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STRATA: Unified Framework for Task Assignments
in Large Teams of Heterogeneous Robots

Harish Ravichandar, Kenneth Shaw, Sonia Chernova

Abstract—Large teams of robots have the potential to solve
complex multi-task problems that are intractable for a single
robot working independently. However, solving complex multi-
task problems requires leveraging the relative strengths of dif-
ferent robots in the team. We present Stochastic TRAit-based
Task Assignment (STRATA), a unified framework that models
large teams of heterogeneous robots and performs optimal
task assignments. Specifically, given information on which traits
(capabilities) are required for various tasks, STRATA computes
the optimal assignments of robots to tasks such that the task-
trait requirements are achieved. Inspired by prior work in robot
swarms and biodiversity, we categorize robots into different
species (groups) based on their traits. We model each trait as
a continuous variable and differentiate between traits that can
and cannot be aggregated from different robots. STRATA is
capable of reasoning about both species-level and robot-level
differences in traits. Further, we extend measures of diversity
for any given team based on the team’s continuous-space trait
model. We illustrate the necessity and effectiveness of STRATA
using detailed experiments.

I. INTRODUCTION

The multi-robot task assignment (MRTA) problem [5], [11],
[10] provides a formulation to represent a wide variety of
challenges that require optimally assigning robots to tasks.
In this work, we focus on an instance of the MRTA problem
with an emphasis on large heterogeneous teams. Teams of het-
erogeneous robots are particularly well suited for performing
complex tasks that require a variety of skills, since they can
leverage the relative advantages of the different robots.

We present Stochastic TRAit-based Task Assignment
(STRATA), a task assignment algorithm that enables a hetero-
geneous team of robots to optimally divide the various tasks
among its members. STRATA models the topology of tasks
as a densely connected graph, with each node representing a
task and or a physical location and the edges indicating the
possibility of switching between any two tasks. We assume
that the optimal robot-to-task associations are unknown and
that the task requirements are specified in terms of the various
traits (capabilities) required for each task. To enable reasoning
about a team’s traits, we take inspiration from prior work in
robot swarms [16] and biodiversity [15], and propose a group
modeling approach [1] to model the capabilities of the team.
Specifically, we assume that each robot in the team belongs
to a particular species (group).

In Fig. 1, we illustrate the basic building blocks of STRATA
and the task assignment problem. As seen in the top row,
STRATA models the effects of task assignments (task-species
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Fig. 1. Top row: The modeling framework underlying STRATA. Bottom row:
The optimal task assignment problem solved by STRATA.

distribution X) and the species’ traits (species-trait model
Q) on how the traits are aggregated for each task (task-trait
distribution Y ). We also derive a closed-form expression to
quantify the effect of the variance of the robots’ traits on the
achieved task-trait distribution. The task assignment problem,
as seen in the bottom row, involves computing the optimal
task assignments, given a desired task-trait distribution.

The STRATA representation of task, species, and traits is
inspired by [16], which considered binary instantiations of
traits. However, binary models fail to capture the nuances
in the scales and natural variations of the robots’ traits. For
instance, consider an unmanned aerial vehicle and a bipedal
robot. While both robots share the mobility trait (the ability
to move), their speeds are likely to be considerably different.
To address these challenges, in STRATA we have extended
the representation to model traits in the continuous space.
Additionally, STRATA also captures robot-level differences
within each species by using a stochastic trait model.

When reasoning about the collective strengths of the team,
attention must be paid to the fact that not all capabilities
are improved in quantity by aggregation of individual robots’
abilities. For instance, a coalition of any number of slow robots
does not compensate for a faster robot. Taking this observation
into account, we consider two types of traits: cumulative and
non-cumulative. We consider a trait to be (non) cumulative if
it can (not) be aggregated from different robots in order to
achieve certain task requirements.

