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ABSTRACT

This paper describes a system for the visualization of multiple pro-
tocols. The visualizer makes possible the identification of both
intra and inter-protocol behaviour. This tool has become a criti-
cal resource in the development of our multi-protocol monitoring
system; allowing the verification of the monitoring system, identi-
fication of new modes of behaviour and the easy visualization of
potentially overwhelming quantities of information'.
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1. INTRODUCTION

This paper describes the visualization tool constructed as part of
Nprobe [6]. It has long been considered that visualization provides
a powerful aid to understanding and reasoning, e.g. [11]. Addition-
ally, Nprobe — performing full line-rate capture — allows a unique
perspective on the behavior of network protocols and specifically
the interaction between different protocols in the network stack.
The potential to incorporate a visualization tool within Nprobe was
a clear and important choice.

Nprobe encompasses monitor, analysis and visualization tools,
and manipulates network data derived from full line-rate capture.
For example, an HTML-based browser relies upon the TCP/IP lay-
ers to transport its data. Thus the behavior of the transport layer
directly impacts upon the behavior (and performance) of the appli-
cation and Nprobe provides access to the data of multiple protocol
layers.

To more-fully understand the behavior of a single layer and the
interaction between layers we constructed a set of visualization

"The density of information presented by the visualization
tool that we describe dictates a reliance upon presentation
in color, and the included figures are, therefore, less clear
when printed in grey-scale. A full color version of the pa-
per is available at http://www.cl.cam.ac.uk/netos/
nprobe/publications/MomeTools2003.html
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tools. The bulk and scope of the data collected by the Nprobe
monitoring system calls for tools which render the data and rela-
tionships that it contains in a compact and readily comprehensible
form. The visualization tool described in this paper illustrates, not
only the power of visualization, but also the depth and breadth of
information provided by the Nprobe system.

Visualization systems for network traffic are not new: such a
wide area has produced a wide range of tools. The Walrus tool,
part of CAIDA’s Coral Reef [5] was developed specifically to assist
in the visualization of Internet topology. The MRTG system [7]
is commonly used to graph daily traffic utilization trends, and the
LBNL NetLogger NLV tool [10] presents data gathered across pro-
tocols from a variety of sources. More detailed, protocol-specific,
visualization tools are less common, Tcptrace [8] is one example.
Aside from these publicly available offerings, there are a number of
commercial systems such as the Agilent N4212A Gigabit Ethernet
Protocol Analysis Tool, although such systems are rare in research
institutions due to their prohibitive cost. It is among this group of
tools that we present the Nprobe visualization system.

We differentiate the Nprobe system due to its ability to allow
visualization of multiple protocols from the network stack, simul-
taneously. Our approach is only made possible through the infor-
mation provided by the monitoring tools built as part of Nprobe.
The combination of on-line and off-line processing means that the
relationship between packet, flow and application can be uniquely
illustrated by our tool.

The Nprobe visualization tools are innovative in their integra-
tion with the post-collection analysis framework. Hence raw data
contained in trace files (e.g. TCP segment sizes, flags, and tim-
ings) can be illustrated, but, more significantly, the results gener-
ated by analysis can be displayed in conjunction with the underly-
ing data and their relationship made clear. The TCP visualization
reproduces much of the functionality of Tcptrace, but additionally
shows the relationship between application-level and TCP activ-
ity, and presents the results of the TCP modeling process described
in [3]. The Web browser activity visualization tool presents both
events and timings over the relevant range of protocols, together
with the results of analysis which associates HTTP transactions and
TCP connections to reconstruct the downloads of whole pages, and
draws inferences about the browser’s behaviour and use of connec-
tions.

Because Nprobe gathers data from the entire range of protocols
of interest, and this data may be used to investigate the interactions
between those protocols, the bulk and range of the data contribut-
ing to any specific analysis task is likely to be extensive, and the
relationships to be identified may be both obscure and complex.
Visualizations are normally invoked from analysis code in order to



present raw data, to identify relationships, and to examine and val-
idate the results of analysis. The exact nature of the information
shown will depend upon the protocols of interest, the granularity
and type of data gathered, and the analysis task being conducted or
developed.

Section 2 provides a brief overview of the Nprobe monitoring
architecture. This section also describes the mechanisms that pro-
vide data to the visualization tool. Section 3 describes the current
implementation of our tool. Within the section we strive to provide
a broad overview of some of the abilities this tool can afford. Sec-
tion 4 illustrates the tool in use and describes several further uses to
which the tool has been put. Finally, alongside a summary of our
work, Section 5 notes the ease with which the visualization tool
may be extended in the future.

