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Summary—
Identification of the various elements contributing to the

download time of Web objects has been the subject of much
research. It is, however, the download time of a set of objects
comprising an entire page which is of critical importance to
the user — particularly in the presence of delay leading to
subjectively long waits. Because browsers typically use par-
allel TCP connections to download the set of objects neither
the overall page download time, or the contribution of delay,
are simply the sum of the individual object download times
or delays. We present a technique for identifying and ex-
amining the complete set of connections involved in a page
download which then enables us to fully analyse the contrib-
utory time components and to assess the potentially serious
delays which arise from loss early in the connections’ life-
times.

I. INTRODUCTION

No one who has used a browser to access pages from
the World Wide Web has escaped the experience of over-
long download times. While times in the order of seconds
are acceptable, those exceeding even a few tens of seconds
become increasingly annoying.

Page downloads using HTTP/1.0 [1] suffer from the
problem that each constituent object must be downloaded
using a new TCP connection. Each object download is
thus subject to TCP connection latency and commences
under slow start conditions. Additional load is placed
upon the network, and the server has to service and main-
tain a large number of individual connections.

Improvements to overcome the shortcomings in
HTTP/1.0 were suggested by Mogul and Padmanab-
han [2]. Of particular relevance were persistent HTTP
connections (P-HTTP) and pipelining of multiple object
requests over a single connection. Experimental data sup-
ported their recommendations and showed a significant
reduction in overall latency for retrievals. A following
paper by Mogul [3] demonstrated the significant reduc-
tion in latency that would be achieved by using P-HTTP
and pipelining; extensive simulation also demonstrated
the reduction in use of server resources under TCP TIME-
WAIT states of various durations.

HTTP/1.1 [4] published in January 1997 incorporated
persistent HTTP connections and pipelining, together
with a negotiation protocol allowing for persistence ne-
gotiations between HTTP/1.0 and HTTP/1.1 clients and
servers.

Nielson et al. [5] conducted a series of experiments us-
ing links of different bandwidths between a server/client
pair set up for the purpose of evaluating the performance
of P-HTTP and pipelining and concluded that significant
improvements in HTTP performance required the use of
both techniques. It was noted, however, that such im-
provements were of less significance when data was car-
ried over a slow speed link (i.e., PPP over a dial-up link).
This observation was reinforced by Heidemann [6] who
showed, as a result of analysis of traffic models, that low-
est link bandwidths in excess of 200 Kbps are required in
order to realize a subjective improvement in performance
seen by the user. He reported validatation of the models
used in [7] by comparison with traces of real traffic. The
paper also identifies some areas of TCP/HTTP interaction
where persistence introduces delay.

Identification of the various elements contributing to
the download time of Web objects has been the subject
of much research. It is, however, the download time of
a set of objects comprising an entire page which is of
critical importance to the user — particularly in the pres-
ence of delay leading to subjectively long waits. Because
browsers typically use parallel TCP connections to down-
load the set of objects, and because they may not use
these connections in a timely manner, overall page down-
load times are not simply the sum of the individual object
download times, and delays at the page scale are similarly
not the sum of delays suffered by individual objects. To
fully analyse the time components of page downloads it is
therefore necessary to consider the full set of constituent
object deliveries, the connections used, and their interre-
lationships over the total download period. We must dis-
tinguish the download of a Web page from that of its com-
ponent objects.

We illustrate this point with Figures 1 – 3 which show
three simple cases of page downloads and the effects that
delayed objects might have on overall times. In these fig-
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Fig. 1. Page download with object B delayed — the whole page
download is not delayed

ures each single horizontal line represents the period of
a TCP connection from the client’s SYN, and the super-
imposed boxes the period between HTTP request and the
last data packet of the response. In each figure Object A
is an HTML document and Objects B – J might be small
in-line image objects. The X-axis represents elapsed time,
and the Y-axis the order in which connections are opened
and the objects requested. Typical browser behaviour is
represented in which the root document is downloaded on
one connection, and a maximum of two concurrently open
connections is maintained for the download of subsidiary
objects. The arrowed letter following each connection line
indicates the connection which follows its closure.

In Figure 1 Object B is delayed, but with no effect on
overall page download time. Objects D – J are delayed
as only a single connection is available, but not by the
magnitude of the Object B delay; this will be noticeable
in a browser which renders objects as they are received.