Finally, we extend the diversity measures introduced in
[16] to the continuous space. The diversity measures provide
insights about the trait-based heterogeneity of the team. Specif-
ically, the diversity measures help define a a minimum subset
of the species that can collectively compensate for the rest of
the team.
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In summary, the key contributions of our work include
a unified framework for optimal task assignment of large
heterogeneous teams that:

1) incorporates a stochastic trait model that captures both
between-species and within-species variations,

2) optimally assigns tasks to robots with respect to two
goals: exact matching and minimum matching, and

3) computes measures of diversity in teams with continuous
trait models.

II. RELATED WORK

A plethora of approaches have been proposed to address
the multi-robot systems task assignment (MRTA) problem [5],
[11], [10]. Broadly, the problems are categorized based on
three binary characteristics: (1) Task type (single-robot [SR] vs
multi-robot [MR]), (2) robot type (single-task [ST] vs multi-
task [MT], and (3) assignment type (instantaneous [IA] vs
time-extended [TA]) [5].

Coalition formations methods (e.g. [17], [20]) address trans-
portation tasks involving multiple single-task robots. These ap-
proaches, however, require the listing of all potential coalitions
and thus are not suitable for problems involving large number
of robots. To ensure scalability, decentralized approaches for
task assignment are introduced in [9], [3], [8], [13]. However,
a common shortcoming of these decentralized approaches is
that they assume that the desired behavior is specified as a
function of the distribution of robots across the tasks.

Auction or market-based methods also provide solutions
to the MRTA problem involving single-task robots [6], [12],
[19]. We refer readers to [4] for a survey of market-based
approaches applied to multi-robot coordination. A common of
trait of auction or market-based methods is that they require
extensive communication for biding and scale poorly with the
number of robots in the team.

Our work falls under the category of Single-Task Robots
Multi-Robot Tasks Instantaneous Assignment (ST-MR-IA)
problem, also known as the coalition formation problem [5].
The ST-MR-IA is an instance of the set-partitioning problem
in combinatorial optimization and is known to be strongly
NP-Hard [5]. Albeit not developed for MRTA, a few efficient
approximate solutions have been proposed for the set partition-
ing problem [2], [7]. Based on prior work in set partitioning
problems, centralized and distributed algorithms to solve a
ST-MR-IA problem have been proposed in [17], [18]. The
method in [18] has also been adapted to be more efficient
by reducing the required communication and discouraging
imbalanced coalitions [20]. A method for coalition formation
is introduced in [14] by building a solution by dynamically
connecting a network of behaviors from individual robots.

A limitation of most of the existing approaches is that the
desired behavior is assumed to be specified in terms of optimal
robot distribution. A notable exception to this generalization
is the framework introduced in [16], which is capable of
receiving the task requirements provided in the form a desired
trait distribution cross tasks. While STRATA shares several
similarities with [16], there are a number of notable relative
advantages. First, our species-trait model is continuous, while

[16] uses a binary model. Second, we differentiate between
cumulative and non-cumulative traits. Third, the framework
in [16] utilizes a deterministic model of traits. In contrast,
we consider the inherent randomness in the robots’ traits,
thereby capturing the variations at both species and robot
levels. Finally, while the diversity measures introduced in [16]
are limited to binary trait models, our measures are compatible
with continuous-space models.

III. MODELING FRAMEWORK

In this section, we introduce the elements of STRATA that
enables task assignments in large heterogeneous teams.

A. Trait Model
Base model: Consider a heterogeneous team of robots. We

assume that each robot is a member of a particular species.
The number of species S ∈ N is finite, and the number of
robots in the ith species is denoted by Ni. The traits of each
species are denoted by

q(s) , [q
(s)
1 , q

(s)
2 , · · · , q(s)U ], ∀s = 1, 2, · · · , S (1)

where q
(s)
i is the ith trait of the sth species, and U is the

number of traits. Thus, the traits of the team is defined by a
S×U species-trait matrix Q = [q(1)

T

, · · · , q(S)T ]T , with each
row corresponding to one species.

