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Bayesian Neural Networks for Internet
Traffic Classification

Tom Auld, Andrew W. Moore, Member, IEEE, and Stephen F. Gull

Abstract—Internet traffic identification is an important tool
for network management. It allows operators to better predict
future traffic matrices and demands, security personnel to detect
anomalous behavior, and researchers to develop more realistic
traffic models. We present here a traffic classifier that can achieve
a high accuracy across a range of application types without any
source or destination host-address or port information. We use
supervised machine learning based on a Bayesian trained neural
network. Though our technique uses training data with categories
derived from packet content, training and testing were done using
features derived from packet streams consisting of one or more
packet headers. By providing classification without access to the
contents of packets, our technique offers wider application than
methods that require full packet/payloads for classification. This is
a powerful advantage, using samples of classified traffic to permit
the categorization of traffic based only upon commonly available
information.

Index Terms—Internet traffic, network operations, neural net-
work applications, pattern recognition, traffic identification.

I. INTRODUCTION

ACCURATE identification of network applications is fun-
damental to numerous network activities, from security

monitoring to accounting, and from quality of service mea-
surements to forecasting for long-term provisioning. However,
application classification schemes are inaccurate because the
knowledge commonly available to the network, i.e., packet
headers, increasingly does not contain sufficient information.

In common with [1], we describe a method with application
to the networking community. We illustrate this method through
examples applied to data which has been made available to us.
We use supervised machine-learning to train a classifier, and
then compare the predicted category with the actual category for
each object. We attained a significantly higher degree of classi-
fication accuracy using less information than previous methods.
Notably, for our neural network classifier, we do not use port
or host information; this is the same situation as faced when at-
tempting to classify anonymized traffic.

In the application of Bayesian technique, we plan to provide
insight into the nature of network traffic itself. We demonstrate
that information able to be derived from a traffic flow can allow
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the distinguishing of classes with an accuracy exceeding that of
(standard) port-based mechanisms. We illustrate this classifica-
tion process operating as an offline tool, as in the auditing of
forensic work. Finally, we suggest ways to further improve the
performance of our classifier, indicating that the most effective
identifiers of an Internet application remain concentrated into a
relatively small number of characteristics. The contributions of
this paper include the following:

• illustration of the Bayesian framework using a neural
network model that allows identification of traffic without
using any port or host [Internet protocol (IP) address]
information;

• a classification accuracy of over 99% when training and
testing on homogeneous traffic from the same site on the
same day;

• a classification accuracy of 95% in the (more realistic) sit-
uation of training on one day of traffic from one site, and
testing on traffic from that site for a day eight months later;
this is a figure significantly higher than for the approach
adopted in [2];

• we document the features of flows, derived from streams
of packet headers having of greatest contribution to clas-
sifiers based upon a naive Bayesian approach and upon a
Bayesian neural network approach. We show that a small
number of features carry high significance regardless of
the classification scheme. We also show that there is some
overlap in features of high importance to either method;

• finally, our work validates the premise that the activity
of a network user (in terms of applications) is reversible.
We define the process as reversible if it permits identifi-
cation of a users network-based applications based upon
the network traffic alone. Further, this process is performed
without the benefit of IP (host) address or port information.
The conclusion we draw, extending the work of others, is
that traditional anonymization procedures that remove pay-
load contents, IP address, and port numbers may not hide
the network-based application observed.

II. MOTIVATION AND RELATED WORK

The identification of Internet applications through traffic clas-
sification is a basic problem of broad interest. A clear interest
exists among the operators of networks since, with knowledge
of what applications are present in a network, network opera-
tors are better able to plan, budget, and bill. Network operators
and users have a continuing interest in systems that can identify
anomalies in network traffic to reduce the impact of malicious
behavior [3]. Alongside these direct and practical applications
of classification are others that set out to model the Internet: the
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modeling of traffic-mix, user composition, and so on. Our ap-
proach, relying upon packet observations but without access to
site-specific information (such as the role of machines, access
to the user and system-administrator community, or access to
the content of packets) allows for a method with the widest pos-
sible application. We are independent of the original site that
sourced the data and can operate in the traditional anonymiza-
tion environments of packet traces without payload, IP address,
or even port number. The ability to perform accurate identifica-
tion without this information forms the motivation for this work.

The most common technique for the identification of net-
work applications through traffic monitoring relies on the use
of well-known ports: An analysis of the headers of packets is
used to identify traffic associated with a particular port and thus
of a particular application [4], [5]. Such a process is likely to
give inaccurate estimates of the amount of traffic carried by
different applications, since specific protocols, such as hyper-
text transfer protocol (HTTP), are frequently used to relay other
types of traffic, e.g., a virtual local area network (VLAN) trans-
ported over HTTP. Also, emerging services avoid the use of
well-known ports altogether as in some peer-to-peer applica-
tions. These traditional classification techniques face increasing
inadequacy. A brief summary of previous classification methods
now follows.

The work of Karagiannis et al. [6] about how accurate traffic
classification can impact social and political decisions, cited
differences in the perceived and actual growth of peer-to-peer
networks. This approach requires accessible port (and IP ad-
dress) information. Illustrating changes in accuracy derived
from content-based classification, Moore and Papagiannaki [7]
also noted an accuracy no better than 50%–70% for port-based
classification using the official Internet Assigned Numbers
Authority (IANA)1 list.

In [8], Karagiannis et al. present a more generic classification
scheme that, instead of examining individual flows, looks at pat-
terns of flows among sets of ports and hosts. While this scheme
is also shown to operate on payloadless flows, it supposes that
access to full headers remain untested in situations where the IP
address or port numbers are not available to the classification
scheme.

Roughan et al. [9] classify traffic into a small number of cat-
egories suitable for quality of service applications. They use
techniques such as clustering using nearest neighbor to provide
the required classification. With a small set of features and an
unknown (implicit assumption) of the accuracy of the testing
and training data sets, the authors restrict themselves to broad
properties common to relatively large sets of network-based
applications.

In contrast, McGregor et al. [10] identify traffic with similar
observable properties by applying an untrained classifier to the
problem. The untrained classifier identifies classes of traffic
having similar properties, but does not directly assist in under-
standing what or why applications have been grouped in this
way—indeed, without content-derived information the authors
are left to guess the precise type of each application. This
work demonstrated that the properties of network traffic, using

1http://www.iana.org/assignments/port-numbers

features on a per-flow basis, allow some differentiation to be
inferred. As in [9], the authors restricted themselves to a small
number of classes and a trivial set of features. Each class may
have included a relatively large number of network-based appli-
cations, but the authors were never able to establish this method
as anything more than a property-grouping technique. This
work applied an unsupervised method to provide a clustering
of traffic. Even in their final analysis, the clusters of traffic
types were never identified beyond port-based methods: The
technique itself introduces considerable error. McGregor et al.
provide a useful contribution by illustrating that (unsupervised)
machine learning is plausible, but the work is not comparable
with our own as it is done without the benefit of an accurately
preclassified training set.

The link between the applications causing network traffic and
the features present in network traffic was further investigated
by Zander et al. [11]. Following a motivation that intersects with
our own work—inaccurate port-based classification and re-
stricted access to payloads—they attempt maximum-likelihood
(ML)-based classification of network traffic. In particular,
they use sophisticated self-clustering to group similar-property
traffic as a part of the classification process. However, like
McGregor et al., these authors used unsupervised learning but
did not have access to a precise application membership. Such
base-level uncertainty is in contrast with this paper.