In Figure 2 Object B is delayed beyond the download
time of the container document, and hence adds to the
overall page download time. Objects C – I are delayed
as in Figure 1. Object J is also delayed, but adds nothing
to the delay in overall time already contributed by Ob-
ject B. Although the overall page download time has been
extended, it is only the rendering of two objects which is
significantly delayed.

Figure 3 also shows a download in which two objects
are delayed. In this case the downloads of six of the re-
maining objects are also significantly delayed resulting in
late receipt of eight of the nine images contained in the
page.

It will be appreciated that the typical Web page will
probably contain many more objects than in the simple
examples shown, and that, while individual object delays
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Fig. 2. Page download with objects B and J delayed — the whole
page download is delayed
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Fig. 3. Page download with objects B and D delayed — the whole
page download is delayed

of the general pattern shown in Figures 1 and 2 may serve
only to introduce minor delays in the presentation of a
whole page, there is also the possibility that delays oc-
curring in patterns similar to that shown in Figure 3 may
result in very a significant cumulative degradation in per-
formance.

In the initial stages of a TCP connection neither client
nor server has seen enough packets to establish a usable
round trip time estimation. In the case of packet loss re-
transmission will therefore take place only after a default
timeout period (typically in the order of 3 seconds increas-
ing exponentially for each repeat). We refer to packet
losses during this period as early packet loss. Such delays
in individual connections have been noted by the WAWM
Project [8].

We note in this context a serious implication of the use



of many short-lived TCP connections delivering single
objects. While long delays may be introduced by early
packet loss on any connection, the page downloads using
non-persistent connections are particularly vulnerable —
most or all activity taking place in conditions of potential
early packet loss.

While the delay contribution to page download times
due to connection setup latency, or to packet loss on an es-
tablished connection, are likely to comprise a small num-
ber of round trip times (RTTs) — in the order of some tens
or hundreds of milliseconds — those due to early packet
loss contribute delays in the order of seconds, and which,
when occurring in patterns similar to that illustrated in
Figure 3 may reach the order of tens or even hundreds
of seconds.

In the rest of this paper when we refer to ‘delays’, either
in reference to pages or single TCP connections, we mean
delays arising from early packet loss. It is the effect of
these gross delays on whole page download times which
we investigate in this study.

In the next section we consider the effects of early
packet loss on page downloads. Section III explains how
we calculate the degree of delay and characterize the dis-
tribution of the contributory individual object delays. In
section IV of this paper we consider some of the difficul-
ties encountered in collecting the data needed to examine
whole page retrievals, and describe our method of data
harvest. We give a detailed analysis of downloads from a
site known to suffer serious delay in section V and go on
in section VI to place this in the context of a wider sample
of Web traffic. Section VII considers the implications of
early packet loss for persistent connections.

II. THE EFFECTS OF EARLY PACKET LOSS ON

TCP/HTTP CONNECTIONS

We stated in the introduction that we are particularly
concerned in this paper with examination of the effect on
page download times of gross delays (i.e., in the order
of seconds upwards) caused by loss of packets before the
TCP connections carrying HTTP requests and responses
have established an RTT for use in retransmission time-
outs. It is also inherent in this stage of a connection’s
lifetime that fast-retransmit mechanisms will not be oper-
ative. In the absence of a reliable RTT value the majority
of TCP implementations will employ a default timeout in
the order of three seconds. It is also worth noting that
in the context of many short-lived connections default re-
transmission values based upon shared routing metrics are
also unlikely to be available to individual connections.

On an individual connection such packet losses will
manifest themselves as:

• Loss of client’s SYN packets(s) causing one or more
SYN retransmissions.

• Loss of server’s SYN ACK causing one or more SYN
retransmissions.

• Loss of client’s request causing one or more retrans-
missions.

• Loss of server’s ACK to the request causing one or
more retransmissions.

• Loss of server’s response.
Such losses may occur on both persistent and non-

persistent connections, but in the persistent case losses
of requests/responses after the first will normally cause
retransmits based upon established RTT values or fast-
retransmit mechanisms. The case where a client’s first
request is lost can be distinguished from that where the
server merely exhibits a long delay before responding by
the receipt of an ACK for the segment carrying the re-
quest.