Stochastic traits: To capture the natural variation found
in each species, we maintain a stochastic summary of each
species’ traits. Specifically, each element of Q is assumed
to be an independent Gaussian random variable: q

(s)
i ∼

N (µsi, σ
2
si). Thus, expected value of the species-trait matrix

µQ = [µT
q(1)

, · · · , µT
q(S) ]

T and the corresponding matrix sum-
marizing the variance of each of its elements are given by

µQ =

[
µ11 ··· µ1U

...
. . .

...
µS1 ··· µSU

]
ΣQ =

 σ2
11 ··· σ

2
1U

...
. . .

...
σ2
S1 ··· σ

2
SU

 (2)

Using a stochastic model allows us to find clusters in the trait
space and thus aids in automatically identifying the different
species and their expected traits along with their variance.

Cumulative traits: STRATA explicitly differentiates be-
tween cumulative and non cumulative traits. While exam-
ples of cumulative traits include ammunition, equipment, and
coverage area, those of non-cumulative traits include speed,
special skills, and training. We model the cumulative traits as
continuous variables (i.e., q(s)i ∈ R+,∀i ∈ C), and the non-
commutative traits as binary variables (i.e., q(s)j ∈ {0, 1},∀j /∈
C), where C ⊆ {1, 2, · · · , U} is the set of indices correspond-
ing to cumulative traits. In the case of non-cumulative traits,
the binary values are assigned based on the following rule

q
(s)
j =

{
1, if µsj ≥ qmin

i

0, otherwise
(3)

where qmin
i is a user-defined minimum acceptable value for

the ith trait. The binary representation of non-cumulative traits
captures information about whether the robots of each species
posses the minimum required capabilities. Further, when ag-
gregated (Section III-D), the binary representation provides the
number of robots meeting the minimum requirements.
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B. Task Model
Given the trait model from the previous section, we require

the team to accomplish M tasks. We model the topology of
the tasks using a densely connected graph G = (E ,V). The
vertices V represent the M tasks, and the edges E connect
adjacent tasks and each edge represents the possibility of a
robot to switch between the corresponding two adjacent tasks.
For each species s, the rate with which a robot currently
performing task i switches to task j is given by k

(s)
ij , such

that 0 < k
(s)
ij < k

(s)
ij,max.

C. Robot Model
The distribution of robots from species s across the M tasks

at time t is defined by x(s)(t) = [x
(s)
1 (t), x

(s)
2 (t), · · ·x(s)M (t)]T

∈ NM . Thus, the distribution of the whole team across
the tasks at time t can be described using a abstract state
information matrix X(t) ∈ NM×S .

The dynamics of the number of robots of Species s at Task
i is given by

ẋ
(s)
i (t) =

∑
∀j|(i,j)∈E

k
(s)
ji x

(s)
j (t)− k(s)ij x

(s)
i (t) (4)

and thus the dynamics of x(s)(t) can be computed as

ẋ(s)(t) = K(s)x(s)(t), ∀s = 1, 2, · · · , S (5)

where K(s) ∈ RM×M+ is the rate matrix of species s. Thus,
the solution to the dynamics of the abstract state information
is given by

X(τ) =

S∑
s=1

eK
(s)τ z(s)(0) (6)

where z(s)(0) = X(0) � (1 · es) ∈ NM×S , 1 denotes a M -
dimensional vector of ones, and es is the S-dimensional unit
vector with its sth element equal to one.

D. Trait Aggregation and Distribution
Finally, we represent the trait distribution across the tasks

by the trait distribution matrix Y (t) ∈ RM×U+ , given by

Y (t) = X(t)Q (7)

For cumulative traits, each column of Y (t) represents the
aggregated amounts of the corresponding trait available at
each task, and for non-cumulative traits, each column of Y (t)
represents the total number of robots (who meet the minimum
requirements for the corresponding trait) assigned to each task.

