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Abstract— Spatial perception is the backbone of many
robotics applications, and spans a broad range of research
problems, including localization and mapping, point cloud
alignment, and relative pose estimation from camera images.
Robust spatial perception is jeopardized by the presence of
incorrect data association, and in general, outliers. Although
techniques to handle outliers do exist, they can fail in unpre-
dictable manners (e.g., RANSAC, robust estimators), or can have
exponential runtime (e.g., branch-and-bound). In this paper,
we advance the state of the art in outlier rejection by making
three contributions. First, we show that even a simple linear
instance of outlier rejection is inapproximable: in the worst-
case one cannot design even a quasi-polynomial time algorithm
that computes an approximate solution efficiently. Our second
contribution is to provide the first per-instance sub-optimality
bounds to assess the approximation quality of a given outlier
rejection outcome. Our third contribution is to propose a
simple general-purpose algorithm, named adaptive trimming,
to remove outliers. Our algorithm leverages recently-proposed
global solvers that are able to solve outlier-free problems, and
iteratively removes measurements with large errors. We demon-
strate the algorithm on three spatial perception problems: 3D
registration, two-view geometry, and SLAM. The results show
that our algorithm outperforms several state-of-the-art methods
across applications while being a general-purpose method.

I. INTRODUCTION

Spatial perception is concerned with the estimation of a
geometric model that describes the state of the robot, and/or
the environment the robot is deployed in. As such, spatial
perception includes a broad set of robotics problems, in-
cluding motion estimation [1], object detection, localization
and tracking [2], multi-robot localization [3], dense recon-
struction [4], and Simultaneous Localization and Mapping
(SLAM) [5]. Spatial perception algorithms find applications
beyond robotics, including virtual and augmented reality, and
medical imaging [2], to mention a few.

Safety-critical applications, including self-driving cars, de-
mand robust spatial perception algorithms that can estimate
correct models (and assess their performance) in the presence
of measurement noise and outliers. While we currently have
several approaches that can tolerate large measurement noise
(e.g., [6], [7], [8]), these algorithm tend to catastrophically
fail in the presence of outliers resulting from incorrect data
association, sensor malfunction, or even adversarial attacks.

In this paper, we focus on the analysis and design of
outlier-robust general-purpose algorithms for robust estima-
tion applied to spatial perception. Our proposal is motivated
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Fig. 1. We investigate outlier rejection across multiple spatial perception
problems, including (a) 3D registration, (b) two-view geometry, and (c-d)
SLAM. We provide inapproximability results and performance bounds. We
also propose an algorithm, ADAPT, that outperforms RANSAC and other
specialized methods. ADAPT tolerates up to 90% outliers in 3D registration,
and up to 50% outliers in two-view geometry and most SLAM datasets.

by three observations. First, recent years have seen a con-
vergence of the robotics community towards optimization-
based approaches for spatial perception. Therefore, despite
the apparent heterogeneity of the perception landscape, it is
possible to develop general-purpose methods to reject out-
liers (e.g., M-estimators [9] and consensus maximization [10]
can be thought as general estimation tools). Second, the
research community has developed global solutions to many
perception problems without outliers, from well-established
techniques for point cloud registration [8], to very recent
solvers for SLAM [6] and two-view geometry [7]. These
global solvers offer unprecedented opportunities to tackle
robust estimation with outliers. Third, the literature still lacks
a satisfactory answer to provably-robust spatial perception.

The literature on outlier-robust spatial perception is cur-
rently divided between fast approaches (that mainly work
in the low-outlier regime, without performance guarantees)
and provably-robust approaches (that can tolerate many
outliers, but have exponential runtime). While we post-
pone a comprehensive literature review to [11], it is in-
structive to briefly review this dichotomy. Fast approaches
include RANSAC [12], M-estimators [9], and measurement-
consistency checking [13], [14]. These methods fall short of
providing performance guarantees. In particular, RANSAC is
known to become slow and brittle with high outlier rates (>
50%) [10], and does not scale to high-dimensional problems,
while M-estimators have a breakdown point of zero, meaning
that a single “bad” outlier can compromise the results. On



the other hand, provably-robust methods, typically based on
branch-and-bound [15], [16], [17], [18], [10], can tolerate
more than 50% of outliers [19], but do not scale to large
problems and are relatively slow for robotics applications.
Overall, the first goal of this paper is to understand whether
we can resolve this divide, and design algorithms that are
both efficient and provably robust.