In order to study this phenomenon we analyzed three
traces, each of approximately two hours duration, of all
traffic to and from the University site, identifying the
TCP/HTTP connections exhibiting this type of delay. Re-
construction of the entire page downloads of which such
connections formed a part then allowed us to calculate
the overall effect of all delays on the total page download
time.

In Tables V and VI we summarize our observations for
each of the traces: Table V records the numbers of clients,
servers, connections, downloaded objects and pages ob-
served in each trace, together with the proportion of con-
nections upon which multiple requests were issued. In
Table VI, we show, in columns 2 – 4 the proportion of
connections and pages subject to the delays in which we
are interested, and of the servers involved. Columns 5–
9 show the incidence of connections upon which we ob-
serve delays as represented by seeing retransmissions of
client SYN packets or first requests, or by failure to see
any request, response, or to establish a connection. In all
of the last three cases the browser counts a connection as
open and the opening of further connections is inhibited.
Finally in columns 10 and 11 we show, for comparison
purposes, the proportions of later packets (i.e., on an es-
tablished connection ) which are retransmitted.

III. CALCULATION OF WHOLE PAGE DELAY

A. The degree of delay

We define whole page delay as the difference between
the time when delivery of the last object of a page com-
pletes and the corresponding time had there been no de-
lays in the delivery of individual objects. Calculation



Fig. Delayed Object Total Page Download Time cod

Object Delay Object Delay delay Delayed Undelayed

1 B 50 - - 100 100 100 10
2 B 130 J 90 310 180 100 31
3 B 130 D 60 670 150 100 67

TABLE I
SUMMARY OF DELAYS AND CUMULATIVE OBJECT DELAYS FOR THE PAGE DOWNLOADS ILLUSTRATED IN FIGS. 1 – 3

of this delay therefore depends upon establishing the no-
tional download time without delay.

Even with the relatively rich set of data at our disposal
it is not entirely simple to derive a model of an equivalent,
non-delayed, set of downloads for a page. It can be dif-
ficult to ascertain the target number of concurrently open
TCP connections: browsers are often inconsistent — even
within a single page, the point of connection closure rec-
ognized by browsers may also vary (the completion of the
full TCP 4-way close, the transmission of the browser’s
FIN packet, the receipt of the server’s FIN packet on a
non-persistent connection, etc.), the opening of new con-
nections may be delayed by the browser, and account must
be taken of the delay between causative and consequent
events as seen by the probe.

For each object we know the timing of events at both
the TCP and HTTP/HTML levels of the protocol stack.
Where delays occur we can therefore calculate the deliv-
ery period of the object and the duration of the connection
with the removal of the delay.

A frequency analysis of the number of connections cur-
rently open, as each fresh connection opens, is calcu-
lated on the basis of the various possible criteria which
a browser may use. This gives us an indication of the cri-
terion used by the browser and its concurrency target.

We reconstruct the whole page download by taking the
set of connections used, discarding any which did not es-
tablish a full connection or succeed in obtaining a server
response, and correcting the remainder for any delay. The
modified open and ‘close’ times can then be calculated for
each successive connection on the basis of the timings of
the preceding connections and the browser’s concurrency
criterion and target. We assume that any inconsistencies
in the browser’s observed pattern of connection concur-
rency would also apply to the recalculated set of down-
load connections 1 , and in calculating when each connec-
tion would open we therefore allow the number of cur-
rently open connections at the point of opening to main-

1There appears to be no correlation between unsuccessful or delayed
connections and such inconsistencies

tain inconsistencies. We also make the assumption that
any delays in the server remain constant despite changes
in the pattern of requests over time, and similarly that any
browser-introduced delays remain constant. Because we
know the relationship between the links contained in the
root document and object downloads we are able to ensure
that modified connection timings do not cause an object to
be requested before the browser would have seen the cor-
responding link.

In previous work [9] we describe the techniques that we
use to estimate server and client delays together with the
(partial) RTTs between probe/host/probe which establish
the time lag between causative and consequent events, but
for the purposes of this calculation such techniques are
not considered necessary if we assume that client/server
delays and network transit times remain unchanged. We
consider that the assumptions we make are reasonable, as
our new model of the set of downloads without delays
does not in general produce major changes to either pat-
terns of network or server activity. Any variations which
break these assumptions are also likely to be at least two
orders of magnitude smaller than the phenomena that we
are studying.