Hernández-Campos et al. [12] aim to provide more accurate
classification, based on simulation. They describe representa-
tive traffic patterns for input to the simulation but do not seek
to identify the traffic itself. Soule et al. [13] perform flow clas-
sification aiming to identify membership among a small set of
classes: Elephant flows (those of long-life and large data con-
tent), and nonelephant flows. Their method is used to estimate
flow-membership probability.

Zuev and Moore [2] applied a naive Bayesian classifier to
traffic classification. Significantly, the simple classifier as-
sumed independence between each of the variables describing a
particular object. The data, drawn from previous hand-classifi-
cation work, exhibited considerable redundancy and significant
interdependence among features describing each flow; this will
significantly reduce the accuracy of classification. Clearly, a
method that incorporates dependence, such as the Bayesian
neural network, could provide a more robust and effective
classifier.

Using an entropy maximization method, Gu et al. [14] illus-
trate the application of machine-learning techniques to the com-
putation of baseline distributions representing traffic behavior.
They are then able to identify deviations from this baseline as
indications of anomalies. Papagiannaki et al. [15] demonstrate a
similar method. Their technique performs a wavelet multireso-
lution analysis for the identification of overall long-term traffic
trends. This trend prediction can then provide operational in-
sight into the network. Mandjes et al. [16] also present work
on anomaly detection in the specific application of voice over
Internet traffic. These authors all report on the limits of mea-
surement for effective anomaly detection.

In common with Papagiannaki et al., Hajji [17] attempts
to identify the baseline of normal network operation. Their
method uses a stochastic approximation of the maximum-like-
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lihood function and to again detect anomalies in the overall
network behavior. For a further entropy-based mechanism,
Xu et al. [18] documents a procedure for profiling the general
makeup of traffic. However, these approaches are not intended
to provide an insight at the level of network-based application,
but to assist in an understanding of the higher level traffic mix.

A specific application of neural networks is demonstrated by
Atiya et al. [19]. They describe techniques that are able to pre-
dict the utilization of video traffic using sparse-basis selection.
They are able to both estimate the video traffic requirements and
recursively update the estimation process.

The field of security also uses machine-learning techniques
(see [20] for a recent survey). However, this work has largely
been targeted at the detection of malicious behavior on a mul-
tiuser machine, or the filtering of false alarms [21].

For the recognition of a single flow of traffic, current intru-
sion detection systems for the network (e.g., [22] and [23]) com-
monly rely on signature matching and server ports as the pri-
mary identification technique. Our work is entirely compatible
with these current systems and we foresee its implementation as
part of a complete intrusion detection system (IDS) framework.

III. DATA SET

We illustrate our method with preclassified data described
originally in [7]. This data, also used in [2], consists of de-
scriptions of Internet traffic that have been manually classified.
Hand-classification of two distinct days of data for an active
Internet facility provides the input for sets of the training and
testing phases. The data was provided as a set of flows taken
from two distinct days; each day consisted of ten sets of clas-
sified transport control protocol (TCP) traffic flows, with each
object described by its membership class and a set of features.

Each of the ten data sets covered the same length of time
(approximately 24 min); these nonoverlapping samples were
spaced randomly throughout the 24-h period. The samples are
intended to be representative of multiple times within the 24-h
period. A description of the classes, definitions of the object of
classification, and a description of the features of each object are
given later. Further details of the original hand-classification are
given in [7], and the data sets themselves are described at length
in [24].

For the purposes of this study, we treated all data coming from
a single day as a single trace—any subsampling of a trace meant
we were subsampling from across the whole day, not selectively.
We are then able to perform full cross correlation in the knowl-
edge that we are not making unintended assumptions about the
stability of either the traffic mix or features of the traffic over a
24-h period.

A. Data Collection

Throughout this paper, we have used data collected by the
high-performance network monitor described in [25]. The data
sets we used were based on traces captured using its loss-lim-
ited, full-payload capture to disk facility with time stamps
having resolution better than 35 ns.

We examine data for several different periods in time from
one site on the Internet. This site is a research-facility host to

TABLE I
EXAMPLES OF NETWORK TRAFFIC ALLOCATED TO EACH CATEGORY [7]

about 1000 users connected to the Internet via a full-duplex gi-
gabit Ethernet link. Full-duplex traffic on this connection was
monitored for each traffic set.

This site hosts several biology-related facilities, collectively
referred to as a genome campus. There are three institutions
on site that employ about 1000 researchers, administrators, and
technical staff. The campus is connected to the Internet via a
full-duplex gigabit Ethernet link. The monitor was located on
this connection to the Internet. Each traffic set consists of a full
24-h weekday period in both link directions.

B. Traffic Categories

Fundamental to classification work is the idea of classes of
traffic. In the present data set, traffic was classified into common
groups of network-based applications. Other approaches to
classification may have fewer definitions, e.g., malicious versus
nonmalicious for an intrusion-detection system, or may opt for
protocol-specific definitions, e.g., the identification of specific
applications or specific TCP implementations [26].

Table I lists the classes we use alongside a nonexhaustive list
of applications. Interestingly, each traffic class contains a variety
of different types of data. For example, the BULK class consists
of both the control and data flows of the file transfer protocol
(FTP).

C. Classification Objects

Any classification scheme requires the parameterization of
the objects to be classified. By using these parameters, the clas-
sifier assigns an object to a class.

The fundamental object classified in our approach is a
TCP/IP traffic flow, which is represented as a flow of one or
more packets between a given pair of hosts. It is defined by an

-tuple consisting of the IP address of the pair of hosts, and
because we limit ourselves to TCP, the TCP port numbers used
by the server and client [27].

In this paper, we are limited to the training and testing sets
available. These consist of TCP traffic only, and are made up
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TABLE II
EXAMPLES OF FEATURES DESCRIBING EACH OBJECT USED AS INPUT FOR CLASSIFICATION [31]. EACH OF THESE FEATURES IS PROVIDED FOR

BOTH DIRECTIONS OF THE DUPLEX TRAFFIC, WHEREVER RELEVANT EACH FEATURE IS ALSO PROVIDED FOR THE TOTAL FLOW

of semantically complete TCP connections. Semantically com-
plete flows are flows for which a complete connection setup and
tear-down was observed. Although less well-defined flows may
lead to a less accurate classification process, there is a degree of
equivalence between any complete and incomplete flow defini-
tion [28]. The Bayesian methods we describe here are applicable
regardless of the definition of a flow.

We have not evaluated our scheme against packet flows
without an easily identified beginning or end. Along with in-
completely observed TCP flows, such partially observed flows
include those based on the user datagram packet (UDP) services
and are routinely used for the Internet name services [domain
name system (DNS)], streaming-media, and popular local-area
protocols such as the Sun network file system (NFS). Claffy
et al. [28] consider that employing an appropriate time-based
mechanism—using inactivity timeouts to delimit flows—would
be sufficient to delimit a flow for the purpose of work such as
ours. We believe that an important interaction may take place
between such timeout-based mechanisms and certain features
we create; in itself, the topic of appropriate features for network
traffic deserves further work in itself.