Contributions. We propose a Minimal Trimmed Squares
(MTS) formulation for outlier-robust estimation. MTS en-
capsulate a wide spectrum of commonly-used outlier-robust
formulations in the literature, such as the popular maximum
consensus [20], Linear Trimmed Squares [21], and truncated
least-squares [22]. In particular, MTS aims to compute a
“good” estimate by rejecting a minimal set of measurements.

Our first contribution (Section III) is a negative result: we
show that outlier rejection is inapproximable. In the worst-
case, there exist no quasi-polynomial algorithm that can com-
pute (even an approximate) solution to the outlier rejection
problem. We prove that this remains true, surprisingly, even
if the algorithm knows the true number of outliers and even
if we allow the algorithm to reject more measurements than
necessary. Our conclusions largely extend previously-known
negative results [20], which already ruled-out the possibility
of designing polynomial-time approximation methods.

Our second contribution (Section IV) is to derive the first
per-instance sub-optimality bounds to assess the quality of
a given outlier rejection solution. While in the worst case
we expect efficient algorithms to perform poorly, we can
still hope that in typical problem instances a polynomial-time
algorithm can compute good solutions, and we can use the
proposed sub-optimality bounds to assess the performance of
such an algorithm. Our bounds are algorithm-agnostic (e.g.,
they also apply to RANSAC) and can be computed efficiently.

Our third contribution (Section V) is a general-purpose
algorithm for outlier rejection, named Adaptive Trimming
(ADAPT). ADAPT leverages recently-proposed global solvers
that solve outlier-free problems and adaptively removes mea-
surements with large residual errors. Despite its simplicity,
our experiments show that it outperforms RANSAC and even
specialized state-of-the-art methods for robust estimation.

We conclude the paper by providing an experimental
evaluation across multiple spatial perception problems (Sec-
tion VI). The experiments show that ADAPT can tolerate up
to 90% outliers in 3D registration (with a runtime similar
to existing methods), and up to 50% outliers in two-view
geometry and most SLAM datasets. The experiments also
show that the proposed sub-optimality bounds are effective
in assessing the outlier rejection outcomes.

We report extra results and proofs in [11].

II. OUTLIER REJECTION: A MINIMALLY TRIMMED
SQUARES FORMULATION

Many estimation problems in robotics and computer vision
can be formulated as non-linear least squares problems:

min
x∈X

∑
i∈M
‖hi(yi, x)‖2, (1)

where we are given measurements yi of an unknown variable
x, with i ∈M (M is the measurement set), and we want to

estimate x, potentially restricted to a given domain X (e.g.,
x is a pose, and X is the set of 3D poses). The least squares
problem in eq. (1) looks for the x that minimizes the (squares
of) the residual errors hi(yi, x), where the i-th residual
error captures how well x explains the measurement yi. The
problem in eq. (1) typically results from maximum likelihood
and maximum a posteriori estimation [5], [23], under the
assumption that the measurement noise is Gaussian.

Both researchers and practitioners are well-aware that least
squares formulations are sensitive to outliers, and that the
estimator in eq. (1) fails to produce a meaningful estimate
of x in the presence of gross outliers yi. Therefore, in this
paper we address the following question:

Can we compute an accurate estimate of x that is
insensitive to the presence of outlying measurements?

We formulate the resulting robust estimation problem as
one where select a few outliers, such that the remaining
measurements (the inliers) can be explained with small error.