B. Distribution of delay

From the subjective perspective of the user it is not just
the overall page download time which is important, but
also the distribution of any object delays within the down-
load period. The delays shown in Figure 2 would probably
be perceived as more annoying than those shown in Fig-
ure 3, although both pages may be completed in the same
times. We assume that in the general case in-line objects
are fetched in the order that the browser’s HTML parser
encounters the relevant links, and that this order reflects
the significance and rendering order of the objects.

In our analysis we have characterized the distribution of
individual object delays using a simple metric — a cumu-
lative object delay (cod) for a page of N objects calculated
as follows:



cod =

(

n=N
∑

n=1

(Dn − Un)

)

×
1

N

where:
N is the number of objects in the page,
Dn is the delivery completion time of object n

and
Un is the notional delivery completion time of

object n in the absence of delay

As an illustration of the effect of object delays and dis-
tribution on the cod, Table I summarizes the downloads
shown in Figures 1 – 3, giving the cod for each case, as-
suming the container document downloads in 100 time
units and that each image object would download in 10
time units if not delayed. We stress that the cod represents
a measure of the distribution of delay; while it is intuitive
that delay early in the download of a page is subjectively
less acceptable than delay affecting only the later compo-
nents, assessment of user dissatisfaction is not within our
field of study.

IV. DATA COLLECTION FOR THE STUDY OF WHOLE

PAGE DOWNLOADS

The collection of the data required to study whole page
downloads presents a challenge. While it is comparatively
easy to gather data about individual TCP connections, or
Web pages/objects it is very much more difficult to amass
this data in a way which also allows its integration into a
whole. The objects comprising each page must be iden-
tified in order that the network activity involved in their
individual downloads, and the relationships between the
connections used, can be established.

Server logs will normally yield some of the required
data — in terms of the objects downloaded, when and to
which clients — but do not normally record the level of
detail of network activity required or the interrelationships
between the objects which they host. It would be possi-
ble to scan the contents of hosted objects and establish
relationships, but such scans and the logging of additional
network detail at the packet level would entail consider-
able extension of the normal logging mechanism.

Browsers could be instrumented in order to collect the
required data, but this would be a non-trivial exercise,
and it would be unlikely that enough modified browsers
could be deployed to provide either a large or representa-
tive sample of Web activity. While servers with enhanced
logging facilities would provide a very large sample in
volume terms it is again unlikely that deployment would
be sufficiently wide to provide a representative sample.

All of the relevant data can be collected from the net-
work itself, hence allowing larger and more representative
samples, using passive monitoring techniques. There is a
considerable and diverse body of research in the area of
network monitoring and the analysis of collected data in
the context of TCP/HTTP and Web Server performance.
We mention only that which is most relevant to our current
work.

The ubiquitous Tcpdump and its variations remain the
staple collection tool for much post-collection analysis
based research; despite its high copy overheads and inabil-
ity to keep pace with high arrival rates, its packet filtering
capacity and familiarity are attractive to many projects.
More recent monitoring designs, aimed towards keeping
pace with today’s network bandwidths, include the ambi-
tious OCxMon architecture [10] based upon ‘off the shelf’
components, and the AT&T Labs PacketScope [11] probe
based upon a dedicated 500-MHz Alpha workstation.

The interaction between TCP and HTTP, and the TCP
behaviour of Web Servers, is studied using active tech-
niques with TBIT [12] and in the WAWM project [8]
using a combination of passive/active monitoring tech-
niques.

The collection and integration of data derived from
multiple levels in the network protocol stack is the sub-
ject of a growing research field, including the Windmill
monitoring architecture [13] with which integrated data
was used to identify causes of routing instability [14],
and in the BLT project [15] where TCP/HTTP phenomena
are studied using data extracted from the headers of both
protocols contained in packets collected using the Pack-
etscope.

We have collected the data upon which this study is
based using our own Nprobe passive network monitoring
probe [9][16]. Nprobe collects data from several levels of
the stack and is stateful (i.e., is able to associate the in-
dividual packets that it sees passing on the network into
flows defined at the network and transport levels of the
protocol stack, and into Web transactions at the HTTP
level). It is therefore capable of integrating the required
data while achieving a high level of data reduction.