2. CONTEXT

Network monitoring has increasingly been considered a staple
tool in the understanding of computer networks. From an improved
understanding of the larger picture of routing and connectivity [9],
to allowing the examination and construction of traffic models [12],
to an understanding of the interaction between application and net-
work [4], network monitoring has had an important role to play.

In a previous paper [6] an architecture for full-packet capture
was described. The capture of data based upon access to the full
packet can provide both a bonanza and a drawback. As part of the
capture process tens of thousands of simultaneous TCP flows are
reassembled. By recording information about how the TCP flows
were represented in the network and only a targeted, application-
specific, summarization of the data they transported, a monitoring
architecture can achieve significant compression. It is this on-line
summary of network traffic that allows compression of many hun-
dreds of Mbps of data onto disk, without packet loss.

The online system, analyzes data only sufficiently to allow the
correct interpretation of content during data extraction or abstrac-
tion, allowing aggregation of data into blocks representing one or
more related TCP flows. The transformation of data to informa-
tion requires the retrieval of data from the storage format, and in
most cases further post-collection association and analysis is also
required.

An object-oriented approach is made to the handling of the data
files. Thus the methods for accessing the data may easily incor-
porate functions to perform any necessary post-processing. This
approach has meant that, prior to any visualization, any processing
needed following collection is automatically performed as part of
the retrieval process. This approach is only made possible through
the rich depth of (partly processed) data provided by the monitoring
system.

As an example of how collected data is ultimately presented to
the visualization system, consider the display of the most simple
HTML/HTTP transaction using HTTP/1.0 without any level of per-
sistent connection. One HTTP transaction (a request and reply) is
represented within the trace-data by an associated state record. This
state-record in turn indicates the location of specific data entries
that record the request and reply contents. Along with the HTTP
state record, the record of request and reply indicates the relevant
TCP packets that carried (and acknowledged) the data. Addition-
ally the events of the set-up and tear-down of the relevant TCP
flows are also available. Thus, by accessing the collected data, a
visualization tool need only locate a particular HTML/HTTP trans-
action record to be provided with the relevant data flows, the net-
work packets that made up the data and also set-up and tore-down
the relevant flow. In addition to the data, the monitor provides a
time-stamped record of the packet events allowing an interpreta-

tion of the behavior over time.

The data structures described for this simple example may be ex-
tended to represent more complex protocol implementations such
as extended versions of HTML/HTTP as well as other application
protocols.

Among the Nprobe analysis tools, the visualization tool is the
most striking, both in its ability to bring obvious clarity to difficult
protocol-relationships and in presenting a wide range and depth of
data. However, the visualization tool is not the only analysis sys-
tem and exists alongside test-based tools for summary and statisti-
cal interpretation. However, each part of the toolkit: visualization,
summary and statistical analysis, is built using the same methods
of data access. The exposed nature of this access interface allows
the construction of any number of purpose-specific analysis. It is
this aspect that reinforces the utility of the Nprobe architecture.

In addition to running in the preferred, on-line mode, the Nprobe
tools are able to run off-line; converting a tcpdump trace-file into
the format used by analysis tools such as the visualizer. This is not
the preferred mode of operation as it subjects the collected data to
the limitations of tcpdump?.

3. IMPLEMENTATION

The implementation consists of three components. The first of
these is a data plotting mechanism that provides interactive access
to the underlying data. The second system allows the visualization
of TCP/IP packet trains, while the third tool incorporates the vi-
sualization of TCP/IP packet trains in concert with HTML/HTTP,
(application-layer), operations.

While Nprobe on-line monitoring code is written in C and as-
sembler. The off-line data retrieval process is implemented using
object-oriented Python, thereby allowing the easy association of
off-line processing with data retrieval.

3.1 The Data Plotter

The data plotter may be used as a stand-alone tool but is nor-
mally invoked in order to display selected data sets from analysis
results. The tool is designed to make the manipulation, examina-
tion and comparison of data sets possible without reloading the set,
provides interactive support for raising, lowering or blanking out
individual sets and has a zoom facility. Plotting styles can be var-
ied as desired, and the data re-plotted as scatter plots, histograms,
probability and cumulative density functions as appropriate to its
type. Basic smoothing methods are also available.

The plotter acts as the principal data management tool allow-
ing selected data sets (or sub-sets), or their derivatives (e.g. density
functions) to be saved or printed. The most significant difference
between the Nprobe plotter and other plotting programs is its facil-
ity allowing the user to examine the derivation of data points. A
callback and tag mechanism allows the user to select a set of data
points and to examine the underlying raw data and the process of
its (re-)analysis in close detail.

