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Abstract—The property of resilience describes the ability of a
multi-agent system to mitigate the effects of adversarial attacks or
faults. A growing body of resilient control techniques based upon
the Mean-Subsequence-Reduced (MSR) class of algorithms have
been proposed which enable the consensus of normally behaving
agents despite attacks and faults. Impressive results have been
obtained using these algorithms, but there is still much potential
for future research. In this paper, several recent contributions of
the authors to this area are summarized including results dealing
with robustness determination, resilient leader-follower methods,
and incorporating finite-time convergence into resilient control.
We conclude with several opportunities for future work.

I. INTRODUCTION

Resilience, or the ability to overcome the effects of faults
and adversarial attacks, is an essential property for any multi-
agent system intending to operate in the modern world.
The literature is replete with examples of attacks that have
been successfully carried out against systems in practice
[1], [2]. However, many algorithms and control strategies do
not account for the possibility of such attacks and faults.
Incorporating resilience into multi-agent systems is currently
an active field of research. A high level survey of network
resilience and how it fits into the larger picture of security of
cyber-physical systems is given in [1].

A growing body of literature has started incorporating
resilience into multi-agents systems by using several variants
of the mean-subsequence-reduced (MSR) family of algorithms
[3]. Several representative examples of such algorithms can
be found in [4]–[12]. In essence, these algorithms address the
resilient consensus problem where normally behaving agents
must come to agreement on information in the presence of a
bounded number of adversarial agents with unknown identity.
MSR-type algorithms have the advantage in that they are
simple to implement and rely only on local data. However,
the price of this simplicity are the requirements imposed
on the network structure to guarantee the success of the
algorithms. Many of the sufficient conditions for resilient
consensus in these paper rely upon the graph theoretic notions
of r-robustness, strong r-robustness, and (r, s)-robustness [4],
[13]. The conditions of r-robustness and (r, s)-robustness are
computationally hard to determine for general graphs [13],
[14], which has been a key challenge in implementing MSR-
type algorithms in practice.

In this paper we summarize several of our recent contri-
butions to the resilient control literature. Our work can be
organized into two general categories: techniques for analyzing
network robustness, and theory which incorporates resilience
into control strategies. Our recent work in relation to these
two categories is described in sections II and III, respectively.

II. ANALYZING NETWORK ROBUSTNESS

The MSR-type resilient algorithms discussed previously
can only guarantee convergence of the normal agents in
the presence of adversaries if the communication network is
sufficiently robust. However, a key challenge in implementing
these resilient algorithms is that determining the r- and (r, s)-
robustness of arbitrary digraphs is an NP-hard problem in
general [13], [14]. Several of our recent contributions have
therefore focused on determining the robustness of networks
either exactly or approximately.

For some classes of graphs, lower bounds on the robustness
can be established using the mathematical properties of the
graphs [13], [15]–[20]. In [21] and [22], we analyzed ro-
bustness properties of a class of networks called k-circulant
digraphs, where k is an integer parameter which determines
the structure of the network; the reader is referred to [21]
for additional details. In [21] we demonstrated that for all
k-circulant digraphs, the maximum integer r for which a
given digraph is r-robust is lower bounded by dk/2e. This
result allows for such digraphs to be created with a desired
robustness level and scaled to a nearly arbitrary number of
nodes.1 In [22], we demonstrated the conditions under which
k-circulant digraphs are also strongly r-robust [4] with respect
to a subset of nodes S ∈ V .

However, most of the aforementioned methods are restricted
in their scope because 1) they apply only to particular classes
of graphs (e.g. undirected graphs, k-circulant graphs, trian-
gular robust graphs, etc.), 2) many of the methods only
provide fixed approximate lower bounds which cannot be
iteratively tightened on the maximum integer r for which a
given graph is r-robust, and 3) most do not consider the more
general property of (r, s)-robustness. The CheckRobustness
and DetermineRobustness algorithms in [14] are notable

1For a given value of k, a k-circulant digraph requires n ≥ k+1 nodes. The
number of nodes can be scaled up to any arbitrary value from this minimum
number.



exceptions, which are able to analyze the exact r- and (r, s)-
robustness of digraphs in general. More precisely, these al-
gorithms are able to determine the maximum r for which a
digraph is r-robust, and the maximum (r, s)-pair with respect
to a lexicographic ordering for which the digraph is (r, s)-
robust. However, these algorithms are essentially exhaustive
search techniques, have exponential complexity in the number
of nodes in the digraph, and are only able to iteratively tighten
upper bounds on the integers r and s for which a given digraph
is r- or (r, s)-robust.

In [23] and [24], we present a formulation for determining
the exact r-and (r, s)-robustness of nonempty, nontrivial, sim-
ple digraphs and undirected graphs using mixed integer linear
programming (MILP). To the best of our knowledge, these
results are the first to use optimization techniques to determine
the robustness of digraphs. Applying MILP methods to the
robustness determination problem provides several advantages.
First, expressing the robustness determination problem in
MILP form allows for approximate lower bounds on a given
digraph’s r-robustness to be iteratively tightened using al-
gorithms such as branch-and-bound. Lower bounds on the
maximum value of s for which a given digraph is (r, s) robust
(for a given nonnegative integer r) can also be iteratively
tightened using the approach in [23], [24]. Prior algorithms
are only able to tighten the upper bound on the maximum
robustness for a given digraph or undirected graph. Second,
this formulation enables commercially available solvers such
as Gurobi or MATLAB’s intlinprog to be used to find the
maximum robustness of any digraph. Algorithmic advances
and improvement in computer hardware have led to a speedup
factor of 800 billion for mixed integer optimization problems
during the last 25 years [25], and the results of [23], [24] allow
for the robustness determination problem to benefit from these
ongoing and future improvements.

