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Abstract— As robot dynamics become more complex, learn-
ing from data is emerging as an alternative for obtaining
accurate dynamic models to assist control system designs or to
enhance robot performance. Though being effective, common
model learning techniques rely on rich datasets collected from
the robots, and the learned experience is often platform-specific.
In this work, we propose an online learning approach for trans-
ferring deep neural network (DNN) inverse dynamics models
across two robots and analyze the role of dynamic similarity in
the transfer problem. We demonstrate our proposed knowledge
transfer approach with two different quadrotors on impromptu
trajectory tracking tasks, in which the quadrotors are required
to track arbitrary hand-drawn trajectories accurately from
the first attempt. With this work, we illustrate that (i) we can
relate the transferability of DNN inverse models to the robot
dynamic properties, and (ii) when the transfer is feasible, we can
significantly reduce data recollections that would be otherwise
costly or risky for robot applications. Given a heterogeneous
robot team, we envision having to train only one of the agents
to allow the whole team achieving higher performance.

I. INTRODUCTION

Trajectory tracking is fundamental to many robot ap-
plications, which include industrial inspection, autonomous
driving, and search and rescue missions [1]–[3]. In these
applications, high-accuracy tracking is often demanded to en-
sure safe operation and/or to realize optimized performance.
While typical approaches such as the PID control and model
predictive control (MPC) can be used to realize tracking
functionalities, they often rely on sufficiently accurate dy-
namic models of the robots or require long tuning processes
to achieve high performance. As the robot dynamics be-
come more complex and the operating environment becomes
increasingly unstructured, integrated learning and control
techniques start to emerge as alternatives to ensure high
performance in the presence of modeling uncertainties [4].

In the literature, there are various successful examples
of applying learning techniques to robot control problems
(e.g., [5]–[7]). Although being effective, these learning-based
methods usually rely on rich datasets collected from the
robot, and the learned experience is often robot-specific. In a
multi-robot system, applying these learning techniques would
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Fig. 1: Block diagram of the DNN-enhanced control architecture with online
learning. The DNN offline learning module represents the inverse dynamics
of a source robot system and is previously trained on a sufficiently rich
dataset collected from the source robot. At test time, the DNN module is
leveraged to enhance the tracking performance of a target robot. The online
learning module is trained on real-time data to compensate for the dynamic
differences between the robots. A demo video: http://tiny.cc/dnnTransfer

imply repeating the data collection and training process on
each individual robot, which can be non-economic and time-
consuming. In order to increase the efficiency of robot learn-
ing, in the robotics community, approaches such as manifold
alignment [8]–[10] and learning invariant features [11], [12]
have been recently proposed to transfer knowledge between
robots and thereby speed up the training of new robots and
enhance their performance in untrained tasks.

In this work, we consider the problem of impromptu
trajectory tracking, in which robots are required to track
arbitrary trajectories accurately from the first attempt. This
problem is applicable to a robot team setting where, for
instance, each robot receives a desired trajectory from an
online planner to perform coordinated tasks. In [7], [13],
we showed that we can effectively enhance the tracking
performance of a robot by training a deep neural network
(DNN) inverse dynamics module offline and pre-cascading
the module to a baseline system at test time (Fig. 1). For
example, on 30 arbitrary, unseen hand-drawn trajectories, the
DNN-enhancement approach reduced the tracking error of a
quadrotor by an average of 43% [7].

Motivated by the work on recent knowledge transfer (or
transfer learning), in current work, we study feasibility of
leveraging the DNN inverse module trained on one robot
to enhance the performance of another robot in impromptu
tracking tasks. In contrast to the existing transfer learning ap-
proaches, where transfer mappings are usually found offline
based on a set of sample tasks (e.g., [9], [11]), we propose an
online learning approach (Fig. 1) that allows a target robot
using the DNN module from a source robot to achieve high-
accuracy tracking impromptu — i.e., without additional data
collection on sample tasks and offline training. The proposed
online learning approach is expected to (i) significantly
reduce the data required to train new robots by leveraging
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a prior DNN inverse module from a source robot, and
(ii) additionally compensate for real-time changes in robot
dynamics (e.g., due to mechanical wear or other unforeseen
effects) that may otherwise degrade a robot’s or a robot
team’s performance. Our contributions are as follows:
(1) analytically derive the ideal mapping that the online

module should represent to achieve exact tracking,
(2) present first results on characterizing system similarity

between source and target robots and how it relates
to the stability of the proposed overall learning system
given modeling uncertainties, and

(3) verify the effectiveness of the proposed approach in im-
promptu trajectory tracking experiments on quadrotors.