3.2 TCP Connection and Browser Activity Vi-
sualization
The raw trace file data contributing to each datum generated dur-

ing analysis are likely to be complex and bulky and to have com-
plex relationships. Consider the data associated with each packet

>We describe tcpdump as ‘limited” in the context of multi-protocol
data collection because the high overheads implicit in multiple
user/kernel space copies and the high volume of data generated
by the verbatim capture of packets using a long ‘snaplen’ do not
readily support the monitoring of high-bandwidth networks with-
out packet loss or unfeasibly large trace files.



of a TCP connection, the number of packets that may be sent on
a single connection, the complications due to packet loss and the
number of connections that may be involved in a Web page down-
load. The raw data, furthermore will be sparsely distributed among
the other file contents. Although a trace file reader exists that is
able to present trace records in a convenient form, while provid-
ing rudimentary facilities for selecting associated data, it would be
time consuming and (in the case of large data associations) virtually
impossible to fully assimilate and comprehend all items without as-
sistance. The appropriate visualization tools will present data in a
compact and comprehensible way which will assist in identifying
the relationships that it represents.

Trace file data analysis is concerned with the distillation of infor-
mation from the raw data. Visualization should, therefore, not only
present the raw data but also, insofar as is possible the information
generated by analysis and the relationships upon which it is based.
The visualization tool is designed to meet this requirement.

3.2.1 The TCP Visualization Tool

The TCP visualization tool, illustrated in Figure 1, plots sequence
numbers against time in a style similar to Tcptrace [8]. Data
segments are shown as vertical arrows scaled to the data length
carried, acknowledgments as points, the ‘ACK high water’ drawn
and segments are annotated with any flags set. Other salient data
(e.g. window advertisements) may also be shown.

The tool, however, has considerably greater functionality: Sec-
tion 4 illustrates this by describing a technique for examining the
dynamics of TCP connections, relating them to activity at higher
levels of the stack and identifying application behavior and con-
nection characteristics. Where connections have been subject to
this technique its inferences are also displayed: the relationship be-
tween TCP and application activity, causal relationships between
packets and congestion windows are, for instance shown; secondary
plots of the number of packets ‘in flight’, inferred network round
trip times and application delays are also presented. This data is
derived using modeling techniques described by Hall ez al. [3].

Figure 1 shows the tool’s primary window displaying the activity
of a non-persistent TCP/HTTP connection. Although the figure
contains a great deal of interesting detail we will comment on a
few features to illustrate the power of the visualization:

A The solid purple line to the left of the segment ‘arrows’ rep-
resents the server’s congestion window as predicted by the
connection model — the number of segments in each subse-
quent flight increasing as the window opens.

B Packet #13 is retransmitted (packet #18 — shown as a red arrow)
at approximate time 540 ms.

C The server’s congestion window shrinks following the retrans-
mission, resulting in a flight of only two segments immedi-
ately afterward. The retransmission also causes the connec-
tion to enter congestion avoidance — shown by the broken
congestion window line.

D Horizontal dashed lines indicate causal relationships between
packets. Here packet #25 from the server triggers an ac-
knowledgment — packet #26 — from the client

E The last line of the legend at the top of the main pane indi-
cates that the modeling process has explained the behavior
the server’s TCP implementations based upon a generalized
base model of behavior with an Initial Window (IW) of two
segments; the client’s behavior is explained by a similar model,
but the IW is unknown as less than one MSS of data has been

sent. The term SSTGT=1 denotes that the implementations
enter the congestion avoidance phase when the congestion
window exceeds’ the slow start threshold.

To ascertain the patterns of TCP activity involved in even the rel-
atively short and uncomplicated connection visualized in Figure 1
would require the close examination of 38 packet headers: A time
consuming task which might, even then, fail to identify all of the
features present. To fully comprehend the activity of a substantial
connection, or one with complex features, rapidly becomes a daunt-
ing and error-prone task. Such difficulties are, however, minor in
comparison with those presented by the need to relate the outcome
of the connection modeling process to the packet level data con-
tained in the trace — an essential step to ensure the accuracy of
the model constructed. The figure illustrates that visualization of-
fers a succinct and comprehensive presentation of both the original
data and the information synthesized from it, in which features are
readily identified and relationships made explicit.

The tool opens a secondary widow (not shown in Figure 1) which
displays a textual representation of the trace file data associated
with the connection and which may be toggled between packet and
application level data. Displayed items can be selected and recur-
sively expanded to show greater detail.