Problem 1 (Minimally Trimmed Squares (MTS)): Let M
denote a set of measurements of an unknown variable x,
and let yi denote the i-th measurement. Also denote with
hi(yi, x) the residual error that quantifies how well x fits
the measurement yi. Then, the minimally trimmed squares
problem consists in estimating the unknown variable x by
solving the following optimization problem:

min
O⊆M

min
x∈X

|O|, s.t.
∑

i∈M\O

‖hi(yi, x)‖2≤ εM\O, (2)

where one searches for the smallest set of outliers O
(| · | is the cardinality of a set) among the given measure-
ments M, such that the remaining measurements M \ O
(i.e., the inliers) can be explained with small error, i.e.,∑

i∈M\O‖hi(yi, x)‖2≤ εM\O for some x ∈ X, and where
εM\O is a given outlier-free bound. y

Remark 1 (Generality and applicability): In this paper we
address robustness in non-linear and non-convex estimation
problems as the ones arising in robotics and computer vision.
Therefore, the algorithms and bounds presented in this paper
hold for any function hi(yi, x) and any domain X. In contrast
with related work [24], [25], we do not assume the number
of outliers to be known in advance (an unrealistic assumption
in perception problems). Indeed, MTS looks for the smallest
set of outliers. Finally, while the formulation (2) requires to
set an outlier-free threshold, we will propose an algorithm
(Section V) that automatically computes a suitable threshold
without any prior knowledge about the measurement noise. y

In summary, MTS is a general non-linear and non-convex
outlier rejection framework. We exemplify its generality by
presenting in [11] its explicit form for 3 robust perception
problems: 3D registration, two-view geometry, and SLAM.

III. OUTLIER REJECTION IS INAPPROXIMABLE

We show that MTS is inapproximable even by quasi-
polynomial-time algorithms. We start with some definitions
and present our key result in Theorem 4.

Definition 2 (Approximability): Consider the MTS Prob-
lem 1. Let O? be an optimal solution, let k? .

= |O?|, and
ε
.
= εM\O? , that is, ε is the outlier-free bound when the



measurements O? are the rejected outliers. Also, consider a
number λ > 1. We say that an algorithm makes MTS (λ, ε)-
approximable if it returns a set O, and a parameter x, such
that: the cardinality |O| is at most λ1k

?; and the residual
error

∑
i∈M\O‖hi(yi, x)‖2 is at most ε. y

Definition 2 allows some slack in the quality of the MTS’s
solution: it allows the desired error to be achieved with more
measurement rejections than necessary.

Definition 3 (Quasi-polynomial algorithm): An algorithm
is said to be quasi-polynomial if it runs in 2O[(log m)c] time,
where m is the size of the input and c is constant. y

Any polynomial algorithm is also quasi-polynomial, since
mk = 2k log m. Yet, a quasi-polynomial algorithm is asymp-
totically faster than an exponential-time algorithm, since
exponential algorithms run in O(2m

c

) time, for some c > 0.
Theorem 4 (Inapproximability): Consider the linear and

convex MTS problem (3) below:

min
x∈Rn

min
O⊆M

|O|, s.t.
∑

i∈M\O

‖yi − a>i x‖2 ≤ ε, (3)

Let x? be the optimal value of the variable to be estimated,
m be the number of measurements (m .

= |M|), O? be the
optimal solution, and set k? .= |O?|. Then, for any δ∈(0, 1),
there exist a polynomial λ1(m) and a function λ2(m) =

2Ω(log1−δm) and instances of MTS (i.e., measurements yi,
vectors ai, and outlier-free bound ε) where ε = λ2(m),
such that unless NP∈BPTIME(mpoly log m),1 there is no
quasi-polynomial algorithm making MTS (λ1(m), λ2(m))-
approximable. This holds true even if the algorithm knows
k?, and that x? exist. y

Theorem 4 stresses the extreme hardness of MTS. Even if
we inform the algorithms with the true number of outliers,
it is impossible in the worst-case for even quasi-polynomial
algorithms to find a good set of inliers. Surprisingly, this
remains true even if we allow the algorithms to cheat by
rejecting more measurements than k? (i.e., λ1k

?).
Thinking beyond the worst-case, it becomes important to

derive per-instance bounds that, for a given MTS instance,
can evaluate how far an algorithm is from the optimal MTS
solution. In order words, since we cannot guarantee that any
efficient algorithm will do well in the worst-case, we are
happy with evaluating (a posteriori) if an algorithm computed
a good solution for a given problem instance. For this reason,
in the next section we develop the first per-instance sub-
optimality bound for Problem 1.