D. Manual Classification Process

The manual classification process consists of identifying
classes, using content-based classification methods. In this
process, a combination of manual and semiautomated pro-
cesses was used to identify the membership class for each
object (flow). An example of this process is that the total
data-mix is reduced to many (millions of) flows for the 24-h
period. The membership of each flow is then decided based
on both the contents and knowledge about the systems that
exchanged the flow. For example, a flow may be to or from
a web server; the flow content is inspected to verify that the
transfer contains web traffic, and the flow is then classified as
being a member of world wide web (www). Another example
is where inspecting the contents of a flow reveals that one
previously identified as being to or from a web server, in-fact,
contains peer-to-peer traffic. In this situation, the web server
may be performing a dual-role: web-server and peer-to-peer

participant, or the peer-to-peer traffic; it may be masquerading
as web traffic.

This process of combining host knowledge, with verifica-
tion-using content (also verification including contact with
the users and site-administrators of the site) allowed the orig-
inal data to be classified, by hand, with very high accuracy.
The classification of this traffic is described in [7]. Related
methods are discussed by others [6] and used in a number of
intrusion-detection-systems, e.g., Bro and SNORT [22], [23].

As stated in the Introduction, the use of site-specific infor-
mation, such as the role of machines, access to the user and
system-administrator community, and the access to the content
of packets, may not be assumed. We are motivated to use a
supervised machine-learning process as it exploits the original
manual-labor to seed classification for data quantities, such as
that present in quantities that could not feasibly be classified
using the same manual process as the original seed data.

E. Object Features

Each object is a flow of data described by its class and a set
of features. The original flow data was not available to us, but
each object has a number of particular properties, such as the
client and server port of each flow, along with a number of char-
acteristics parameterizing its behavior. These features allow for
discrimination between the different traffic classes. Table II pro-
vides a summary of the 246 per-flow features that are available
to us. A full description of these features is provided in [24].

The computational overhead for the total feature group has
led us to use an offline technique at this time.

We make extensive use of the tcptrace tool [30] to pro-
vide features that are derived from the contents of the TCP and
IP packet headers. Using a packet trace as input, this tool com-
putes values based upon the packets it has processed. However,
tcptrace processes a set of observations made by a moni-
toring system, so that measures such as round trip time (RTT)
have components in both the (monitoring-point) server and
(monitoring-point) client directions. This gives rise to two
estimates of values such as RTT; in reality these values are par-
tial-RTT as used and defined in [32]; conceptually, the two par-
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tial-RTT values together construct the whole. The power of dis-
crimination offered by certain features that are location-specific,
like those derived from RTT, may change should the point of
measurement be moved. The resulting change in the quality of
discrimination is left for future work.

The IP address of the source or destination was not used as
part of the data sets. This is to provide a degree of site-indepen-
dence in the trained neural network; it also removes any depen-
dence of the trained neural network upon address use within any
network against which it is used. Early work indicated that the
IP address incorporated an overwhelming amount of discrim-
ination power. Though the particular information in an IP ad-
dress has been used, for static classification, to good effect in
the studies of others (e.g., [3], [6], [8], and [18]), we have been
motivated by the desire to test features that are independent of a
particular network configuration, especially IP addresses which,
even on the same site, can change over time.

F. Note on the Construction of Features

All stages of the preparation of input data for this study—the
construction of flows, the content-based classification of
training sets, and the computation of features to describe
flows—were performed as offline processes. Offline processing
is consistent with a number of potential applications of accurate
classification mechanisms, including, long-term forecasting and
the auditing of network traffic. Each of these procedures may
be performed online, in real-time, with appropriate tradeoffs.

As we noted previously, a method that relies upon the se-
mantic definition of a TCP flow cannot provide flow objects
until the end of the flow is observed. Thus, for real-time or con-
tinuous operation, semantically incorrect TCP flows must be
constructed; and Section III-C discusses this approach for TCP
and other datagram (e.g., UDP) data flows.

In view of this reliance on the complete flow observation, we
do not compute object features until we have all flow observa-
tions for a period. However, the features themselves are rela-
tively lightweight computations. Those with the greatest over-
heads rely upon the complete set of variables to compute a
statistic, such as the median or first/third quartile.

Some of the features themselves can be computed only after
a complete flow observation; a fertile area for further work is
the establishing of flow features suitable across a wide range of
applications. Such work would investigate the impact of lower
quality features (such as prematurely computed median values)
on the contribution of the feature to classification.

The computation of features for this work is object-indepen-
dent, and linear in the number of features. Computation of a full
set of features (246) for all traces took over 40 h on a dedicated
system area network (SAN), but the removal of the computa-
tion of Fourier transfer values reduced the computation of the
remaining features (226) across 553 188 objects to less than 40 s
per flow, with a standard deviation of 22. Clearly, a better fast
Fourier transform (FFT) implementation will contribute signif-
icantly to the computation period.

Another large contributor to the overall performance was
the need to manipulate the files containing the trace data used
in this work. In other implementations, these overheads will
be replaced by the overheads associated with managing packet

streams in memory and in the monitoring system. Of additional
note is the large standard deviation in time taken per flow; the
time taken to compute features is proportional to the size of the
flow. Though there are some features that induce a fixed over-
head, any computation based on a collection of packets of flows
(e.g., the computation of interarrival time, packet size, and so
on) incurred, for our features, an overhead proportional to the
number of packets observed. With a modified definition of the
flow object, the computation of any feature will be bound and
finite; alongside the investigation of the adequacy of features,
the definition of flows is a valuable area for further work.

G. Processing of the Features

As part of the procedure for using the Bayesian neural net-
work, we process the features describing each traffic object. Fea-
ture preprocessing was not performed for the naive Bayesian
work of Section IV.

The data comprise the class, the client and server port
numbers, and 246 other flow features, some of which were
described previously. Some are integers less than 65 536, others
are floating point numbers, and some are boolean or have an
unknown value. Later, we shall use a Bayesian neural network
to predict the probabilities that a flow belongs to each of the
ten categories.

We assume nothing about the inputs but believe the order for a
given input may be important, and perform a “histogram equal-
ization”: the features were mapped between 0 and 1, and equal-
ized by sorting and indexing. Thus, all numbers between 0 and
1 are represented approximately equally. All members having
identical values are assigned the same output value. Boolean
variables were labelled 0 or 1 in the obvious fashion, with un-
known values being 0.5. Some further manipulation of the data
is performed on an experiment by experiment basis, and this is
described in Section V-A.

The data thus available to the classifier are 246 real numbers
between 0 and 1. For each object (flow), or “row” of data, we
also have the class (an integer between 1 and 10), which can
be used for training and testing of the classifier. Following our
note at the beginning of this section, we have two data sets each
taken from two workweek days separated by eight months; there
was a total of 337 000 flows in the first and 175 000 flows in the
second.

Although we did not identify any remaining data issues, it
may be desirable to identify the features with the most predic-
tive power, and thus reduce the number of features in the cate-
gorization problem.

Preprocessing of the features for use by in the Bayesian neural
network contributed a negligible overhead in the preparation of
the features—the majority time remains in the overhead of their
computation from the raw data.

We now proceed with a description of the methods used to
classify our network data.