Note that the stochastic nature of Q results in the elements
of Y (t) being random variables. The expected value of Y (t)
can be computed as follows

E{Y (t)} = µY (t) = X(t)µQ (8)

and since the elements of Q are independent random variables,
the variance of each element of Y is given by

Var{Y (t)} = ΣY (t) = (X(t)�X(t)) ΣQ (9)

where � denotes the Hadamard (entry-wise) product. Further,
the covariance between any two elements of Y is given by

Cov{Yij , Ykl} =

{∑S
s=1(x

(s)
i x

(s)
k σ2

sj), if j = l

0, otherwise
(10)

IV. PROBLEM FORMULATION

In this section, we detail the problem of finding the transi-
tion rates K(s) for each species such that the trait distribution
over tasks Y (t) reaches the desired trait distribution Y ∗ as
quickly as possible. We express the problem as the following
optimization problem

τ∗,K(s)∗ = arg min
τ,K(s)

τ (11)

s.t. X(τ∗)Q ∈ G(Y ∗) (12)

where G(Y ∗) : RM×U+ → Ω, named the goal function, is a
function that defined the set of admissible trait distribution
matrices Ω. As in [16], we consider two goal functions:

1) Exact matching: G1(Y ∗) = {Y |Y ∗ = Y }
2) Minimum matching: G2(Y ∗) = {Y |Y ∗ � Y }

swhere � denotes the element-wise less-than-or-equal-to op-
erator. While goal function G1 requires achieving the exact
desired trait distribution, goal function G2 requires the trait
distribution be greater than or equal to the desired trait
distribution. In other words, G2 allows for over-provisioning,
while G1 does not.

V. DIVERSITY MEASURES

Large heterogeneous teams with multiple species might
result in capabilities that are complementary and or redundant.
Inspired by [16], we study the properties of the average
species-trait matrix µQ to understand the similarities and
variations among the species of a given team. Measures of
team diversity were defined in [16] for species defined by
binary traits. In this section, we extend and define diversity
measures for species defined by continuous traits. We define
two measures of trait diversity for a given team, one for each
of the two goal functions defined in Section IV. To this end,
we utilize the following definitions.

Definition V.1. Minspecies: In a team described by an average
species-trait matrix µQ, a minspecies set is a subset of rows
of µQ with minimal cardinality, such that the system can still
achieve the goal G(Y ∗).

Definition V.2. Minspecies cardinality: The cardinality of the
minspecies set is defined as the Minspecies cardinality and is
represented by the function DG : RS×U+ → N+ that takes the
average species-trait matrix µQ as the input and returns the
minimum number of rows to achieve the goal G(Y ∗).

A. Eigenspecies
First, we define a diversity measure related to the exact

matching goal, G1 by identifying the minimal set of species
M1 that can exactly match any desired trait distribution
without recruiting robots from species not in M1.

Proposition V.1. The cardinality of eigenspecies (the min-
species corresponding to goal function G1) is given by

DG1 = min |M1| (13)

s.t.
∑
s∈M1

αss̃µq(s) = µq(s̃) , ∀s̃ /∈M1,∀αss̃ ∈ N (14)

(15)
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whereM1 is a subset of all the species in the team, |·| denotes
the cardinality, and N is the set of all non-negative integers.

Proof. The species-trait matrix Q can be factorized as µQ =
Aµ̂Q where A ∈ NS×|M1| and µ̂Q ∈ R|M1|×U . Now, Y ∗ =
X∗µQ = X∗Aµ̂Q = X̂µ̂Q where X̂ = X∗A. Thus, there
exists a robot distribution X̂ that can achieve the goal G1
with only a subset of the species, defined using the minimal
species-trait matrix µ̂Q.

B. Coverspecies
Next, we define a diversity measure related to the minimum

matching goal, G2 by identifying the minimal set of species
M2 that can exactly match any desired trait distribution
without recruiting robots from species not in M2.

Proposition V.2. The cardinality of coverspecies (the min-
species corresponding to goal function G2) is given by

DG2 = min |M2| (16)

s.t.
∑
s∈M2

αss̃µq(s) � µq(s̃) , ∀s̃ /∈M2,∀αss̃ ∈ N (17)

Proof. The species-trait matrix Q can be factorized into two
matrices A and µ̂Q such that A ∈ NS×|M2|, µ̂Q ∈ R|M2|×U ,
and µQ � Aµ̂Q. Now, Y ∗ � X∗µQ � X∗Aµ̂Q. Thus, there
exists a robot distribution X̂ = X∗A that can achieve the
goal G2 with only a subset of the species, defined using the
species-trait matrix µ̂Q.