For the purpose of this exercise we used data extraction
modules recording data contained in the relevant fields
from packet headers and the contained HTTP request and
response headers. We also deployed a module which ex-
tracts the links contained in HTML documents. During
the post-collection analysis of the collected data we were
therefore able to examine activity at the network level and
to precisely associate it by objects fetched, and by page.

While assumptions can be made about the relation-
ship between the objects seen using a less comprehen-



sive set of data (e.g., it could be inferred by recording
HTTP response content fields that for each pair of hosts
all GIF or JPEG objects were associated with the imme-
diately preceding HTML document) there is considerable
scope for error. The contents of concurrently downloading
pages can be confused, re-fetched components of revis-
ited pages are not distinguished, subsidiary container doc-
uments (e.g., frames) are not identified, and Web pages in-
creasingly span content originating from multiple servers.
By using referrer data together with knowledge of which
objects are linked, the type of link, and when the browser
‘sees’ each link, we are able to form a very much more
accurate model of the relationships between objects.

Our probe was fed from the switch connecting the Uni-
versity network to the United Kingdom SuperJANet net-
work, and hence saw all traffic between the site and the
rest of the world. Traces 1 – 3 examined in section VI
are each of approximately two hours duration, collected
at around mid-day on a week day in each case. Trace 4,
analyzed in section V, is of traffic seen between approxi-
mately 11.30am and 1.50 pm extracted from a longer trace
of 24 hours duration. In Tables V and II we summarize the
Web traffic seen in each of the traces.

V. ANALYSIS OF PAGE DELAYS SEEN IN TRAFFIC TO A

SINGLE SITE

Users of a popular British news Web site frequently
experience long and frustrating delays in downloading
pages. We consequently monitored HTTP traffic between
this site and our university network for a period of 24
hours. Analysis of the trace revealed that downloads from
the site suffered a high incidence of exactly the delays
forming the subject of this paper, and that the delivery of
many pages was thereby considerably delayed.
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Fig. 4. Whole page download times from the news server

We present here our analysis of the trace period be-
tween approximately 11.30am and 1.50pm. This period

is of particular interest as it spans the beginning of the
lunch time period when the server load may be expected
to increase as people visit the site during their lunch break.
Our results are summarized in Tables II and III. The entry
for Trace 4 shows details of the whole trace, traces 4a and
4b show the trace partitioned into the periods 11.30am –
12.40pm and 12.40pm – 1.50pm.

In Figure 4 we show the download times of the pages
seen averaged over periods of 60 seconds. The error bars
show the standard error of the mean for each period. It
can clearly be seen that page download times increase dra-
matically between approximately 12.30pm and 1.00pm as
load increases. At the higher page download times the
error bars show a corresponding increase in the standard
error: the difference in download times between delayed
and non-delayed pages becomes more marked due to the
magnitude of the delays.
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Fig. 5. Averaged probability of SYN and data packet retransmission
on connections to the news server

Figure 5 presents the probability, averaged over 10 sec-
ond intervals, of either SYN or data packet retransmission
on individual TCP connections. The probability that data
packets will be retransmitted due to network loss rises
slightly from approximately 12.00pm onwards as (by in-
ference) traffic levels increase. We suggest that the con-
trasting very sharp rise in the probability of SYN retrans-
mission at approximately 12.40pm is due to connection
refusal by the server as load increases. We show in [9]
that from 12.40pm onwards server latency remains ap-
proximately constant, although higher and more dispersed
than during the earlier period of lower demand, and that
this time therefore represents the point at which the server
becomes saturated and is, in effect, exercising admission
control through connection limiting. It is the sharp rise in
‘lost’ SYNs that is the principal cause of the correspond-
ing jump in page download times.