IV. NAIVE BAYESIAN METHOD

In this paper we compare two methods: The application of a
Bayesian neural network described in Section V, and the naive
Bayesian estimator used by Moore and Zuev [2].



228 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 18, NO. 1, JANUARY 2007

TABLE III
COMPARATIVE RANKING OF VALUABLE FEATURES. NB Rank REFERS TO THE TEN MOST-VALUABLE FEATURES DERIVED USING THE FCBF AND THRESHOLD

METHODS OF [2], SHOWN IN SECTION IV. BNN Rank REFERS TO THE FEATURE-INTERDEPENDENT RANKING DESCRIBED IN SECTION VII.
PORT INFORMATION AND HOST IP ADDRESS WAS ASSUMED NOT TO BE AVAILABLE

A. Naive Bayesian Approach

The naive Bayesian method associates an object with a par-
ticular class of membership based upon the sum of probabilities

of membership for each feature. This approach assumes that all
features are equally valuable and are independent. Further, in
this simplest of approaches, the probability of membership is
based upon the modeling of a feature by a Gaussian curve.
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Clearly the assumptions of the model and the assumptions of
the independence and importance of all features do not hold. In
the work of Moore and Zuev [2], this approach is progressively
refined to illustrate the impact that an improved model of the
features and a refined list of features can give to the overall ac-
curacy of the classification process.

Moore and Zuev [2] also include the use of naive Bayesian
kernel estimation. This is similar to the naive Bayesian method
algorithmically; the only difference arises in estimating the
membership of an instance to a particular class: ,

. In contrast with naive Bayesian which estimated
, by fitting a Gaussian distribution over the

data, kernel estimation provides an estimate of the real density
by

(1)

where is called the kernel bandwidth and is any
kernel, where a kernel is defined as any nonnegative func-
tion (although it is possible to generalize) normalized such
that . Examples of such distributions in-
clude top hat , which gener-
ates a histogram to approximate , Gaussian distribution

, and many others [33]. The
naive Bayesian kernel estimation procedure used in [2] and
replicated here uses a Gaussian kernel partly because it has
desirable smoothness properties.

The accuracy of the naive Bayesian algorithm also suffers
from irrelevant and redundant features. Following the procedure
of [2], we used a fast correlation-based filter (FCBF), described
in [34], as well as a variation of a wrapper method in deter-
mining the value of the threshold.

In FCBF, the value of a feature is measured by its correlation
with the class-of-membership and with other valuable features.
The goodness of a feature is improved if it is highly correlated
with the class, yet not correlated with any other good features.
Using the procedure described at length in [2, Sec. 4.4], the total
number of features is reduced to a selection of ten described in
Table III. Noteworthy is the feature total number of RTT sam-
ples, a curious feature that is part of the output of the tcp-
trace utility; this value counts the number of valid estimations
of RTT that tcptrace can use [30] in its computation of the
RTT estimate.

V. CLASSIFICATION NEURAL NETWORKS

We shall use multilayer perceptron classification networks to
assign classification probabilities to the flows. (See [35] and ref-
erences therein for background; a Bayesian treatment is pro-
vided in [36].)

Fig. 1 shows a typical perceptron network with one hidden
layer. The first layer contains the inputs, which in our problem
are the 246 features described in Section III. The final layer
contains the outputs, and in our problem these relate to the ten
classes of membership to which a flow may belong. Intervening
layers are described as hidden. There may be any number of
hidden layers, comprising any number of nodes. The nodes in

Fig. 1. Perceptron neural network with one hidden layer.

a hidden layer are connected to all nodes in adjacent layers. A
particular network architecture is denoted by

where is the number of input nodes, is the number
of nodes in the th hidden layer, and is the number in the
output layer. For example, Fig. 1 is described by 5 : 3 : 4.

Each connection (represented by an arrow in Fig. 1) carries a
weight , and we write , the set of weights for the
neural network. An activation function is defined on the
hidden layer, taking as its argument

where the sum is over all nodes sending connections to node
in the hidden layer, as well as another node, the bias node, which
is not included in the explicit architecture of the network. The
bias node is taken to have constant output 1 and is included
to allow for additive constants in the activation function. The
activation functions are chosen to be nonlinear, to enable the
network to model any nonlinearities present in the problem. We
will use the hyperbolic tangent function

(2)

Other choices include a sigmoid function
or a radial basis function network.2 Derivatives of

(2), which will be required in the Bayesian training algorithms
described in Section V-A, are well defined.

In our problem, we interpret the value of the th node in the
output layer , as being related to the probability that the class
of the flow is , given the weights and the inputs of a flow. The
properties of a probability distribution require that
and for normalization. We apply the softmax filter
to this layer to ensure that the activations in the output
layer behave like a probability distribution

2Here, the structure of the network is slightly different. The nodes in the
hidden layer have activations g (x) = exp�((x � w ) =2� ) where x is
the vector of inputs.
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We now interpret and note that the filter ensures a
positive, normalized distribution over the classes. Thus, given a
network architecture , a set of param-
eters , which are the weights of the network, and a set of 246
inputs for a flow , we now have defined a likelihood
function for the classification problem

where

Class (3)

For a particular input vector, the output vector of the net-
work is determined by feedforward calculation. We progress
sequentially through the network layers, from inputs to outputs,
calculating the activation of each node, until we calculate the
activation of the output nodes.

In this paper, we restrict ourselves to zero and single-lay-
ered networks. There are two reasons for this simplification.
First, it is believed that single-layer networks contain enough
structure to solve the classification problem to adequate accu-
racy. Second, the Bayesian training algorithms described in
Section V-A are much more robust with zero and single-layer
networks. Each network architecture we consider is thus of the
form where can be zero (no hidden layer) or
positive (three layer network with nodes in the single-hidden
layer).

A. Bayesian Network Training

Network training consists of choosing the best weights of the
network for a particular problem. In supervised learning, we use
a training set to teach the network, and the problem is analogous
to that of fitting a function to a set of data.

A common approach is to define a loss function between
the outputs or predictions of a network evaluated on some
training inputs, and the targets , which are the actual values
those outputs take on the training set inputs. The predictions de-
pend on the choice of the weights, and we write .
The total loss is defined as

(4)

The aim is now to minimize the loss in (4) with respect to
subject to some constraints of a regularizer , which avoids
overfitting to the training set. Using Lagrange multipliers, we
thus aim to minimize

(5)

We use a wholly Bayesian approach. We assign a prior to the
weights and construct a posterior over these unknowns using
Bayesian theorem. It can be shown that the two approaches are

similar [36]. The log likelihood is equivalent to the loss func-
tion, and the log prior behaves like the regularizer. However, the
Bayesian approach has certain advantages including the gen-
eration of error bars on the weights from the posterior. Other
parameters in the prior (regularizer), such as in (5), are also
chosen consistently and the evidence may be com-
puted and used for model selection. The experiments in this
paper are conducted using the software package MemSys de-
veloped for this purpose by maximum entropy data consultants
[37].