III. RESILIENCE IN CONTROL STRATEGIES

Much of the prior literature incorporating MSR-type al-
gorithms have focused on consensus to values within the
convex hull of initial normal agent states at an asymptotic or
exponential convergence rate. There are many possibilities to
both extend the resilient characteristics of such algorithms to
additional control objectives and incorporate alternate methods
of filtering out adversarial information. In this section we
outline we outline our recent work which explores both
possibilities.

In [22], we extend the resilient characteristics of the W-MSR
algorithm to a leader-follower scenario, where normal agents
must track the state of a set of leaders while filtering out
adversarial agents. The challenging aspect of the problem lies
in the fact that normal agents do not know the identity of their
in-neighbors, i.e. whether in-neighbors are normal, adversarial,
or leaders. In addition, the leaders’ state value may lie outside
the convex hull of initial normal agents’ states. The paper
[22] first shows that the presence of at least F +1 leaders is a
necessary condition for leader-follower consensus. It then also
demonstrates that selecting an arbitrary set of F+1 agents in a

(2F+1)-robust or (F+1, F+1)-robust graph is not sufficient
to guarantee that the normal agents resiliently converge to the
leader agents. Rather, we demonstrate in this paper that under
an F -local adversary model, the normal agents converge to
a set of 2F + 1 or more leader agents L if the network is
strongly (2F+1)-robust with respect to L, and the value of the
leader agents remains constant. A useful aspect of this result
is that convergence of the normal agents to the leader agents
is guaranteed even if up to F of the leader agents become
adversarial. The case of incorporating trusted nodes [26], [27]
is also considered, where it is assumed that leader agents
have been sufficiently secured as to render them immune to
adversarial attacks. We introduce the notion of trusted leader-
follower robustness in this case which is a sufficient condition
for the convergence of normal agents to a set of at least F +1
leader agents in a network under an F -local adversarial model.

In [28] we incorporate several novel elements into a re-
silient control scenario. Works published prior to [28] almost
exclusively consider algorithms with asymptotic or exponential
convergence. A notable exception is [29], where resilient
consensus is achieved in finite-time. However, [29] considers
only undirected graphs under the assumption that all possibly
misbehaving nodes are only connected to trusted nodes which
are guaranteed to be cooperative. Our work in [28] introduces
a novel continuous finite-time controller that allows agents
to achieve formations in the presence of adversarial agents.
As opposed to [29], we do not assume the existence of any
trusted agents, but rather consider the more general F -total
adversarial model. The controller employs a novel filtering
mechanism based on the norm of the difference between
agents’ states. In addition, it is proven that this controller
guarantees convergence with bounded inputs. To achieve this,
we define novel conditions for the filtering timing and input
weights which ensure that agents can remain in formation even
with a dwell time in the filtering mechanism. Finally, we also
show in [28] that the norm-based filtering and bounded input
elements of our continuous-time controller can be used in a
similar resilient discrete-time system, which is proven to have
exponential convergence.

IV. CONCLUSION AND FUTURE WORK

The need for multi-agent systems resilient to misinformation
and misbehavior will only increase as distributed systems
become more widespread and ubiquitous. Creating algorithms
and control strategies guaranteeing such resilience continues to
be a highly challenging problem, but simulaneously a highly
interesting and important problem. Specifically for the area
of network resilience, several potential research directions of
immediate interest include the following:

Adaptation of resilience methods to mobile robotics: Creat-
ing multi-agent mobile robotic systems has inherent challenges
which include asynchronous systems; limited communication
ranges; noise in sensor measurements and communication;
and limited power and computational resources. The excellent
work in [6], [18]–[20], [30], [31] represents some of the first
efforts to adapt MSR-type resilient algorithms to mobile agents



with limited communication radii and time-varying networks.
However, much work remains to be done in adapting these
resilient algorithms to the challenges and control objectives of
mobile robots. In particular, hardware implementations of such
resilient algorithms on physical platforms are still relatively
rare.

Extensions to systems with stochasticity and noise: The
majority of papers in the resilience literature based upon MSR-
type algorithms deal with deterministic systems. Notable ex-
ceptions incorporating stochasticity include [10], [32], where
randomness is intentionally introduced by design into the
agents’ control laws to ensure convergence, and [33] where the
effects of random packet drops are considered in the analysis
of a resilient estimation algorithm. In physical systems, the
information available to agents inevitably includes uncertainty
and noise. Additional theoretical work is needed to evaluate the
efficacy of MSR-type algorithms in such stochastic scenarios.

More intelligent identification of faulty and adversarial
information: Agents applying MSR-type algorithms are able to
filter out the effects of adversarial information by using a very
simple filtering mechanism. An interesting and challenging
direction for future research is developing more sophisticated
methods for agents to identify adversarial information using
only the local data available to them. Leveraging data-based or
learning-based techniques towards this end might enable the
strict requirements on the network communication topologies
of resilient networks to be relaxed.
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