3.2.2  The Web Browser Activity Visualization Tool

The Web browser activity visualization tool presents the data ex-
tracted from the TCP, HTTP, and HTML levels of the protocol
stack for all HTTP activity originating from single hosts or client
and server pairs. Figure 2 illustrates part of a small page download.

The tool’s main pane [1]* displays the TCP connections carrying
HTTP transactions plotted against time as scaled horizontal bars
with tics showing packet arrival times (at the probe) and annotated
(in blue) with details of the connection. Client activity is shown
above the bar, and server activity below it. HTTP activity is shown
as requests and responses above and below the TCP connection line
respectively. Request or response bodies are shown as blocks of
color representing the object type, and are annotated (in black) with
the transaction’s principal characteristics (e.g. the object’s URL, the
request type and the server response code).

A secondary pane [2] may be toggled between a display showing
a key to the symbols used in the main pane and a summary of the
activity shown, or details of individual selected TCP connections
in the style of the TCP visualization tool’s secondary window. The
TCP visualization tool may be invoked by dragging over a con-
nection bar in order to closely examine individual selected connec-
tions. A further secondary map pane [3] shows an overall view of
the entire set of browser activity at reduced scale (the level of detail
in the [scrollable] main pane will generate a graph larger than the
tool’s window for large pages or extended browsing sessions and
the secondary pane serves to locate the main pane contents).

It is possible to reconstruct the trace data; all activity associ-
ated with the downloading of entire Web pages; the tool presents
the results of this reconstruction by showing the dependency rela-
tionships between objects as dashed lines. In-line links (e.g. those
to contained images or frames or representing redirection or auto-
matic updates) are differentiated from ‘followed’ links (i.e. those
followed by the user). The objects downloaded as constituents of
discrete pages are thus grouped together and the user’s progress

3This is the default for the base TCP model — TCP implementa-
tions may optionally enter congestion avoidance when the conges-
tion window reaches the threshold [1].

“This paper is in color, grey square brackets refer to numbers on
the indicated figure.
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Figure 1: The TCP visualization tool primary window. For the sake of clarity a short connection carrying a single HTTP transaction is shown. Where more complex
application-level activity is involved the plot would be annotated to show the connection between this and TCP-level activity (e.g. in the case of a persistent HTTP connection
segments would be labeled to identify which carried the various requests and responses, and the pRTT (partial Round Trip Time) plot would show the calculated browser and
server latencies.
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Figure 2: The Web browser activity visualization tool



from page to page identified. The way in which the browser uses
TCP connections and the inferred relationships between connec-
tions and objects are illustrated in clear detail.

Figure 2 is annotated to demonstrate a sample of the key features
of the example visualization:

A The red box in the map pane [3] identifies the section of the
entire reference tree shown in the main pane [1] which can
be scrolled by either dragging the box or the main pane itself.

B The map pane shows that the user goes on to visit another page
following that currently occupying the main pane.

C The page’s root HTML document identifies its referrer, not seen
by the trace, which is represented by the small black box
immediately above it.

D1 > The browser is configured to download subsidiary objects us-
ing four concurrently open TCP connections.

D, Connections #1 — #4 are used to download the first four in-line
images in the page. Each request occupied a single packet
shown as a large tic above the connection bar (colored grey
for ‘type unknown’ as there is no object associated with the
GET requests); dotted lines above the request tics connect
them to the referring object (C) at the packet carrying the por-
tion of the parent document containing the links. Although
the links were seen in a packet at approximate time 450 ms
the browser did not open connections upon which to request
the objects until approximate time 1400 ms — hence intro-
ducing a delay of nearly a second into the page download.

E Although delivery of the first four image objects was completed
by approximate time 1950 ms the browser does not close the
relevant connections until approximate time 3300 ms, hence
inhibiting the opening of the subsequent set of four connec-
tions, and introducing a further overall delay of about 1.3
seconds.

To manually identify and associate the activity involved in down-
loading the first page shown in Figure 2 would require the exami-
nation of 12 trace file records containing details of an equal number
of transactions, and of 159 TCP packets — a complex and tedious
task. To identify the links contained in the parent document would
additionally involve the scanning of 8,658 bytes of HTML spread
over 17 packets. If traditional t codump style traces had been col-
lected the exercise would involve the manual examination of all
159 packets, their TCP and HTTP headers. The page illustrated is
atypically small — pages with container documents measured in
tens of kilobytes containing tens or hundreds of in-lined images are
not unusual. It would be infeasible to manually examine the data
describing activity in such cases, and to correctly interpret its in-
ternal relationships and meaning. The utility of the tool is amply
demonstrated in the figure which presents all of the relevant data
and the inferences drawn during analysis in an immediately acces-
sible form. The overall pattern of activity is plainly discernible and
features of interest clearly identifiable.