Some preprocessing of features is required prior to input as
training data. We rescale features linearly, so that the mean of
the training data is 0 and the standard deviation is 0.5. This is
done because the neural network contains a nonlinear activation
function [the function of (2)] which is of order 1. This
rescaling is performed so that the variance of the inputs is of a
similar scale to that of the nonlinearity in (2). It has been shown
from the performance and the evidence of similar networks that
a standard deviation of 0.5 is optimal. In network training, this
transformation is stored so that the inputs of the testing set can
be rescaled for prediction.

In Section IV, we defined our likelihood function for the
classification for a number of hypotheses , given the pa-
rameters (3). We now infer the maximum a posteriori
probability (MAP) best estimates for the weights of the neural
network , which will ultimately be used for class prediction.

The weights are the unknown parameters in the likelihood,
and we require a prior distribution on them . A common
choice of prior on the weights of such networks is the Gaussian
prior. However, we have no bias for one particular neural net-
work or another, and wish to consider as broad a choice of
weights as possible. Gaussian distributions are of the form

with . The maxent prior be-
haves like and converges more slowly to
zero for extreme values of than the Gaussian. The maxent
prior is seen as a more appropriate choice than the Gaussian
equivalent since it is less constraining on “large” values of the
weights, which may be required to build an accurate classifier.
Examination of the evidence also reveals that maxent priors pro-
vide better solutions in many problems.

We thus initially choose the maximum entropy prior

where the entropy is defined over both positive and negative
values of the weights via

The prior contains two parameters and . Here, is called
the default level and is chosen to be 0.15.3 We will drop any
dependence of the prior on this parameter, as it is found to make

30.15 is chosen when the scale of the data is such that the standard deviation
of the inputs is 0.5.
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very little difference. The hyperparameter has a much greater
effect on training, and we keep it in the formulation at this stage.

Bayesian theorem can be written as

(6)

which yields

(7)

By writing the neural network classification likelihood in (3)
as

Class

the likelihood in (7) becomes the product of the for
each flow in the training set 4

(8)

where the product runs over each member of the training set .
Here, and are the class and features of the th flow in .

The prior contains a parameter . This is known as a nuisance
parameter. We could assign its own prior and integrate
it out of the posterior so that we have a distribution independent
of

However, in view of the optimization algorithms described
later, we prefer to retain the parameter at this stage. The nor-
malized posterior distribution is thus

(9)

Equation (9) provides a posterior distribution over the
weights of the network for each value of . We use the con-
jugate gradient algorithm in the MemSys environment to find
the MAP values of the weights. We interpret the MAP weights
as corresponding to the most likely neural network given the
hypothesis (neural network architecture). The algorithm is
quite involved and is described further in [37]. The search of
the weight and space is conducted first by holding at a
large constant value and evaluating the MAP in space. The
derivatives of are evaluated, is reduced, and the algorithm
is repeated. A stopping value of is found where the posterior
is thus maximized.

We have thus inferred the most probable value of the weights
of the neural network given some training data. This defines a

4We interpret the training setD as comprising logically independent samples
from the likelihood distributions. The probability of the whole sample thus fac-
torizes into the product of individual likelihoods above.

Fig. 2. Error rate versus number in the hidden layer.

classification scheme, which we now use to predict the classes
of the Internet flows found in the data set.

B. Choosing the Architecture

We must decide what network architecture is most applicable
in this problem. We are restricted to MLP networks with zero
or one hidden layer, since the MemSys algorithm typically fails
on networks with two or more hidden layers. It would be de-
sirable to conduct experiments on a variety of architectures (or
hypotheses ) and calculate the corresponding evidences

. This would allow us to choose “the most prob-
able” hypothesis. However, the integrals involved in
are over many dimensions and numerical computation proved
unfeasible. Instead, we use cross validation: We train nets with
different structures on a subset of the data, and calculate the clas-
sification error (the testing error) on another set of data. We con-
sider networks with between 0 and 30 nodes in the hidden layer
(0 being a network with no hidden layer).

Testing error is a function of the network and the training/
testing sets, so in the cross-validation test, we use the same
training and testing data for each architecture. We use a single
set of training data consisting of classified flows from 10% of
the data from the first trace. The test set is a further 10% of the
data from this trace (distinct from the training data). The net-
work training algorithm described in Section V-A was run to
find the MAP values of the weights for each architecture, and
the predictions calculated for the flows in the testing set. Fig. 2
shows the testing error. The errors for networks with more than
seven nodes in the hidden layer are all similar, and lie between
0.86 and 0.92. Any of these architectures would be suitable, but
it was decided to use the value at the minimum, which is 10.
Some further justification can be provided by the presence of
ten classes in the problem. The number in the hidden layer pro-
vides the dimension of the hidden space. This is the nonlinear
projection of the input space via the map created by the weights
and activation function in the first to second layer of the net-
work. Having a dimension greater than or equal to the number
of classes could provide the necessary complexity to accurately
classify all classes of traffic.

We will now proceed with a variety of experiments to test the
accuracy and properties of the classification scheme, including
first a comparison with the naive Bayesian method.
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TABLE IV
ERROR RATES WHEN TRAINING AND TESTING WITHIN TRACES 1 AND 2, AND WHEN USING TRACE 1 TO TRAIN AND TRACE 2 TO TEST

TABLE V
ACCURACY FOR DIFFERENT SIZES OF TRAINING SET

VI. NAIVE BAYESIAN AND NEURAL NETWORK COMPARISON

For both methods, naive Bayesian, and results gained using
the Bayesian neural network, we do not use the server port
number as a feature to describe flows of network traffic.

For the naive Bayesian experiments, we use the best approach
of [2] naive Bayesian combined with a kernel-estimate method
to provide an improved model of each feature and a reduced set
of ten features, selected using the FCBF approach.

For the neural network, we use an MLP with ten nodes in
a single-hidden layer, trained using the MemSys algorithm de-
scribed in Section V-A.

We use three experiments to compare of the methods. The
first experiment tests classification accuracy within trace 1. 50%
of the data is chosen randomly as training data, and the re-
maining 50% used to test. The experiment is repeated five times,
using different randomly chosen training sets of the same size
and the standard deviation across the repeated experiments com-
puted. The second experiment is identical to the first but Trace
2 is used in place of Trace 1. The third experiment uses training
data created using (a sample of) Trace 1, and tests on the whole
of Trace 2. It is not possible to train on the entire set from Trace
1 due to memory limitations. We select 50% of the flows from
Trace 1 for use as training data. Again, we choose this data ran-
domly, run the experiment five times, and indicate the mean ac-
curacy along with the error margin representing standard devi-
ation across the set of experiments.

We use three separate metrics to evaluate the success of the
two classifiers. The first of these is the accuracy derived ac-
cording to the classification of the objects (the TCP flows). This
is the metric used to choose the neural network architecture. The
second and third metrics are computed based upon the number
of packets and the number of bytes of data carried by each flow.
The results of the experiments evaluated using the three metrics
are shown in Table IV.

In all cases, the neural network outperforms the naive
Bayesian classifier. The accuracies of the first two experiments
are higher than the third, for both methods. This shows that we
are able to classify traffic that is homogeneous to a high ( 99%

in the case of the neural network) degree of accuracy. The
composition of the traffic has changed during the eight months
between Traces 1 and 2, but not so much as to make the classes
unpredictable using the features, and we achieve accuracies
around 95% for the neural network. Indeed, we consider this
95% success rate the headline result of the paper, since this
accuracy was achieved in the near realistic situation of using a
training set from eight months prior to the training set.