VI. SOLUTION APPROACH

This section details the proposed solution to the optimiza-
tion problem defined in (11)-(12).

A. Goal Constraints
We begin by considering the time evolution of average trait

distribution over the tasks, obtained by combining (8) and (6):

µY (τ,K(1,..,S), x(s)(0)) =

S∑
s=1

eK
(s)τ x(s)(0) µq(s) (18)

In order to satisfy the goal function constraint in (12), we
impose constraints on two error functions [16]. The first error
function computes the trait distribution error and is defined
separately for each goal function as follows:

EG11 (τ,K(1,..,S), X(0)) =‖Y ∗ − µY (τ)‖2F (19)

EG21 (τ,K(1,..,S), X(0)) =‖max[(Y ∗ − µY (τ)), 0]‖2F (20)

where ‖ · ‖F denotes the Frobenius norm of a matrix. The
second error function measures the deviation from the steady
state robot trait distribution and is defined as follows for both
goal functions:

E2(τ,K(1,2,..,S), X(0)) =

S∑
s=1

‖eK
(s)τ x(s)(0) (21)

− eK
(s)(τ+ν) x(s)(0)‖22

The function E1 (for both goal functions) penalizes the system
when the trait distribution at time τ does not satisfy the
appropriate goal, and the function E2 penalizes the system
if its trait distribution does not reach steady state at time τ .

Fig. 2. The four error measures used to quantify trait mismatch.

B. Optimization Problem

Based on the definitions in Sections VI-A, we reformulate
the optimization problem in (11)-(12) for goal G1 as follows

τ∗,K(s)∗ = arg min
τ,K(s)

τ (22)

s.t. EG11 (τ,K(1,..,S), X(0)) ≤ ε1 (23)

E2(τ,K(1,..,S), X(0)) ≤ ε2 (24)

‖ΣY (τ,K(1,..,S), X(0))‖2F ≤ ε3 (25)

k
(s)
ij ≤ k

(s)
ij,max, ∀i, j = {1, ..,M}, (26)

τ > 0 (27)

where ε1, ε2, and ε3 are user-defined positive scalars. Further,
for each task, the constraint in (25) encourages the system to
recruit robots who possess traits (required for the task) with
relatively low variance. Note that the optimization problem for
goal G2 is identical except that we replace the constraint in
(23) with EG21 (τ,K(1,..,S), X(0)) ≤ ε1.

VII. EXPERIMENTAL EVALUATION

In the following experiments, we compare STRATA’s per-
formance with that of a baseline. We use the binary-trait-
based method introduced in [16] as our baseline method 1.
Since the baseline requires the desired trait distribution to
be specified in the binary trait space, we make the following
modifications to the baseline. We define a binary species-trait
matrix to be Q̄ = sign(µQ), where sign(·) is the signum
operator applied to each element of its matrix argument. We
also define a modified desired trait distribution for the baseline:
Ȳ = bY ∗ � µY c, where b·c is the floor function applied to
each element of a matrix, � refers to Hadamard (element-
wise) division, µY = [µ1

Y � 1M , · · · , µUY � 1M ], µiY is the
mean value of the ith trait computed across all species, and
1M is a M -dimensional vector of ones.

We study the performances of STRATA and the baseline
in terms of matching the desired trait requirements for a
large heterogeneous team. To this end, we simulate a task
assignment problem with M = 8 nodes (tasks), U = 5 traits
(3 cumulative and 2 non cumulative traits), and S = 5 species
(each with 200 robots). We present the results computed from
100 independent simulation runs.