3.3 Software Organization and Extensibility

Although work with Nprobe to date has concentrated largely
upon the study of Web traffic, the system is designed to be exten-
sible to gather and analyse data from other protocols, and to allow
tailoring of data collection within protocols to the needs of specific
research projects. The contents of the Nprobe trace files are there-
fore variable in scope and are recorded in a self-defining format.

Data is retrieved from trace files using a standard retrieval inter-
face consisting of Python classes automatically generated from the
C header files defining trace formats using the Simplified Wrapper
and Interface Generator [2].

Data is analyzed using a set of reusable protocol-centric and
cross-protocol analysis classes, and the analysis repertoire enlarged
as required by the sub-typing of existing, or addition of new, classes.
Analysis is controlled by Python scripts, optionally using a StatsCol-
lector class or appropriate sub-classes. Results and an analysis log
are summarized and presented by a further graphical tool, invoked
from the script or StatsCollector, which allows a recursive descent
through increasing levels of detail.

The data plotter is invoked from the summary tool in order to ex-
amine, manipulate, or save the data sets generated. The visualiza-
tions can be invoked from the summary tool for individual or multi-
ple instances of the relevant raw and derived data (e.g. TCP connec-
tions and the results of their modeling, Web page downloads or ac-
tivity at a page, browser, or server granularity). Hence grouped ac-
tivity (e.g. all TCP connections to a particular host, all page down-
loads from servers ranked by use) can be examined, and individual
instances (e.g. those recorded in the analysis log as exhibiting con-
ditions of particular interest) are also immediately available.

Visualizations can also be invoked from the data plotter by se-
lecting individual or multiple data points, hence allowing the deriva-
tion of those points to be examined, together with the analysis audit
trail contributing to them. Such a facility is particularly useful when
considering outliers — why are particular values highly dispersed,
and do they represent activity of particular interest or analysis fail-
ures. Whenever visualizations are invoked the associated analysis
of contributing data is re-run in verbose mode to allow close exam-
ination of the process.

The data plotter can take input as simple as a set of dependent
variable values, but when used in conjunction with Nprobe analy-
sis will normally be invoked with one or more parameterized data
sets; meta parameters will identify callback methods to invoke the
appropriate visualization class, and point parameters will identify
the contributing raw data. The information presented by the visu-
alization tools can be categorized as:

e Representing raw trace file data: e.g. TCP header informa-
tion

o Generated by standard analytic classes: e.g. current TCP win-
dow sizes

e Generated by specific analysis tasks: e.g. Web server laten-
cies

Because it is undesirable to clutter visualizations with unwanted
information, and because the employment of analysis classes is task
dependent, we have taken the approach that generalization, flexibil-
ity, and extensibility are not served by the provision of monolithic
visualization classes. Instead basic screen manager classes are pro-
vided which create and manage the canvases used by the visual-
izations, calculate and draw scales, handle mouse events, etc., but
the drawing of the required information is carried out by methods
of the analysis classes generating the information. Raw TCP seg-
ment information, for example, is drawn by a method of the base
TCP analysis class which is invoked with a canvas, origin, and scal-
ing information as arguments, and the information generated by the
TCP modeling analysis class is drawn by a dedicated method of that
class. In this way the visualization tools expect no specific data for-
mat, and information-generating classes are not constrained in the
type or range of information which is visualized.



As existing analysis classes are sub-typed to provide alternative
or additional functionality their drawing methods can be similarly
sub-typed to present the information produced. When new analysis
classes are added to the existing repertoire (as, for instance, the
Nprobe monitor is extended to capture data from further protocols),
the functionality of the visualization tools is similarly extended by
the provision of new drawing methods.

The annotations Lr.q, Lresp, and Leoy,, in Figure 3, for ex-
ample, have been added manually to assist understanding of the
visualization shown, but the drawing method of a sub-class of the
HTTP analysis class which calculated these intervals could trivially
be extended to include them automatically. The TCP visualiza-
tion shown in Figure 1 does not, similarly, flag changes in receiver
window advertisements in the way that the NetLogger visualiza-
tion tool might (rather, it shows the evolving sequence high-water
determined by the combination of flow and congestion windows),
but the TCP analysis class’s drawing method could be trivially ex-
tended to do so.

3.4 Visualization as an Analysis Design Tool

Although visualization tools may be invoked to examine features
of analysis results in detail, their main role is in the analysis devel-
opment environment. The presentation of raw data in comprehen-
sible and compact form assists in identifying relationships within
the data and reasoning about those relationships when designing
analysis algorithms.