Figsures 6 and 7 show the distribution of whole page
download times for the periods 11.30am – 12.40pm and



Trace Number of % Delayed % Persistent
No. Clients Servers Conns. Objects URLs Pages Conns. Pages Servers Connections

4 732 29 89195 92901 1570 10232 14.39 18.82 34.48 0.52
4a 407 18 43440 44643 835 4908 2.64 5.03 33.33 0.70
4b 470 24 45818 48204 1098 5327 25.52 31.31 41.67 0.36

TABLE II
SUMMARY OF TRACE 4 — TRAFFIC TO AND FROM THE NEWS SITE. TRACES 4A AND 4B ARE THE FIRST AND SECOND PERIODS OF

TRACE 4

Trace % of connections subject to early loss % Early % Later
No. Client Other packet loss packet loss

SYN Req. No Req. No Rep. No conn. SYN Req. Client Server

4 13.18 0.86 1.39 1.62 1.07 119.42 16.67 0.12 2.32
4a 2.05 0.35 0.26 0.39 0.14 102.50 4.77 0.09 2.25
4b 23.73 1.35 2.46 2.79 1.94 135.22 27.78 0.15 2.38

TABLE III
SUMMARY OF DELAYS: TRACE 4 — TRAFFIC TO AND FROM THE NEWS SITE
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Fig. 6. CDF of page download times from the news site: 11.30am –
12.40pm

12.40pm – 1.50pm respectively. In each case we show the
distribution of times for the whole page and for 85% of its
content to be downloaded. We also show the correspond-
ing distributions with the effect of delays removed. The
difference between the two periods is marked; the down-
load times for the 75th and 90th percentiles of all pages is
summarized in Table IV

Figure 8 shows the CDF of the degree of delay within
each of the various manifestations of early packet loss
seen in our trace. Note that, with the exception of de-
lays caused by single SYNs not receiving a response, or
connections upon which the client issued no request — in
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Fig. 7. CDF of page download times from the news site: 12.40pm –
1.50pm

neither case is packet retransmission involved — the re-
liance of retransmission on default values is very clearly
seen from the distinct steps at 3, 6, 9. . . seconds.

VI. ANALYSIS OF PAGE DELAYS OVER ALL TRAFFIC

MONITORED

The high rate of SYN loss observed in the traces of
traffic to the news site described in Section V is fortu-
nately not typical of the majority of page downloads. In
Tables V and VI we present summaries of three traces,
each of approximately two hours duration, collected at the



Trace Number of % Persistent
No. Clients Servers Conns. Objects URLs Pages Connections

1 19077 10820 827720 1608944 157146 368774 15.49
2 18510 13592 881719 1788477 212412 572355 16.03
3 10804 7877 318971 661562 90432 169697 19.97

TABLE V
SUMMARY OF TRACES 1 – 3 — ALL TRAFFIC

Trace % Delayed % of connections subject to % Later
No. Conns. Pages Servers Rtm. of early Other packet loss

cSYN fReq. No Req. No Rep. No conn. Client Server

1 4.61 3.84 8.48 0.64 0.38 0.66 3.71 0.28 2.53 8.98
2 1.75 1.48 7.43 0.67 0.40 0.58 0.83 0.13 2.81 11.54
3 2.72 2.85 7.21 1.22 0.73 0.72 1.14 0.28 3.03 9.94

TABLE VI
SUMMARY OF DELAYS: TRACES 1–3 — ALL TRAFFIC

Period 75th percentile 90th percentile
Page 85% Page 85%

11.30 – 12.40 8.2 6.3 18.1 14.2
Less delays 7.6 5.5 16.9 12.2

12.40 – 1.50 35.6 26.4 58.0 46.6
Less delays 25.0 12.6 37.9 25.0

TABLE IV
75TH AND 90TH PERCENTILES OF NEWS SITE PAGE DOWNLOAD

TIMES IN SECONDS FOR WHOLE PAGES AND 85% OF CONTENT

same monitoring point and at the same time of day. Traf-
fic to the news site has been excluded from the analysis
upon which these tables are based.

Comparison with Tables II and III show that approxi-
mately 4.4% of connections in the general sample suffer
from early loss (as opposed to approximately 14.4% in
the case of the news server); similar proportions for the
number of pages visited are 2.7% and 18.82%. Although
the incidence of early delay is markedly less in the gen-
eral sample, the potential magnitude of the delay which
can be caused in page-download time may be subjectively
annoying to the user in the instances where it occurs. We
can only surmise that the traffic from our site may have a
higher ratio of visits to well-provisioned servers than that
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of the general population.

VII. IMPLICATIONS FOR HTTP PERSISTENT

CONNECTIONS

When non-persistent connections are used to download
pages early loss on one of the concurrent connections used
to fetch components does not necessarily lead to serious
delay — as shown in Figure 1, progress can continue us-
ing other connections. The download only becomes com-
pletely stalled when the browser’s entire ‘allowance’ of
concurrent connections are delayed, as illustrated in Fig-
ure 3.