VII. NEURAL NETWORK INVESTIGATION

The neural network provides a likelihood which is not sep-
arable over the input features. In this section, we will further
investigate the behavior of the neural network as the training set
and other factors are varied. Here, we will concentrate on flow
accuracy, but we believe we would obtain similar results and in-
sights using packet, or byte metrics, as the figures obtained for
different metrics in Section VI are very similar.

A. Makeup of the Training Set

In the experiments in Section VI, we used training sets of the
order of hundreds of thousands of flows. For Bayesian neural
networks, this required the use of hundreds of megabytes of
memory and provided for a training time of the order of tens
of hours. It would be desirable to use smaller training sets, if
possible.

As the first investigation, the third experiment previously de-
scribed was conducted using 0.1%, 1%, and 10% of the data
in Trace 1 to train, and the whole of Trace 2 to test. The accu-
racies, along with the time taken for the training algorithm to
converge5 are shown in Table V for these and the corresponding
experiment using 50% of the training data. Experiments were
repeated five times. The mean is given along with the standard
deviation (as error range).

It appears that we cannot reduce the size of training set
without reducing the accuracy of the classifier, at least with
the size of training sets used in this paper. The training time
taken for the larger set is almost 39 h, but this is not larger than

5The algorithm is run on a single 2.2-GHz Intel Celeron-based host.
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TABLE VI
CLASSIFICATION ACCURACY VERSUS COMPOSITION OF THE TRAINING SET

(TRAINING AND TESTING WITHIN TRACE 1)

TABLE VII
CLASS ACCURACIES ACHIEVED WITH 2441 FLOWS PER CLASS

(TRAINING AND TESTING WITHIN BOTH TRACES)

the time required to classify the training data, as discussed in
Section III.

The classification accuracies produced so far are derived on
a flow basis over the whole test set. However, the accuracies of
the classes within the test set vary greatly. Table VI shows the
accuracies for one of the neural networks in experiment 1 from
Section VI, along with the make up of Trace 1.

Clearly some of the accuracies are very low (or even zero)
and the average class accuracy is only 68.8%. The accuracies
for the classes vary with the number of instances of that class in
the training data. The “www” class makes up 87% of the flows
in the data set.6 and has the highest accuracy among the classes
at 99.8%. Indeed, it is the high accuracy for this class which
ensures a high overall accuracy of 99.3%.

If we are interested in other criteria for classification, for in-
stance if we were only interested in a single class of flows, such
as “mail” flows, or if we wanted to maximize the average class
accuracy unweighted by the number of flows, then the above
network is surely not optimal and we may wish to choose a dif-
ferent composition of training data.

To maximize the average class accuracy, we try a network
with the same proportion of training data for each class. We use
both Traces 1 and 2 here as training and testing data and, for
practicalities sake, we omit the “Gm,” “MM,” and “Int” classes
from our analysis since the number of instances is minimal. We
also vary the total number of training data logarithmically and
observe the effect on the accuracy. The results are shown in
Fig. 3. The accuracies per class for the larger training set are
also shown in Table VII.

6While the “www” class is well represented in flows, it represents less in
terms of data packets (23%) and data bytes (22%).

Fig. 3. Average class accuracy versus class training size (training and testing
within both traces).

Fig. 4. “Www” class accuracy and average class accuracy as “www” flows are
increased in the training set.

The average class accuracy has increased in these experi-
ments, and the training set size (and hence training time) has
reduced greatly. The accuracy increased roughly logarithmi-
cally with the training size, at least for the training sizes used
in this experiment, except the very small set with ten flows per
class. We were able to achieve an accuracy of 95.5% across all
flows when both training and testing within Traces 1 and 2 com-
bined. However, we are limited to around 2441 training data
for each class in this set. Given the higher accuracies shown in
Table VI, it is reasonable to expect that higher class accuracies
would be achieved if more training data of the sparse classes
were available to us. This would indeed be the case if we were
to hand-classify more of the traces selectively, since only a pro-
portion was hand-classified as described in Section III.

Next, we wish to investigate what happens when we hold the
training sizes of all other classes constant at the 2441 level, and
increase the proportion of “www” flows in the training set. We
expect the “www” class accuracy to increase, but at what cost
to the accuracies of the other classes? Fig. 4 illustrates how the
“www” accuracy increases as the accuracy of the other classes
decreases.

As expected, the “www” class accuracy does increase (up to
99.9% when using about 238 k flows), but at a cost to the average
class accuracy. However, when using larger numbers of training
data for the other classes ( 2400), we are still able to retain
respectable ( 90%) class accuracies for the remaining classes,
in contrast to the results in Table VI.
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B. Interpretation of a Training Set as a Prior on the
Composition of the Network Traffic

The makeup of the hand-classified traffic in Trace 1 is very
skewed among certain classes (Table VI). In particular, 87% of
the objects are “www” flows and over 97% of the flow objects
are made up of three of the ten classes. Training on an unad-
justed data set does give high accuracies over the whole set,
but low accuracies on some classes. As we have shown, accura-
cies for a given class depend on the number of that class in the
training data, and also the proportion of the total training data
made up by that class.

If the aim of the classifier is to maximize the average class
accuracy, it is optimal to use a training set made up of equal
amounts of each class. Similarly, if accurate classification of a
given class is more important than another, this should be rep-
resented in the makeup of the training data. In fact, it is not nec-
essary to alter the makeup of the training set per se, since we
can alter the terms in the likelihood in (8) correspondingly. It is
possible to bias each member of the training set by an amount

. If a flow is present times then the contribution
to the likelihood from these flows is . Thus, if we
wish to bias single flows of a particular type by an amount
each, we alter the likelihood to be

(10)

corresponds to no biasing, and if then (10)
recovers the original likelihood as we would expect.

If we are aiming to maximize the accuracy over all flows, it
is optimal to use a training set with classes in proportion to the
expected frequency of the classes in the test set. In the example
of using Trace 1 to train the network to classify Trace 2, which
is the traffic from the same site eight months later, it could be
reasonable to assume the composition of traffic will be similar.
This may not be reasonable to assume, but in the absence of
information to the contrary it is rational. If the user of the neural
network believes there is a greater occurrence of a given class,
then that user should be free to choose a training set [or bias
the set as in (10)] that gives greater weight to that class. The
situation is analogous to the use of a prior that allows the user
to incorporate additional information in the inference problem
posed in the problem.

Thus, in the process of deciding what training set to use, or
how to bias each flow in the training set, the user must consider
two things: What linear function of the class accuracies should
be maximized, and second, if there is any available information
about the composition of the test set.

C. Reducing the Number of Inputs

In this section, we aim to reduce the number of features in
the classifier. Each of the current 246 features take a finite time
to compute. Reducing the number of inputs to the network
would reduce the training time and make real life applications
faster and easier to implement. To identify the inputs having
the greatest predictive power, we examine the weights of one
of the trained neural networks. The feedforward calculation of
the output vector given an input vector, described in Section V,
defines how the input values influence the outputs. In the first

Fig. 5. Average class accuracy changes with number of inputs.