Sections 3.2.1-3.2.2 illustrate the power of the visualization tools
and comment upon the difficulty of comprehending and interpret-
ing large masses of associated data without a mechanism for its
succinct presentation — an essential precursor to analysis design.
Figures 1 and 2 demonstrate the way in which visualization iden-
tifies and clarifies relationships, features and patterns of activity
within the data — also essential to the design process. Both sec-
tions illustrate the volume and scope of trace data which may con-
tribute to a single analysis result datum (e.g. the download time of a
single Web page) and by implication the complexity of the analysis
involved in its calculation.

The presentation of analysis output in conjunction with the data
upon which it is based allows the relationships between raw data
and analysis output to be examined and verified in detail, and the
facility to repeat the analysis underlying selected results supports
the close examination of the analysis process. Iterative design is
supported by the facility to reload and re-execute analysis software
on selected sets of data. The visualization tool may be instructed
to redraw its displays: all analysis modules are re-imported, the
underlying raw data is re-read from the trace file and re-analyzed
with full tracing enabled and the display redrawn. Analysis code
can therefore be modified during the analysis process and immedi-
ately re-run, and the modified analysis process examined in detail.

Although the visualization tool described is specific to a partic-
ular protocol set it is constructed in such a way as to contribute
to a generic framework. As described in Section 3.3 functional-
ity is divided between protocol-specific and display management
classes (i.e. one set of classes provides and manages canvases and
interactive features, another — given a set of raw data and results
— knows how to draw them into the display provided). In some
cases entirely new drawing classes may be required, but in gen-
eral sub-typing will provide the appropriate functionality: the TCP
tool’s drawing class could be trivially sub-typed (with much re-
moved functionality) to display the activity of UDP flows and the
browser visualization tool’s drawing classes sub-typed to accom-
modate other higher level protocol activity.

4. EXAMPLE: RECONSTRUCTION OF PAGE

DOWNLOAD ACTIVITY

WWW traffic forms by far the largest single category carried by
the current Internet. As such, its study motivates a considerable
and wide body of research. This section describes how the data
contained in Nprobe traces can be visualized, reconstructing the
activity involved in the download of whole Web pages. While we
assert that the ability to represent Web pages versus single TCP
connections is a significant contribution of our Nprobe work. The
details are beyond the scope of this paper.

Page downloads must be examined in terms of the objects down-
loaded (HTTP transactions); the TCP connections used and their
dynamics; and client and server activity. In order to quantify the
contribution of these elements, each must be identified, but the in-
teractions between them can only be fully understood in the addi-
tional context of’

(a) The arrival time of each in-line link at the browser’.

(b) The full set of objects and their dependency structure (i.e. how
do the objects relate to each other, which objects contain
links causing others to be downloaded).

The dependency structure within a page can be represented by a
sparse directed acyclic graph (DAG) with objects as nodes and links
as edges — it is convenient to refer to this structure as a reference
tree. Because pages may be arbitrarily linked to one another, the
reference structure of multiple pages does not necessarily form an
acyclic graph, but again may be represented as such if the progress
through a cycle is regarded as a return to a node visited earlier (to do
so reflects the reality of re-using cached documents and page com-
ponents). Because components (e.g. page decorations) are often
shared between sets of pages the overall reference structure forms
a set of DAGs with a number of shared nodes.

4.1 Reconstruction Using Data from Multiple
Protocol Levels

Using techniques yet to be published, object downloads are an-
alyzed for page association and reconstruction. TCP connections
are assigned to each object by client IP address; the structure of
Nprobe trace files immediately associates each HTTP transaction
with the TCP connection carrying it.

The relationship between objects is established by construction
of the page reference tree(s) using HTML link and HTTP header
data. The reference tree determines the relationships between trans-
actions, the connections carrying them, the connections themselves,
and hence any interactions of interest between protocols — the
DAG representing the reference tree also represents an analogous
graph in which the nodes are TCP connections, and which estab-
lishes the relationship between connections.

Figure 3 shows the relationships between the container document
and in-line image objects for the early part of a typical page down-
load. Analysis and deconstruction of the connection identifies time
components derived from connection activity using TCP/IP header
and HTML-level data. Thus L r., and L r., indicate the lags from
which browser request (SYN-ACK — request) and server response
(request — first packet of response) latencies are calculated for the
download of transaction #3.