When persistent connections are employed the effects
of early loss can cause a different pattern of delay. If a
connection is stalled through early loss all requests using
that connection will be delayed, but once a connection has
been established no further such delays will occur.
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Fig. 9. Page-downloads using persistent connections. The dotted lines
indicate an initial delay on the connection. In the case of page A one
connection suffers delay while object downloads proceed on the other.
All progress is initially stalled in the case of page B. Naı̈ve behaviour
is demonstrated by the browser downloading page C.

Figure 9 shows a typical pattern of page download
activity using persistent connections: the container doc-
ument is requested on an initial connection, and com-
ponent objects are downloaded on concurrent persistent
connections. In the download shown at A one connec-
tion is subject to delay, but activity can continue on the
other; objects downloaded on the first connection, once
established, are all subject to the initial delay. In the
case of page download B both connections are initially
stalled, and no progress can be made. In either case object
downloads are not postponed for longer than would have
been the case if one, or both, of the initial pair of non-
persistent connections of a similar download had been
delayed. However, once the persistent connections have
been established there is no opportunity for further delay
to be introduced by subsequent early loss (assuming that
the connections do not remain unused for any period suf-
ficiently long to cause a reversion to slow-start mode).

We have investigated the implications for overall page

download times, and the distribution of delay, in the case
of traffic to the news site had the downloads observed all
been made using persistent connections. In Section III we
have explained how the data collected by Nprobe from
the various levels of the protocol stack enables us to ac-
curately reconstruct page download activity. By using the
detailed data available we are also able to accurately sim-
ulate the observed downloads in a variety of scenarios.

In [9] we describe a technique of modeling TCP con-
nection activity which allows us to accurately differentiate
network, end system (application), and TCP behaviour,
and to quantify the contribution of each to the time taken
to download individual objects. The method is based upon
the data-liberation and ACK-obligation model underlying
Vern Paxson’s tcpanaly [17], but with significant dif-
ferences: rather than matching observed TCP behaviour
to the predefined set of characteristics of a known set of
TCP implementations, our model develops a characteri-
zation of each connection from a generic base. It has the
advantage of knowledge of application-level activity, and
does not have to accommodate the complications intro-
duced by packet-filter–based collection (e.g., packet loss,
reordering, or duplication). Because the Nprobe monitor
may be placed at any point in the network, the model does,
however, have to identify packet loss both up and down-
stream of the monitoring point.

The activity model provides our simulation with precise
details of network round trip times, differentiated into net-
work transit times and application-level delay; server and
browser latency; the acknowledgment, data transmission,
retransmission, and slow-start behaviour of the connected
hosts; and an estimation of the browser’s data-sinking ca-
pacity from its advertised windows. We know the number
and size of the objects comprising each page from our re-
construction of its download, the type of response from
the server (e.g., whether or not an object is returned) and
the relationship between objects. We also know the earli-
est time at which an object can be requested from the time
at which the monitor observed the packet carrying the rel-
evant link. Each page download can, therefore, be simu-
lated in the context of the network transit time; probability
of early or later packet loss; browser and server latency;
and host TCP characteristics prevailing at the time.

We do, nevertheless, have to make a set of key assump-
tions:

• That the different pattern of data transfer would not
significantly alter network characteristics (i.e., transit
times and loss rates)

• That the more ‘bursty’ requests would not apprecia-
bly raise server latency (or alternatively that the de-
creased number of connections to be serviced would
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Fig. 10. Page download times for the pages downloaded from the
news site using simulated persistent connections. Times are averaged
over 60 second periods — the error bars show the standard error of the
mean for each period

not increase the server’s work rate)
• That the browser would keep pace with higher data

arrival rates
• That the service latency for subsequent requests re-

mains that of the initial request on each connection
The simulation of each page download follows the typ-

ical pattern of one connection used to request the con-
tainer document, and two concurrent persistent connec-
tions upon which subsidiary components are requested,
shown in Figure 9. When one of the two secondary con-
nections are subject to initial delay, requests are channeled
to the active connection until a connection is established,
and thereafter each request is made on the first connec-
tion to become available. The naı̈ve browser behaviour
shown at C in Figure 9, in which requests are equally
divided amongst connections, would result in undue de-
lay. Our site is connected to that of the news server by
a well-provisioned network, and the requirement of good
connectivity stipulated in [6] would apply to the simulated
connections. We have made a conservative assumption of
10 Mbps links in calculating serialization delays in the
simulation’s operation.