In each run, we make the following design choices. The
task graph along with its connections is randomly generated.
The initial and final robot distributions, X(0) and X∗, are
uniformly randomly generated. The expected value of the
species-trait matrix is chosen to be µQ = [a, a, a, b, b]T , where
each element of a ∈ RU+ is sampled from a uniform distribu-
tion: ai ∼ U(0, 10), and each element of U -dimensional b is

1Code available at https://github.com/amandaprorok/diversity
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Fig. 3. Comparison of the performances of STRATA and the baseline [16] (binary) framework when optimizing for Left: exact matching (G1) and Right:
minimum matching (G2). The performance of each framework is quantified in terms of four measures of percentage trait mismatch.

sampled from a discrete uniform distribution: bi ∼ U{0, 1}.
Each element of ΣQ is sampled from a uniform distribution:
U(0, 2). Based on the obtained X∗ and µQ, a desired trait
distribution Y ∗ is computed for each run.

The task assignment performance of each method is evalu-
ated in terms of four measures of trait mismatch, as defined
in Fig. 2. In each scenario, the performance is measured in
terms of both exact and minimum trait matching, irrespective
of the optimization goal. To ensure a fair comparison, we limit
both STRATA and the baseline framework to a maximum of
20 meta iterations of the basin hopping algorithm during each
run. In order to measure δG1

(Q) and δG2
(Q) for each run, 10

samples of the trait-species matrix Q.
Exact Trait Matching: First, we compute the optimal

transition rates according to both STRATA and the binary trait
framework [16] with respect to the function Goal G1. STRATA
is found to converge during 79 of the 100 simulation runs
and the binary trait framework during 10 runs. In Fig 3L,
we present the performances of both frameworks by plotting
the errors (defined in Fig. 2) as functions of time. Note that
the error plots for each method reflect the error measures
computed only across the converged runs.

As shown in Fig. 3L(a) and 3L(b), STRATA consistently
performs better than the baseline in terms of deterministic
performance, as measured by both δG1

(µQ) and δG2
(µQ).

Further, as shown in Fig. 3L(c) and 3L(d), when the robots’
traits are randomly sampled, STRATA performs better than the
baseline on average. The stochastic nature of the species-trait
matrix forces the errors to be larger than 0.

Minimum Trait Matching: Next, we compute the optimal
transition rates according to both STRATA and the binary trait
model [16] with respect to the function Goal G2. STRATA is
found to converge during 85 of the 100 simulation runs and the
binary trait framework during 16 runs. In Fig 3R, we present
the performances of both frameworks by plotting the errors
(defined in Fig. 2) as functions of time.

STRATA consistently performs better than the baseline
when optimizing to satisfy minimum trait distribution, as
measured by δG2(µQ). On average, STRATA performs better
than the baseline when considering stochastic species-trait
matrix, as measured by δG2

(Q). These assertions are supported
by the plots in Fig. 3R(b) and 3R(d). In Fig. 3R(a) and 3R(c),

Fig. 4. Number of converged simulation runs.

the baseline exhibits high error and variance in terms of both
δG1

(µQ) and δG1
(Q). This implies that when optimizes for

G2, the binary trait model, unlike STRATA, results in a high
level of over-provisioning.

Summary: The advantages of considering the variations
both at the species and individual levels are reflected in the
results above. Further, note that desired continuous trait distri-
butions might not be achievable when reasoning over binary
traits due to incompatibility with the continuous trait space.
In fact, as seen in Fig. 4, STRATA successfully converged
in significantly (p < 0.001) more runs than the binary trait
framework for both exact trait matching (G1) and minimum
trait matching (G2).

VIII. CONCLUSION

We presented STRATA, a unified framework capable of
optimal task assignments in large teams of heterogeneous
robots. The members of the team are modeled as belonging
to different species, each defined by a set of its capabilities.
STRATA models capabilities in the continuous space and
explicitly takes into account both species-level and robot-level
variations. Further, to quantify the diversity of a given team,
we extended two diversity measures to the continuous trait
space. The experimental results demonstrate that STRATA
(1) successfully distributes a large heterogeneous team to
meet complex task requirements, and (2) consistently performs
better than the baseline that only considers binary traits.
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