IV. PERFORMANCE GUARANTEES

We present the first per-instance (i.e., a posteriori) sub-
optimality bound for the MTS Problem 1. The bound is
algorithm-agnostic (does not take assumption on the way
O is generated), and is computable in O(1) time. Also, we
demonstrate its informativeness via simulations.

Theorem 5 (A posteriori sub-optimality bound):
Consider the MTS problem (2) and let O? be an optimal
solution to (2). Also, for any candidate solution O, let:

1The complexity hypothesis NP/∈BPTIME(mpoly log m) means there is
no randomized algorithm which outputs solutions to problems in NP with
probability 2/3, after running for O(m(logm)c ) time, for a constant c [26].

• r(O)
.
= minx∈X

∑
i∈M\O‖hi(yi, x)‖2; i.e., r(O) is

the minimum residual error given the rejection O;
• r?k

.
= minO⊆M,|O|≤k r(O); i.e., r?k is the optimal resid-

ual error when at most k measurements are rejected;
• r?

.
= r(O?); i.e., r? is the residual error for the optimal

outlier rejection O?.
Then, given a candidate solution O, the following bound
relates the residual error r(O) of the candidate solution with
the residual error of an optimal solution rejecting the same
number of outliers:

r(O)− r?|O|
r(∅)− r?|O|

≤ χO, (4)

where
χO

.
=

r(O)

r(∅)− r(O)
. (5)

y
Eq. (4) quantifies the distance between the residual of the
candidate solution and the residual of an optimal solution
rejecting the same number of outliers |O|. The smaller χO,
the closer the candidate selection is to the optimal selection.
For example, when χO = 0, then r(O) = r?|O|, i.e.,
we conclude that the algorithm returned a globally optimal
solution (restricted to the ones rejecting |O| measurements).

Remark 6 (Quality of the bound): In [11], we showcase
the quality of the bound (5) in terms of tightness by consid-
ering instances of the linear estimation problem in eq. (3).
In particular, our results demonstrate that the bound predicts
well the actual sub-optimality ratio, and its quality improves
for increasing number of outliers. y

We remark that the bound (5) can be also used to quantify
the performance of existing algorithms, including RANSAC.
Next, we step forward to a novel general-purpose algorithm
for outlier rejection that empirically returns accurate solu-
tions (and for which our bound χO is typically close to zero).

V. A GENERAL-PURPOSE ALGORITHM: ADAPT

We introduce a novel algorithm for outlier rejection that
we name Adaptive Trimming (ADAPT). The algorithm starts
by processing all measurements and at each iteration it trims
measurements with residuals larger than a threshold. It is
adaptive in that it dynamically decides the threshold at each
iteration (hence relaxing the need for a threshold εM\O).
Moreover, it is not greedy in that it can reject multiple
measurements at each iteration while it keeps revisiting the
quality of previously rejected outliers.2

Assumption 7 (Global solver): ADAPT assumes the avail-
ability of a black-box solver that can (even approximately)
solve the outlier-free problem (1) to optimality.

Luckily, for all problems in the experimental Section VI
(3D registration; two-view geometry; SLAM), there exist
(outlier-free) global solvers, including [6], [7], [8].

Description of ADAPT. The preudo-code of ADAPT is given
in Algorithm 1. Here, we use the additional notation:
• Let x?(O) ∈ arg minx∈X

∑
i∈M\O‖hi(yi, x)‖2; i.e.,

x?(O) is an estimator of x given an outlier selection O.

2In our tests we found that a greedy algorithm similar to [27] tends to
converge to poor outlier rejection decisions and is typically slow for practical
applications, since it has quadratic runtime in the number of measurements.