Figure 10 shows the page download times calculated by
our simulation for the set of pages downloaded from the
news site. Comparison with Figure 4 (which shows the ac-
tual observed times) shows that the times are considerably
shorter, although they do approximately follow the same
trend over the period of the trace. It is noticeable that there
is a great deal more variation between averaging periods,
and that shorter-term trends are much less identifiable; the
pattern of activity and delay when using non-persistent
connections is smoothed by the constantly shifting jux-
taposition of delayed and non-delayed connections during
a page download, in the case of persistent connections de-

lay is ‘all or nothing’ and download times consequently
vary to a much greater degree.
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Fig. 11. The distribution of page download times for the observed
and the simulated persistent connections during the second half of the
news server trace

Although the simulated download times generally in-
crease with server load over the lunch period the increase
is less dramatic than in the real downloads. Figure 11
shows the relative distribution of times for both real and
simulated downloads for the busy period from 12.40pm –
1.50pm. The distribution of times for the real downloads
is relatively smooth, but that of the simulated connections
reflects the abrupt changes in the degree of delay which
are expected.
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Fig. 12. cods For the observed news site downloads averaged over 60
second periods

In Figures 12 and 13 we show the cumulative object
delays for the real and simulated page downloads respec-
tively, for the period of interest. The reduction in the mag-
nitude of the per-object delay for the simulated downloads
conforms with the reduction in download times, but it is
interesting to note that while the average cod for the real
traffic is approximately 25% of the average page down-
load time, in the case of the simulated downloads this
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Fig. 13. cods For the simulated news site downloads averaged over
60 second periods: note that this figure is not drawn to the same scale
as Figure 12

proportion falls to approximately 2.5%. This difference
reflects the concentration of delay at the commencement
of the persistent connections, and confirms that download
performance when using persistent connections is robust
in the face of early loss.

VIII. SUMMARY AND FURTHER WORK

We have shown that delays in downloading Web pages
must be quantified and assessed on the basis of an analysis
of the whole set of TCP connections used to download
their component parts, and have demonstrated a technique
for doing so. We have also examined the serious delays
that can be contributed to overall download times by loss
early in a TCP connection’s lifetime.

Our findings are based upon a traffic sample where
the majority of objects were downloaded using non-
persistent connections, but have implications for the use
of HTTP/1.1 persistent connections: the use of fewer con-
nections to download the components of a page minimizes
the opportunity for early packet loss, but conversely, when
it occurs, all objects downloaded on the connection will
suffer a long delay. We have developing trace-based simu-
lations which, using our detailed knowledge of page struc-
tures, prevailing network conditions, and the hosts’ TCP
behaviour, allow us to make detailed comparisons of per-
formance for the observed page downloads using non-
persistent and persistent connections.

Although not claiming to assess the subjective effect of
page download delays we have used a simple metric to
represent the distribution of delay throughout the page’s
component downloads, which, intuitively will impinge
upon the user’s perceived utility. Our calculations demon-
strate that the use of persistent connections not only im-
proves download time, but also minimizes the per-object
delay during the download.

The facility to study network activity at multiple lev-
els of the protocol stack, and to differentiate application-
level effects, allows us to investigate the interactions be-
tween protocols in more detail than has generally been
the case, and offers the potential for a great deal of fur-
ther research. We have concentrated largely on Web traf-
fic to date: the protocols employed are well understood
and provide a useful proof of concept for our monitor, and
the trace analysis tools that we are developing — but also
attract further investigation made possible by the range of
data that we are able to collect.

We are currently developing techniques to reliably rec-
ognize user originated download aborts, and when we
have done so will investigate the correlation with delay.
We have also informally noted many examples of appar-
ently dysfunctional browser behaviour, and will establish
methods of identifying and quantifying the resulting de-
lays. The ability to gather data from HTTP headers opens
the possibility of detailed study of caching behaviour.
Nprobe already gathers rudimentary data from a range of
other protocols, and we intend to widen our research into
areas such as BGP operation and streamed media.
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