The notation ‘PO: N/N/N’ (A) denotes the number of connec-
tions ‘presently open’ as each new connection is opened, calcu-
lated by the three criteria (initial SYN — final F IN-ACK), (server’s

3Analyzed in terms of lags and delays using techniques described
in [3].
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Note: the container document and early in-line images are shown. The visualization tool is in ‘detail’ mode; the fine vertical lines denote the missing ‘slices’ of time between events. Blue dotted lines represent
the links associating objects, and show that HTML link data also identifies the data segment carrying the link and hence its arrival time at the browser. The reference tree also establishes the relationship

between the TCP connections opened by the browser.
Figure 3: Detail from the Web activity visualization of a typical page download
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TCP connection set-up latency Lo 7.

Figure 4: Close detail of Figure 3 showing the browser connec-
tion latency

SYN-ACK — final FIN-ACK), and (server’s SYN-ACK — first
FIN) respectively — observation of many downloads suggests that
all of these tests are applied by various browsers in deciding when
a subsequent connection may be opened. For the connection shown
the browser is maintaining four concurrently-open connections us-
ing the first criterion, hence connection #4 opens as a result of the
full close of connection #0, and #5 follows #2.

The delay between the browser ‘seeing’ an in-line link and initi-
ating a transaction to fetch the relevant object contributes browser
connection latency. This value is quantified using HTML link and
TCP connection data, and shown as L., in the enlarged detail
of Figure 4. Where connection open time is dependent upon the
close of an earlier connection L¢,.,, is determined by connection
timings as shown in Figure 3.

Connection ordering is normally determined by the ordering of
the transactions carried, but it is interesting to note that this is not
the case for the first three secondary connections (#1 — #3) shown.
It is surmised that the browser has opened these connections spec-
ulatively as their request latencies are larger than those of follow-
ing connections, which are ordered as expected. Figures 3 and 4
show detail of a page download with the visualization tool in de-
tail mode: the ordering of events is maintained but time periods in
which no events take place are ‘sliced out’ in order to allow detail
to be shown — the horizontal time scale is therefore non-linear. In
contrast, Figure 5 shows the entire page download in time mode;
horizontal scaling is now linear, and the relationship in time be-
tween events is clear.

5. SUMMARY

This paper described a system for the visualization of network
data containing multiple protocols. The visualizer can look both at
protocol-specific behavior, such as that of a single TCP flow, and
more-importantly, it is able to allow the visualization of interactions
between protocols.

As was noted in Section 3, the current tool is designed with a
specific set of protocols in-mind. However, a comprehensive use
of type-classing and class-specific methods allow expansion of the
visualizer for any number of network, transport or application pro-

tocols.

The tight integration between analysis code and visualization
tools, and the way in which their invocation can be cascaded, pro-
vides a rich and productive design environment. The support for
examination of the analysis process during design also facilitates
validation of the analysis methods employed and hence underpins
confidence in the results obtained.

This tool has become a critical resource in the development of
our multi-protocol monitoring system; allowing the verification of
the monitoring system, identification of new modes of behavior and
the easy visualization of potentially overwhelming quantities of in-
formation.

Thanks to Richard Sharp and David Scott for their feedback on
early drafts of this work.

6. REFERENCES

[1] M. Allman, V. Paxson, and W. Stevens. RFC 2581: Tcp
congestion control, April 1999.
ftp://ftp.isi.edu/in-notes/rfc2581.txt.

[2] D. M. Beazley. Swig: An easy to use tool for integrating

scripting languages with ¢ and c++. 4th Annual Tcl/Tk

Workshop, Monterey, CA., July 1996. Extensive SWIG

documentation can be found at

http://www.swig.org/.

J. Hall, I. Pratt, and I. Leslie. Non-intrusive estimation of

web server delays. In LCN 2001 The 26th Annual IEEE

Conference on Local Computer Networks (LCN), Tampa, FL,

March 2001.

J. Hall, 1. Pratt, I. Leslie, and A. Moore. The Effect of Early

Packet Loss on Web Page Download Times. In Passive &

Active Measurement Workshop 2003 (PAM2003), Apr. 2003.

K. Keys, D. Moore, R. Koga, E. Lagache, M. Tesch, and

K. C. clafty. The architecture of CoralReef: an Internet

traffic monit oring software suite. In Passive & Active

Measurement Workshop 2001 (PAM2001), Apr. 2001.

[6] A.Moore, J. Hall, C. Kreibich, E. Harris, and I. Pratt.
Architecture of a Network Monitor. In Passive & Active
Measurement Workshop 2003 (PAM2003), Apr. 2003.