Note that, with the proposed knowledge transfer approach,
we ultimately aim to enhance the tracking of trajectories
provided by high-level planners. The approach is agnostic
to the nature of the high-level planner and can be poten-
tially used for general multi-agent coordination tasks where
trajectories for individual agents are given. This work is
originally presented in [14] where we provide full details
of our derivations and discussions; this abstract highlights
the main theoretical and experimental results.

II. BACKGROUND ON OFFLINE DNN INVERSE
DYNAMICS LEARNING

In this section, we provide a brief summary of the DNN
inverse learning approach in [7], [13] to facilitate our discus-
sion. We consider a nonlinear baseline system represented by

x(k + 1) = f (x(k)) + g (x(k))u(k), y(k) = h (x(k)) ,
(1)

where k is the discrete-time index, x is the system state, u
is the reference signal, y is the system output, and f(·), g(·),
and h(·) are smooth functions. For many practical cases, we
may relate the system input and output by

y(k + r) = F (x(k)) + G (x(k))u(k), (2)

where F (x(k)) = h ◦ fr(x(k)), G (x(k)) = ∂
∂uh ◦

fr−1(f(x(k)) + g(x(k))u(k)), and r is the relative degree
(or inherent delay) of system (1) [15]. One can show that
the reference for achieving exact tracking (i.e., y(k + r) =
yd(k + r) with yd denotes the desired output) is given by

u(k) =
1

G (x(k))
(yd(k + r)−F (x(k))) . (3)

Eqn. (3) can be thought as the exact inverse of the baseline
system (1). In [7], [13], we showed that, for an unknown,
nonlinear baseline system that has stable inverse dynamics
and a well-defined relative degree r, we can train a DNN
module offline with input I = [x(k), y(k + r)] and output
O = [u(k)] to approximate the exact inverse in Eqn. (3) to
enhance the baseline system tracking performance.

III. PROBLEM STATEMENT

We consider the control architecture shown in Fig. 1 and
study the impromptu knowledge transfer problem that allows
the DNN inverse dynamics module trained on a source robot

to enhance the tracking performance of a target robot having
different dynamics. Following [13], we consider source and
target robot systems represented by Eqns. (1) and (2). In
order for the DNN inverse learning approach to be safely
applied, we assume that (A1) the source and the target
systems are input-to-state stable and have stable inverse
dynamics [13]. We also assume that (A2) the source and the
target systems have well-defined and the same relative degree
to simplify the analysis. This holds, for instance, if the robots
have similar structures but different mass or dimensions.

IV. THEORETICAL RESULTS

In this section, we provide theoretical results on the
knowledge transfer problem. We denote u1 as the reference
from the DNN module trained on the source system and u2
as the reference from the online learning module. The overall
reference send to the target baseline system u(k) is given by

u(k) = u1(k) + u2(k). (4)

Below we provide an expression of u2(k) for achieving exact
tracking in Sec. IV-A, propose a characterization of system
similarity in Sec. IV-B, and analyze the stability of the overall
system in the presence of uncertainties in Sec. IV-C.

A. Online Learning Module

We propose an online learning approach that adapts the
reference of the DNN module u1(k) based on the tracking
error. In particular, by considering source and target robot
systems represented by Eqns. (1) and (2), which the exact
inverse dynamics are represented by Eqn. (3), we can show
that the ideal mapping which the online learning module
should represent to achieve exact tracking is

u2(k) = α∗e∗p(k + r), (5)

where α∗ = 1
Gt(x(k)) is an adaptation gain,

e∗p(k + r) = yd(k + r)−Ft (x(k))− Gt (x(k))u1(k)
(6)

is a prediction of the tracking error as the result of applying
u1(k), and Ft (x(k)) = ht◦frt (x(k)) and Gt (x(k)) = ∂

∂uht◦
fr−1t (ft(x(k)) + gt(x(k))u(k)), and ft(·), gt(·), and ht(·)
are the nonlinear functions in Eqn. (1) for the target system.

Note that the error prediction in Eqn. (6) depends on the
state x(k), the reference u1(k) from the DNN module, and
the desired output yd(k + r). When the dynamics of the
source and the target systems are not known, one may train
an online learning model to approximate Eqn. (6).