(input) layer of a neural network, we see that the magnitude of
the weights associated with each input node determines how
much the input value of that node affects the activation of the
nodes in the next layer. If all the weights are zero for a partic-
ular node, that input will have no effect on the activations in
the next layer, or, hence, on all activations in the network. Thus,
the output classification probabilities are not influenced by that
node, and, hence, the input has no classification power. Con-
versely, if the weights for a given input node are much larger
than all the other input nodes, the classification probabilities will
depend solely on that node, and we need consider only that one
input. Thus, the quantity of interest we evaluate is

Signal

subject to input layer

where the sum is over all weights associated with the input node
, in the first layer of the network.

Inspection of this quantity revealed that a small number of
inputs had a relatively large signal compared to the other in-
puts (this quantity had a skewed distribution). It was decided to
observe how the classification accuracy changed when different
numbers of inputs where used, using the signal quantity as a cri-
terion for input exclusion. The training set used contained equal
numbers (2441) of classes from Traces 1 and 2 (omitting the
“Gm,” “MM,” and “Int” classes as in VII-A), and the test set is
the remainder of the traces. The figure of interest is the average
class accuracy over the classes. For each of the neural networks,
the inputs omitted were the ones with the lower “signal.” The
experiments were started with very low numbers of inputs (4, 8,
16 ) and the results are shown in Fig. 5.

For small numbers of inputs, the accuracy is reduced dras-
tically from the previous experiments. The accuracy increases
rapidly to the 95% region, and for all networks with inputs 128
it lies within error bars of the 95.1% figure obtained with 246
inputs. These results imply that a network with 128 inputs is
sufficient for this classification problem.

These results have an important implication for the nature of
network traffic: Aside from such obvious information as server
port information, other flow features can provide an equally ef-
fective identification of the Internet application. Table III pro-
vides insight into what constitutes the 20 “important” inputs.
The majority of these values are derived directly by observing
one or more TCP/IP headers using a tool such as tcptrace
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TABLE VIII
CONFUSION TABLE OF THE CLASSIFIER

TABLE IX
ENTROPY MATRIX OF DISTRIBUTIONS FOR PREDICTION OF ONE CLASS, GIVEN ANOTHER

[30] or performing simple time analysis of packet headers. We
suggest that the ability to accurately derive such information
about the causal application has important ramifications. An ex-
ample is the provision of secure private network services where
it is desirable to reduce the leakage of information. Clearly,
anonymized IP address and port data may not be sufficient to
disguise an Internet application.

From our two feature-reduction methods, we can compare
features that provide the best discrimination power when used in
a feature-independent setting (naive Bayesian) and when used in
the correlated-feature setting (Bayesian neural network). Upon
comparing each reduction, as shown in Table III, we note a lim-
ited overlap and a number of significant differences. A full study
of the correlation of prediction of features and specific classes
is left for future work, but values such as those dependent upon
the RTT will be subject to change depending upon the site mon-
itored; the precise impact of this upon their functionality as a
feature deserves clarification.

D. Additional Information From the Likelihood Distributions

The probability distribution implied by the neural network
likelihood, given some input data, has an interesting structure.
It is expected that, when a false prediction is made, the proba-
bility distribution from the likelihood will yield some extra in-
formation about the quality of that prediction. As discussed in
Section V, the network gives ten numbers which form a

probability distribution over the classes. We study the entropy
of this distribution, defined by

Shannon [38] showed that behaves like the inverse of in-
formation; this quantity is maximized for a uniform distribution

and minimized (at zero) for a “delta” func-
tion corresponding to certainty ( some , ).
We now examine the entropy of the distributions when the net
makes both correct and incorrect predictions.

Tables VIII and IX relate to a network trained on equal num-
bers of the classes from Traces 1 and 2, and tested on these
traces. The three infrequent classes were omitted. Table VIII is
a confusion table, showing the percentage occurrences of the
flow classes amongst those with predictions for a given flow.
For example, 89.2% of the instances where “www” was pre-
dicted were correct, and the remaining 10.8% of instances are
spread out among other classes. Also, Table IX is a matrix of
average entropies for the distributions for each class predicted,
given the actual class of the flow. The diagonal elements of this
entropy matrix are the average entropies of the distributions for
which the predictions are correct. It is interesting to compare this
number with others on the same row (where the same class was
predicted, but incorrectly). The other numbers are higher except
in the case where “www” is predicted, but the class is actually
“Db.” A higher entropy indicates that the distributions are closer
to uniform and less sharply peaked. A distribution with a lower
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Fig. 6. Average class error rates versus rejected predictions, based on entropy.

entropy is one where the network is more “sure” of the predic-
tion it is making. It is pleasing to observe that when the network
makes a false classification it is less sure of that guess. Indeed,
the average on diagonal elements is 0.15, much lower than the
value of 0.85 for off diagonal entropies for misclassified flows.7

In a classification situation in which false predictions are to
be minimized, the entropy of the distribution can be used to re-
ject a prediction. Given a flow, we may have a maximum value
of the distribution of the classes but given a high entropy of

, we can discard that prediction and infer that the classifier
is unable to predict the class accurately for that flow. An experi-
ment was conducted in which the percentage of prediction rejec-
tions (based on entropy) was varied, and the accuracy recorded.
Again, we used the network trained on equal numbers of the
classes from Traces 1 and 2 and tested on these traces, using
average class error as our performance metric. Fig. 6 shows
how the error changes with the percentage of rejections allowed,
along with the error among the population of rejected predic-
tions. The error rate falls as the rate of rejections increases. Also,
the proportion of errors amongst those predictions rejected is
much higher then the classifier error rate (typically 40% versus
around 4%), demonstrating that, on average, we are discarding
much worse quality predictions. These results confirm the extra
information conveyed by the likelihood distribution, and show
that this information has utility.8

E. Weakness

The posterior function of the weights (9) is very complicated.
For a network with 100 inputs, ten nodes in the hidden layer,
and ten outputs, there are 1120 weights. The conjugate gra-
dient MemSys algorithm is, therefore, maximizing a function
in over 1000 dimensions. It is a credit to the power of the soft-
ware that this can be achieved, but for larger training sets (above
50 000 flows), where the posterior is very complicated (a term
is included that arises from the product of each of the training
data), the algorithm may not converge to the Bayesian stopping
criteria.

7The entropy of these distributions must lie between 0 (delta function) and
log(10) ' 2:3 (uniform distribution).

8Curves were also plotted using the maximum value of the likelihood distri-
bution as a criterion. The shapes of the curves were very similar, as expected
since the entropy of these distributions will be closely related to the height of
the peak.

It can be shown [39] that the maximum value of the posterior
evidence for the parameter in the prior is achieved when a
quantity is unity where is defined as

where is a quantity related to the “good degrees of freedom”
of the likelihood , evaluated on the training data. As discussed
in Section V-A, the algorithm works by holding initially at
a high level, calculating the MAP of the marginalized poste-
rior over the weights, and reducing , until increases to one.9
However, for the larger training sets, sometimes settles down
to a value less than one.10 When this occurs, we use the values of
the weights which maximized the posterior for the value of this

, thus obtained. Maxent and Bayesian theorem tells us that this
may not be the most probable value of to use. However, the
value of is a parameter in the prior which is related to the vari-
ance of the distribution. When is less than one, is higher than
the theoretical optimal value, suggesting that the weights will be
constrained to values too close to zero.11 Since the values of
obtained when the algorithm fails in this way are of the order of
magnitude of the desired value (typically 0.5 compared with 1),
this is not a catastrophic failure; we have indeed obtained good
results. However, the mathematics is warning us that there is a
better value for and hence for the weights, if we had an algo-
rithm powerful enough to find it.