[7] T. Oetiker. MRTG: Multi-Router Traffic Grapher, 2003.
http://people.ee.ethz.ch/ oetiker/webtools/mrtg/.

[8] S. Ostermann. Tcptrace. Details are available from the
Tcptrace home page at http://irg.cs.ohiou.edu/
software/tcptrace/index.html.

[9] K. Papagiannaki, S. Moon, C. Fraleigh, P. Thiran, F. Tobagi,
and C. Diot. Analysis of Measured Single-Hop Delay from
an Operational Backbone Network. In Proceedings of IEEE
INFOCOM 2002, New York, NY, June 2002.

[10] The Data Intensive Distributed Computing Research Group
(DIDC), Lawrence Berkeley National Laboratory. Netlogger.
Details are available via the NetLogger home page at
http://www—didc.1lbl.gov/NetLogger/.

[11] E.R. Tufte. The Visual Display of Quantitative Information.
Graphic Press, Cheshire, Connecticut, 1983.

[12] Y. Zhang, L. Breslau, V. Paxson, and S. Shenker. On the
Characteristics and Origins of Internet Flow Rates. In
Proceedings of ACM SIGCOMM 2002, Pittsburgh, PA, Aug.
2002.

]

—

[4

—_

[5

—



Prev Next Detail Comns

uit Grab Redo Reload

—-[EX

MebClient 131.111.231 0

Start. 16123139,008395 6/4,/2000
Duration 6995,7d43ms

11 Connect.ions

{max, 4/d4/4 concurrent/eff, concurrent
11 transactions

(0 invalid O failed}

unlinked: 1

0 (5686) PO: 0/0/0

objects linked: 10

Object tupes:i-

U imagedgif 010
text/htnl 01

N type unknown 11/0

Lirk types:-
............. In-line link 10

Server return codesi-
200 Ok 11

User agents:-
{5 Mozillasd.7 [en] (H1l:
2.,2,12-20 i636y 11

Serversi-
(b} Apache/1.3.6 <Unix} 11

Ir Linux

Page rootzi-

http:/Auuw, jol nasa,goviB0)

131.111.8.68
1.041.0

500 10

L €<-?3 {2} GET htfpt/duwu, jol nasa

1 (5869) PO: 1/1]

3 (5873) PO: 3f

4 (5886) PO:

2 (58T2) PO: 2/3/2 131'111'9'155311

00 1500 2000 2500 3000 3500
poviB0/ {o) [ (2003 108897
= & :{<2+1%334])%8: glOS 11 S: 11341714
+1416] #1887
d {<-1} (a) GET Htitp:/duwu, jol.nesa, 2ovB0/ceitBind jolrand gl
1 131‘111‘8‘1%% Eb’ = ,ﬁo axer +1391) C: 36178 S: §315/9
1.0/1.0 1506k 778 1313
3 {<-1) {a) GET http:/ I%mmb{:l na's} wgowB0/zif f jplhepding_partl, gif
]‘b*' Zie 91 362846
1,0/1,0 Lo s
2 £<-1) (& GET htip:/ uw;w Jp?l Ba)s ov B0 zif 4 gplhepding_part2,gif
131.094.48,68 Foinho SRR 2 3 0m
/3 is
L0e0T 10aly 62
B ({-1) <a» GEThttp}s wwu, jpl.nesa,goviB0/gif 4 jolheading art 3, gif
s ELLske T nterol s ag R
1.0/4.0 154000 -4
B {({-1} {a} GET ttp:/ﬂmuwbj L, nas. dﬁaavégﬁf if fearthbutton,gif
5 (5940) FO: 3/8/3 }35;}15‘%%%6 bt AR < senele
S 3 132 7248
7 (<=1} {ar GET httpd 7w, je ‘nasa‘guv:ElO/%l Aechbutton
0
3 131,11148,68 .
6 o5y pp: 9/ 51510 7 e 3.5
* # (35] + AR
B: (<-1) ta} GET httpif/quu.jrl.nasa
4 o 1B1.111.8,68
7 (6022) PO: 3/3/3 1L0/1.0 255541
B {<11) {5} GET httpd/{uuw, jel, nas.
5 31,111.8,68 §
8 (BO2T) PO: 3/2/2 oL 28%76 | Ehd
10 (4-1) (a) GET http:f/uw, jol na
4 o [L31,111.8,68 .+
9 (6033) PO: 3/3/3 hario 285&77 )
1 ({<-1¥ {a} G

(6097) PO: 3/3/3

131.111.8,68
1.0/1,0 34%336

Figure 5: The whole of the page download shown in partial detail in Figures 3 and 4; the visualization tool is in time mode.