Algorithm 1: Adaptive Trimming (ADAPT)
Input:
• v: minimum nr. of measurements required by global solver;
• γ: discount factor for outlier threshold (default γ = 0.99);
• δ: convergence threshold;
• T : nr. of iterations to decide convergence (default T = 2);
• ḡ: maximum nr. of extra rejections per iteration.

Output: outlier set O.
1: t← 0; Ot ← ∅; g ← ḡ; c← 0; τ ← maxi∈M ri(∅);
2: while true do
3: t← t+ 1; Ot ← Ot−1;
4: while Ot = Ot−1 do {discount threshold & update}
5: I ← indices of g largest ri(Ot−1) across i ∈M;
6: Ot ← {i ∈ I and ri(Ot−1) ≥ τ};
7: if Ot = Ot−1 or Ot = ∅ then {discount}
8: τ ← γmin

{
τ,maxi∈M\Ot ri(Ot)

}
;

9: g ← g + ḡ;
10: if |Ot| = |M|−v then {terminate}
11: return Ot.
12: if |r(Ot)− r(Ot−1)| ≤ δ then {check convergence}
13: c← c+ 1;
14: if c = T then {terminate}
15: return Ot.
16: else {reset convergence counter}
17: c← 0.

• Let ri(O)
.
= ‖hi(yi, x?(O))‖2; i.e., ri(O) is the resid-

ual of the measurement i, given an outlier selection O.
A description for each of ADAPT’s steps is found in [11].
Remark 8 (Complexity and practicality): The termination

condition in line 10 guarantees the termination of the algo-
rithm with at most |M|−v calls of the global solver. ADAPT
terminates faster as one increases the outlier group size ḡ,
the convergence thresholds δ, and/or as one decreases the
discount factor γ and the number T of iterations to decide
convergence. Overall, the linear runtime (in the number of
measurements) of ADAPT makes the algorithm practical in
real-time applications where fast global solvers are available.

Remark 9 (vs. RANSAC): While RANSAC builds an inlier
set by sampling small (minimal) sets of measurements,
ADAPT iteratively prunes the overall set of measurements.
Arguably, this gives ADAPT a “global vision” of the mea-
surement set as we showcase in the experimental section.
RANSAC assumes the availability of fast minimal solvers,
while ADAPT assumes the availability of fast global (non-
minimal) solvers. Finally, RANSAC is not suitable for high-
dimensional problems where is becomes exponentially more
difficult to sample an outlier-free set [19]. On the other hand,
ADAPT is deterministic and guaranteed to terminate in a num-
ber of iterations bounded by the number of measurements.

VI. EXPERIMENTS AND APPLICATIONS

We evaluate ADAPT against the state of the art in 3D regis-
tration, two-view geometry, and SLAM. ADAPT outperforms
RANSAC in terms of accuracy and scalability, and often out-
performs specialized outlier rejection methods (in particular
for SLAM) while being a general-purpose algorithm. Finally,
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Fig. 2. 3D registration: rotation and translation errors for ADAPT, FGR [28],
and RANSAC on the Bunny dataset for increasing outlier percentages.

the tests show that the performance bounds of Section IV are
informative and can be used to assess the outlier rejection
outcomes. All results are averaged over 10 Monte Carlo runs.
Details are outlined in [11].

A. Robust Registration

Experimental setup. We test ADAPT on two standard
datasets for 3D registration: the Stanford Bunny and the
ETH Hauptgebaude [29]. In each iteration, ADAPT uses
Horn’s method [8] as global solver. We benchmark ADAPT
against Fast Global Registration (FGR) [28] and the three-
point RANSAC. We set the maximum number of iterations in
RANSAC to 1000 and use default parameters for FGR.

Results. Fig. 2 shows the (average) translation and ro-
tation errors for the estimates computed by ADAPT, FGR,
and RANSAC on the Bunny dataset for increasing outlier
percentages. ADAPT performs on-pair with FGR which is a
specialized robust solver for 3D registration and they both
achieve practically zero error for up to 90% of outliers,
after which they both break. RANSAC starts performing
distinctively worse early on. We obtain similar results on the
ETH dataset hence for space reasons we report them in [11].