We show how varies with the number of iterations of the
algorithm, along with the classification accuracy, in the case in
which the net converges (Fig. 7) and when it does not (Fig. 8).
High accuracies are achieved before reaches unity in the case
of convergence, and later iterations of the algorithm
increase the accuracy only marginally. In the case where conver-
gence does not occur, the accuracy ceases to increase before
reaches its maximum of just above 0.6. This suggests the accu-
racy would not increase significantly if a Bayesian were to be
achieved. Otherwise, there could be evidence in favor of using
smaller sets of training data to ensure the algorithm did con-
verge. However, the experiments conducted in Section VII-A

9In practice, the algorithm is halted when 
 > 0:9.
10For all the experiments in the paper, this value was above 0.25 and most

were above 0.5.
11The prior is uniform for zero � and sharply peaked around the origin for

large �.
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Fig. 7. 
 and the accuracy changing with successive iterations in the case
where 
 achieves unity.

Fig. 8. 
 and the accuracy changing with successive iterations when the net-
work does not converge to Bayesian 
.

did show that accuracy increased with training set size, and this
does not depend on whether Bayesian is achieved.

VIII. NOTE ON THE METHOD AND RESULTS

In this paper, we have applied a technique, suitable for
network traffic classification on real networks, in situations
where the IP (host) address and application port number are not
available. We have shown that the classification neural network,
with Bayesian inferred weights, is an accurate classifier for this
problem, and is superior to the naive Bayesian method of [2].
We draw attention to several points which will be of interest
in applying the technique to a product which could classify
network traffic in a wider range of environments.

First, the accuracy of the scheme was recorded as 99% when
training and testing on data from the same day. This figure drops
to 95% when testing on traffic eight months later. It is reasonable
to suppose that the accuracy will increase as the dates approach
each other, since the training data is then more similar to the
testing data.

Second, the use of more training data could improve the ac-
curacy. Table V shows that the accuracy increases with the size
of the training data, with no leveling off for any of the sizes of
set available to us. The benefits of higher accuracy with larger
training data would have to be considered against the costs of
longer training times. Training times of up to 39 h were recorded
for our largest set using a single 2.2-GHz processor. If the set

was increased in size by an order of magnitude, the neural net-
work training time would take longer than the manual classifica-
tion process and become the limiting factor, at least when using
the 2.2-GHz processor. Also, larger sets would require several
gigabytes of RAM; each flow with 246 features requires roughly
1 kB.

Third, the classification scheme has only been verified as
successful on a single network, and when training and testing
within that network. We make no claims about the stability of
the composition of network traffic, or the difference of traffic
between sites, but it is reasonable to suppose that new types of
flows will arise over time. It would be interesting to test the net-
works trained in this paper on categorized traffic from other sites
and from further time periods. Indeed, this technique could give
useful insight into the evolution of network traffic composition,
and differences between sites.

Finally, the reduction of the feature set requires comment.
The step of choosing predictive inputs (Section VII-C) by in-
spection of the weights was somewhat ad-hoc. This process
could be made more automatic by the use of a different prior
on the weights. Automatic relevancy detection (ARD) priors
have been used to infer weights of neural networks for predic-
tion problems [40], [41]. These priors are Gaussian priors of the
form where the ’s are allowed to vary for each
weight (or subsets of weights). In training, weights which are
relevant are identified via the corresponding , and the others
are switched off. As discussed, the reduction in inputs will speed
up computation of the feature set, making a packaged product
quicker and more efficient. Despite being of mathematical in-
terest, we do not believe that using the ARD approach would in-
crease classification accuracy. It would, however, provide a rig-
orous and efficient method for reducing the feature space which
would cut down the time taken to classify and process the traffic
and train the network.

IX. CONCLUSION

This paper has demonstrated the successful application of a
Bayesian trained neural network to Internet classification on
data from a single site for two days, eight months apart. Our
main findings are as follows.

• A sophisticated Bayesian trained neural network is able
to classify flows, based on header-derived statistics and
no port or host (IP address) information, with up to 99%
accuracy for data trained and tested on the same day, and
95% accuracy for data trained and tested eight months
apart. Further, the neural network produces a probability
distribution over the classes for a given flow. The entropy
of this distribution is (negatively) correlated with pre-
diction accuracy, and can be used as a rejection criteria
for the predictions. Accuracy is further improved when a
proportion of predictions may be rejected. The accuracy
values significantly improve upon those from a naive
Bayesian method [2] and compare favorably with the
50%–70% figure reported using the IANA port list [7].
By providing high accuracies without access to packet
payloads or sophisticated traffic processing this technique
offers good results as a low-overhead method with poten-
tial for real-time implementation.
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• A wider ranging insight from our work is the comparison of
the best quality features for either the naive Bayesian or the
Bayesian neural network classification methods. A small
number of certain features carry high significance regard-
less of the classification scheme. There is some overlap
in features of high importance to either method, although
the ordering of relative importance has changed between
methods. A clear opportunity exists for further study of the
traffic features.

• Finally, features derived from packet headers, when
treated as interdependent can provide an effective method
for the identification of network-based applications. This
final conclusion cannot be overstated; the premise of our
work was that the activity of a network user (in terms
of applications) was reversible without the benefit of
IP (host) address or port information. We consider that
our work, alongside that of others (e.g., [9] and [24]),
shows that, even with the removal of port and IP address,
data-anonymization may not hide the application in use.

Future Work: There are a number of areas in which future
work would further confirm the suitability of this technique and
potentially.

An evaluation of our approach on further sources of classified
data from this and other sites will give insight into the stability
of the technique, and also the diversity and structure of Internet
traffic itself. We anticipate that trained neural networks have a
“half life” property, so that the classification accuracy declines
over time as the composition of Internet traffic changes. Testing
on data from later times will give an indication of the retraining
interval, and of the robustness of the classifiers over very long
periods.

We acknowledge that the half life property of any classifica-
tion model implies that a suitable enhancement may be to com-
bine attributes of supervised and unsupervised training. Such
an approach would be particularly suitable when faced with a
new form of traffic not available for hand classification. Such a
method may combine the advantages of the present method with
the possibilities of the approach raised by McGregor et al. [10].
The potential offered by the fusion of classification methods is
a conspicuous area for future work.

We have highlighted the difference between feature impor-
tance for different classification methods. Further work will
provide a valuable insight into the interaction of classification
process with features. Also, as was noted in Section III, the
definition of each object may significantly influence the classi-
fication process; the study of this interaction should provide a
further valuable contribution.

This paper has used the Bayesian neural network approach
for offline classification, but we believe this process can be re-
fined through the selection of optimum features and appropriate
algorithmic optimization. Specific issues of implementation and
a study of the relevant optimization space is for further work in
this topic.

Finally, we recognize a useful development in formalizing the
identification of the predictive descriptors from the whole set of
features. Training using ARD priors on the weights could be
performed, where the inputs with little or no information are
automatically switched off.
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