Remark 1. Online Learning for Error Prediction. For
training an online model to approximate Eqn. (6), at each
time step k, one may construct a dataset with paired inputs
{x(p− r), u(p− r), yd(p)} and outputs {yd(p)− y(p)} over
the past N time steps p = k−N, ..., k. The error ep(k+ r)
can then be predicted using the online model with input
I = [x(k), u1(k), yd(k + r)].

Given an online model F (x(k), u1(k), yd(k + r)) approxi-
mating Eqn. (6), we can estimate α∗ by − (∂F/∂u1)

−1.



B. Characterization of System Similarity

The concept of task similarity has been introduced in the
reinforcement learning (RL) literature to address the issue of
negative knowledge transfer in task transfer problems. In this
work, we propose a characterization of system similarity for
impromptu knowledge transfer problems, where an inverse
module is transferred across two robot systems. We consider
two systems are similar if at any given state x(k), the
application of an input u(k) to the systems results in similar
outputs y(k+r). For this discussion, we assume linear source
and target systems to simplify our analysis:

x(k + 1) = Ax(k) +Bu(k), y(k) = Cx(k), (7)

where (A, B, C) are constant matrices. It can be shown that
the input and output of the system are related by

y(k + r) = Ax(k) + Bu(k), (8)

where A = CAr and B = CAr−1B, and r is the relative
degree of system (7). Based on Eqn. (8), we define a vector S
to characterize the similarity of the source and target systems:

S =
[
S1 S2

]
, (9)

where S1 = 1− Bt

Bs
, S2 = At − Bt

Bs
As, and the subscripts s

and t denote the source and the target system. The terms S1

and S2, respectively, characterize the differences in the input-
to-output gain and state-to-output gain vector of the source
and target systems. Note that S = 0 if and only if At = As

and Bt = Bs (i.e., the state-to-output and input-to-output
gains of the systems are identical).

C. Stability of Learning-Enhanced Target System

We apply the concept of system similarity and analyze
the stability of the target system when the gain α∗ is
approximated by a constant α and the prediction of the future
error e∗p(k + r) is not exact. We discuss the main result in
this abstract; details of the proof can be found in [14].

We focus on system (7) and additionally assume
that: (A3) The output of the offline DNN u1(k) cor-
responds to the inverse of the source system u1(k) =
1
Bs

(yd(k + r)−Asx(k)), and (A4) the error in the pre-
diction Λ = e∗p(k + r) − ep(k + r) can be bounded as
Λ ≤ β1||yd(k + r)|| + β2||x(k)|| + β3, where (β1, β2, β3)
are positive constants, and || · || is the Euclidean norm.
Moreover, by (A1), the state can be bounded as ||x||∞ ≤
L1||u||∞ + L2||x0||, where ||x||∞ = supk{||x(k)||},
||u||∞ = supk{||u(k)||}, and (L1, L2) are positive constants.

Under (A1)-(A4), we can show that the overall target
system is bounded-input-bounded-state (BIBS) stable if

|α| (||S2||+ β2) <
β4
L1
, (10)

where β4 = 1 − L1

∣∣∣∣∣∣As

Bs

∣∣∣∣∣∣. The stability condition in
Eqn. (10) can be interpreted for two scenarios: (i) when
|α| = 0 (i.e., the online module is inactive) and (ii) when
|α| 6= 0 (i.e., the online module is active). In scenario
(i), the condition in Eqn. (10) reduces to L1 < 1

||As/Bs|| ,
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Fig. 2: Comparison of three control strategies for the Bebop target system:
The RMS error is 0.42 m for the Bebop baseline system (grey), 0.26 m for
the baseline system enhanced by the ARDrone DNN (green), and 0.14 m for
the baseline system further enhanced by the online learning module (blue).

which can be interpreted as an upper bound on the relative
aggressiveness of the source and target systems. When this
condition is satisfied, the target system with the source DNN
module is stable. In scenario (ii), the condition in Eqn. (10)
implies that if the source and target systems are similar (i.e.,
||S2|| is closer to 0), then there will be a greater margin for
selecting α and higher tolerance for having uncertainties in
the online prediction model.