For both the Bunny and ETH datasets, we compute the
sub-optimality bound for the result of ADAPT, using Theo-
rem 5. The plot of the bound is given in [11]; the bound
remains around 10−5, confirming that ADAPT remains close
to the optimal outlier selection. The runtime of ADAPT is
comparable to FGR and is reported in [11].

B. Robust Two-view Geometry

Experimental setup. We tested ADAPT on synthetic data
and the MH_01 sequence of the EuRoC dataset [30]. In each
iteration, ADAPT uses QCQP relaxation [7] as global solver.
We benchmarked ADAPT against Nister’s five-point [31] and
the eight-point algorithm [32] within RANSAC.

Results. Per Fig. 3, ADAPT and five-point perform on-pair
till 40% of outliers. Beyond that point, the five-point method
attains considerably higher errors than ADAPT (50% to 100%
more in rotation; and more than 300% more in translation).

For the synthetic dataset, the typical value for the sub-
optimality bound achieved by ADAPT is 0.2: ADAPT makes
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Fig. 3. Two-view geometry: rotation and translation errors for ADAPT, five-
and eight-point RANSAC, on a synthetic dataset for increasing outliers.
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Fig. 4. Two-view geometry: rotation and translation errors for ADAPT, and
five-point RANSAC, on the sequence MH_01 of the EuRoC dataset.

a rejection that achieves an error that is at most 20% away
from the optimal, even in the presence of 90% of outliers.

The runtime of ADAPT is reported in [11]: our approach is
one order of magnitude slower than the five-point method,
mainly due to the relatively high runtime of the global
solver [7], which is called in each iteration.

C. Robust SLAM

Experimental setup. We test ADAPT on standard 2D and
3D SLAM benchmarking datasets and report missing results
here in [11]. We use SE-Sync as the global solver for ADAPT.
We test the following datasets, described in [33], [6]: MIT
(2D), Intel (2D), CSAIL (2D), and Sphere2500 (3D). We also
test a simulated 5 × 5 × 5 3D grid dataset (results in the
supplemental [34]). We benchmark ADAPT against DCS [35];
we report DCS results for three choices of the robust kernel
size: {1,10,100} (the default value is 1, see [35]).

Results. ADAPT outperforms DCS (for any chosen kernel
size) across all datasets and outlier percentages.

For example, in 2D SLAM (similar observation holds for
the 3D SLAM case; see [11]): in the MIT dataset (Fig. 5a), a
particularly challenging dataset, ADAPT is insensitive to up to
20% of outliers. All variants of DCS fail to produce an error
smaller than 10 meters even in the absence of outliers. ADAPT
leverages SE-sync, which is a global solver, hence is able to
converge to the correct solution. And in the CSAIL dataset
(Fig. 5b), ADAPT also dominates DCS while DCS performance
is acceptable when the kernel size is equal to 100.

(a) MIT

(b) CSAIL
Fig. 5. 2D SLAM: Average Trajectory Error of ADAPT and DCS for
increasing outliers in the MIT and CSAIL datasets.

The typical value for the sub-optimality bound achieved
by ADAPT, per Theorem 5, is 0.01 to 0.01.

ADAPT is one to two orders slower than DCS. This is due
to the repeated calls to SE-sync and is further aggravated in
the 3D case by the fact that SE-sync tends to be slow in the
presence of outliers (the Riemannian staircase method [6]
requires multiple staircase iterations since the rank of the
relaxation increases in the presence of outliers).

VII. CONCLUSION

We proposed a minimally trimmed squares (MTS) for-
mulation for outlier-robust estimation. We proved that the
resulting outlier rejection problem is inapproximable. We
derived the first a posteriori theoretical performance bounds.
Finally, we proposed a linear-time, general-purpose algo-
rithm for outlier rejection, and showed that it outperforms
several specialized methods across three spatial perception
problems (3D registration, two-view geometry, SLAM).
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