtypes, such as port-scans, various worms clustering methods or host/port profiling [15] [16];

and viruses. This complex variety leads to a number of false3) By providing a feedback channel from deep-checking
predictions to and from other classes, e.g. to Web-browsing the upcoming traffic to dynamically updating the flow
and from Mail in Dayl and Day2 respectively. However, the model.

results show that these models can still achieve either goqd Training Data
precision or good recall for Attack class over shorter time” 9

periods (e.g. the same day). As noted in Section IV.B, although not significant, the tempo

B. Temporal Stability ral decay is still visible after a period of 8 months. Condegn
the practicality of such a classification mechanism, theireg

We may assume that a general traffic model cannot be as gooeint for hand-classifying the ground-truth training data i

as one which is closely up-to-date and specific to one netwaskder to train and re-train the model can be a serious concern

location, but we believe it should work moderately well withAs the labour required in hand-classification process ames

most conditions. In order to evaluate our model as geneabng with the size of the training set, it is useful to know

purpose traffic model, the temporal (i.e. for different timehow much training data is required for a desired accuracy.
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Fig. 3. Average accuracy vs size of training set.

Class | Precision (%) | Recall (%)

Web-browsing 999630 99 7860 them more distinguishable. The final aim in this paper is
Mail 94.2179 99.9939 the overall accuracy on the number of flows, rather than
Bul;(ftp& 83.28559 99.63759 on specific traffic classes; and the use of C4.5 algorithm
ttac . . . : ; i
Peer-2-Peerl 925035 96.0884 is still very coarse-graln_ed. According to the no-freedn
Database 96.7181 19.2249 theorem [23], for a special type of problem the performance
Service 99.6323 97.5696 of a highly specialised algorithm can be much better than
Interactive 97.2222 97.2222 . . .
that of a general algorithm. Many applications would only
TABLE VI require the identification of single traffic classes, forrgxﬁe, _
TEMPORAL STABILITY RESULT. THE MODELS WERE BUILT WITHDAY 1 Multlmedla, _Game' _BL_JIk' Peer-2-Peer or A_‘ttaCk' It 'S__ _ea5|er
DATASET, AND TESTED ON WHOLEDAY 2 DATASET. to achieve high precision and recall for a binary classiiteat

than for this multi-class classification.

Moreover, in order to tackle the temporal instability and to
In the following results shown in Fig. 3, a proportion 011‘urther adjust the model to other specific network locatjans

the data is randomly picked out for training, and the refPte t'hat the ?ncremental learning (i.e. incremeqtallydt’nag

for testing. Models are trained by C4.5 and AdaBoost+C4EW mformgﬂon from dataset; that consecutively pecome
respectively. The process is repeated 10 times for each p ailable, without access tg previous da’_tas_ets) moelg_h_asug:jn
portion ratio. Error-bars shown in this figure are the minimu as Learn++ [_24] may provide some inspiration. Additionally
and maximum accuracy observed. We observe that using CE@'SO not difficult for _other Kinds of rules (e.g.. based omt.p.o
decision tree, 99% total accuracy can be achieved with Ié%lémberz cl)r rovx:] m,et“cs),to _mar_1ua||y me(;ge éjnto a d;i;smn
than 0.5% of flow objects (1875 flows) randomly selectegee model. Further investigation is required to demois

as training set. Moreover, AdaBoost+C4.5 can further redu easibility of this kind of mechanism in specific applicatio

this proportion to 0.2% (750 flows). This implies that with g present the classification module using C4.5 only ocaipie
comparably small training set the model trained can stilire 5 very small portion of CPU time in the pipeline. Therefore,
a fairly high accuracy. Further, same accuracy may be aetieom a view of the whole system, a large opportunity exists
with fewer training data if we could by any means, conscipus|, which to refine the classification methodology.

select a similar amount of samples for each traffic classs Thi

fact has more practical implications: it can be possiblege u V. CONCLUSION

some seed data collected from a small nhumber of hosts, or i . ) ;

use some artificially generated application flows to model 4R the Interpet there is an ever-increasing vqumg andt;aub
access network. traffic. Motivated by a desire to identify the applicatiorfstoe

Internet, in this paper we present a machine learning approa

D. Discussion for network traffic classification based on traffic behaviour

We may assert that discriminative learning technique (igta By collecting a small number of features, from a small number
C4.5) is a great tool in this problem space. This is in commaf packets or a short duration of a traffic flow, our approach
with the results in [8]. However, the methodology itseltan provide good balance on the overall performance: the
has not been specially tuned to adapt to our classificatiancuracy, throughput and latency. It has many other adgaesta
problem: the features are not being post-processed to maker traditional port and signature based systems, inctuttie



potential to identify encrypted flows or flows using irregula [4]
ports, and the potential to tackle previously unknown appli .
cations. Finally, it has shown very promising feasibilityr f Bl

practical use.
(6]
A. Future Work

Behind this work, we have one clear aim which is to apply thism
classification scheme to practical applications. For tthisre

are still a number of areas where future work should furthef?!
justify the feasibility and suitability.

We recognise that the challenge of finding the best possible]
combination of features and methodology remains highly
application-specific and deserves further investigatioong
term temporal stability and spatial stability remains ampam
tant topic to establish the wider-applicability of the nmdh
but will require more training data sets.

(20]

(11]

Moreover, the classification objects in our current methodo
ogy are only TCP flows with their starts seen on the linki2l
no matter they are complete or not. There is still a portion
of traffic yet to be classified, such as UDP, ICMP and “mid13]
stream” TCP flows, those for which we have not observed the
start of the flow. These kinds of traffic can also be tacklegl,
in a very similar way with the use of the standard timeout
mechanism [25].

Also, further experiments would be carried out to extend tHEd)
performance evaluation and to demonstrate the ability af ha
dling encrypted traffic and previously unknown applicatipn [16]
based on more traffic traces.

Lastly, we observe the computational overhead in the pipeli[m

has a comparably complex composition. It would be verys]
helpful to find a cost function for the features as an input for
feature selection in model-training. In this way a compiexi 1)
bound can be applied to the model.
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