V. QUADROTOR EXPERIMENTS

We verify the proposed online learning approach by
transferring a DNN module trained on a source quadrotor
vehicle (Parrot ARDrone) to enhance the tracking of a target
quadrotor vehicle (Parrot Bebop). A demo video of the
experiment can be found here: http://tiny.cc/dnnTransfer

A. Experiment Setup

1) Control Objective: The dynamics of a quadrotor vehi-
cle can be characterized by 12 states: translational positions
p = (x, y, z), translational velocities v = (ẋ, ẏ, ż), roll-
pitch-yaw angles θ = (φ, θ, ψ), and rotational velocities
ω = (p, q, r). The objective is to design a control system
such that the position of the quadrotor pa tracks desired
trajectories pd generated from arbitrary hand drawings.

2) DNN Module Trained on ARDrone (Source Robot):
In [7], [13], a DNN module is trained offline to approximate
the inverse of the ARDrone baseline system dynamics.
The DNN module consists of fully-connected feedforward
networks with 4 hidden layers of 128 rectified linear units
(ReLU). The training dataset of the DNN module is con-
structed from the ARDrone baseline system response on
a 400-second, 3-dimensional sinusoidal trajectory. Overall,
approximately 2,800 data points are used for training.

3) Online Learning for Bebop (Target Robot): Based on
Remark 1, we design an online learning module to predict
the error of the Bebop that would result from applying the
reference of the ARDrone DNN inverse module. At each
time step k, the most recent 40 observations are used for
constructing the training dataset. We implemente the online
learning module using a Gaussian process (GP) model with
a standard squared-exponential kernel. Details of the online
learning module implementation can be found in [14].

B. Experiment Results

Figure 2 compares the tracking performance of three
control strategies on the Bebop on one of the test hand-

http://tiny.cc/dnnTransfer
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Fig. 3: Performance comparison on 10 hand-drawn trajectories. The ARDrone DNN module alone (green) and the ARDrone DNN module with the online
learning module (blue) reduce the tracking error of the Bebop baseline system (grey) by 46% and 74% on average. With the proposed approach (blue), the
performance of the Bebop (target robot) is comparable to cases where the quadrotors are enhanced by their own DNN modules (yellow and light blue).

drawn trajectories. When comparing the performance of
the Bebop system enhanced by the ARDrone DNN (green)
and the performance of the Bebop baseline system (grey),
the ARDrone DNN reduces the delay and the amplitude
errors in the Bebop tracking response. Along this particular
trajectory, the ARDrone DNN module alone reduces the
root-mean-square (RMS) tracking error of the Bebop from
approximately 0.42 m to 0.26 m. With the addition of the
online module, the Bebop RMS tracking error is further
reduced to approximately 0.14 m.

Figure 3 shows the testing results on 10 arbitrary hand-
drawn trajectories. As compared with the Bebop baseline
system (grey), with the transferred ARDrone DNN module
and the online learning module, the proposed approach (blue)
reduces the tracking error of the Bebop by an average of
74%. Without further offline training, the proposed approach
(blue) effectively reduces the tracking error of the Bebop to
values that are comparable to the cases where the quadrotors
are enhanced by their own offline DNN modules (yellow and
light blue). This result demonstrates the efficiency of the
proposed knowledge transfer for leveraging past experience
and reducing data collection in training new robots.

VI. CONCLUSION AND FUTURE WORK

We present an online learning approach that allows us
to transfer a DNN inverse dynamics module trained on a
source robot to enhance the impromptu tracking performance
of a target robot that has different dynamics. We provide
theoretical analysis of our proposed approach and verify the
approach experimentally with quadrotors. In the experiments,
we demonstrate that the performance of the target quadrotor
enhanced by the proposed knowledge transfer approach is
comparable to the cases where the quadrotors are enhanced
by their own offline DNN inverse modules. This result
verified that the proposed knowledge transfer approach can
efficaciously circumvent data recollection on the target robot,
and thus, the costs and risks associated with training new
robots. The knowledge transfer approach acts to enhance
the lower-level control performance of the robots and can
be potentially used for multi-agent coordination tasks where
desired trajectories for the individual agents are given. For
a heterogeneous team, the efficacy of knowledge transfer
implies that we can leverage the experience of a single robot
to improve the lower-level control of each agent and thereby
enhance the overall performance of the robot team.

As a future work, we would like to study the extent of
robot similarity required for exploiting knowledge transfer
between structurally-different robots. This will be important
as the diversity of robot teams increases and the coordinated
tasks become more complex.
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