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Abstract— Learning can significantly improve the perfor-
mance of robots in uncertain and changing environments;
however, typical learning approaches need to start a new
learning process for each new task or robot as transferring
knowledge is cumbersome or not possible. In this work, we
introduce a multi-robot, multi-task transfer learning framework
that allows a system to complete a task by learning from a
few demonstrations of another task executed on a different
system. We focus on the trajectory tracking problem where each
trajectory represents a different task. The proposed learning
control architecture has two stages: (i) a multi-robot transfer
learning framework that combines L1 adaptive control and
iterative learning control, where the key idea is that the adaptive
controller forces dynamically different systems to behave as
a specified reference model; and (ii) a multi-task transfer
learning framework that uses theoretical control results (e.g.,
the concept of vector relative degree) to learn a map from
desired trajectories to the inputs that make the system track
these trajectories with high accuracy. This map is used to
calculate the inputs for a new, unseen trajectory. We conduct
experiments on two different quadrotor platforms and six
different trajectories where we show that using information
from tracking a single trajectory learned by one quadrotor
reduces, on average, the first-iteration tracking error on another
quadrotor by 74%.

I. INTRODUCTION

Robots are being deployed in unstructured environments
where they face model uncertainties, unknown disturbances,
and changing dynamics. Small changes in the environmen-
tal conditions may deteriorate the performance and cause
instability in traditional controllers ([1] and [2]). Typical
learning-based control methods can guarantee high overall
performance; however, if conditions change a new learning
process may be required. Training robots to operate in chang-
ing environments is complex and time-consuming. Transfer
learning reduces training time and the unavoidable risks of
the training phase. In contrast, adaptive controllers are able
to adapt online and reject disturbances, but are not able to
exploit prior knowledge. In this work we develop a multi-
robot, multi-task transfer learning framework (see Fig. 1)
that allows a system to complete a task by learning from a
few demonstrations of another task executed on a different
system, i.e. leveraging previous knowledge even when condi-
tions change. We focus on trajectory tracking as many robotic
tasks can be formulated as trajectory tracking problems. The
proposed multi-robot, multi-task transfer framework achieves
high-accuracy trajectory tracking from the first iteration for
numerous robot dynamics and desired trajectories.

There have been few works on multi-robot transfer. On
the theoretical side, the work in [3] proved that the optimal
transfer learning map between two robots is, in general, a
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Fig. 1. The proposed multi-robot, multi-task architecture. The multi-
robot transfer learning framework is composed of two methods (i) an
iterative learning control (ILC) module to learn an input such that the output
tracks a desired output signal and (ii) an L1 adaptive controller to force
different systems to behave in the same repeatable, predefined way. Hence,
trajectories learned on a source system can directly be transferred to a target
system. The multi-task transfer learning framework learns a map from a
desired trajectory to the inputs that make the system track it accurately.
When a new trajectory is encountered, the learned map is used to calculate
the inputs for the new trajectory.

dynamic system. The properties of the optimal dynamic map
include its order and relative degree among other variables.
In [4], a data transfer mechanism based on manifold align-
ment of input-output data is proposed. The transferred data
improves learning of a model of a robotic arm by using data
from a different robotic arm.

Multi-task transfer uses previously learned tasks to per-
form new, unseen tasks. Learning approaches, such as iter-
ative learning control (ILC), are usually not able to transfer
knowledge to new, unseen tasks. In [5], using knowledge
from previously learned trajectories, a linear map is created
(through trial-and-error) to calculate the inputs required to
track unseen trajectories. Experimental results show that only
one learned trajectory is needed to improve the performance
on a new trajectory. However, experimentally creating the
optimal map may be time consuming. In [6] and [7], a deep
neural network (DNN) is trained to achieve a unity map
between the desired and actual outputs. The DNN adapts the
reference signal to a feedback control loop to enhance the
tracking performance of unseen trajectories. In [8], neural
networks allow generalization of a task based on a single
instance of the given task. However, the architecture of the
neural network must be tailored to the specific task.

Multi-robot, multi-task transfer transfers tasks learned on a
robot to different tasks to be executed on a different robot. In
[9] a neural network learns policies that can be decomposed
into “task-specific” and “robot-specific” modules. When a
new robot-task combination is encountered, the appropriate



robot and task modules are composed to solve the problem.
This architecture enables zero-shot generalization with a
variety of robots and tasks in simulation. However, neural
network approaches require significant amounts of data and
computational resources to train. In this work, we emphasize
data efficiency to achieve successful transfer in experiments.

The contribution of this work is to design a learning
architecture that is able to achieve high-accuracy tracking
in the first iteration (i) despite the presence of changing
dynamics which include switching the robot hardware al-
together, and (ii) by using previously learned trajectories
and generalizing knowledge to new, unseen trajectories. This
work was published in RA-letters 2018 [10], but has not
been presented at a conference. This workshop provides an
opportunity to present our work in front of peers working
in the field intersecting machine learning and adaptation, get
feedback and discuss next steps.

II. METHODOLOGY
The objective of this work is to achieve high-accuracy

trajectory tracking in the first iteration in a multi-robot, multi-
task framework, in which (i) the training and testing robots
are dynamically different, and (ii) the training and testing
trajectories are different. We consider a control architecture
as shown in Fig. 1. The proposed approach also allows the
system to continue learning over iterations after transfer.

A. Multi-robot transfer

The multi-robot transfer framework is based on the com-
bined L1 adaptive control and ILC approach introduced in
[11]. The ILC improves tracking performance over iterations,
while the L1 adaptive controller forces dynamically different
nonlinear systems to behave close to a specified linear model.
Hence, learned trajectories can be transferred among dynam-
ically different systems (equipped with the same underlying
L1 adaptive controller) to achieve high-accuracy tracking.

The extended L1 adaptive controller that we implemented
in our experiments in Section III assumes that the uncer-
tain and changing dynamics of the robotic system can be
described by a MIMO system for output feedback:

y1(s) = A(s)(uL1(s) + dL1(s)) , y2(s) =
1

s
y1(s) , (1)

where y1(s) and y2(s) are the Laplace transforms of the
translational velocity y1(t) ∈ Rp and the position y2(t) ∈
Rp, respectively, A(s) is a transfer function matrix of
strictly-proper unknown transfer functions that can be sta-
bilized by a proportional-integral controller, uL1

(s) is the
Laplace transform of the input uL1

(t) ∈ Rp, and dL1
(s)

is the Laplace transform of disturbance signals defined as:
dL1

(t) := f(t, y1(t)), where f : R×Rp → Rp is an unknown
map subject to the global Lipschitz continuity assumption
with Lipschitz constant L (see Assumption 4.1.1 in [12]).

The extended L1 adaptive output feedback controller
aims to design a control input uL1

(t) such that the output
y2(t) ∈ Rp tracks a bounded piecewise continuous reference
input u2(t) ∈ Rp. We aim to achieve a desired closed-
loop behavior by nesting the output of the L1 adaptive

controller with output y1(t) ∈ Rp which tracks u1(t) ∈ Rp

within a proportional feedback loop. Through the use of
an output predictor, adaptation law, control law and closed-
loop feedback, the extended L1 adaptive controller makes the
system behave close to a linear, MIMO system described by:

y2(s) = diag(D1(s), . . . , Dp(s))u2(s) , where

Di(s) = Kimi

s2+mis+Kimi
,

(2)

and Ki, mi > 0. The details of the extended L1 adaptive
control implementation can be found in [10].

The multi-task transfer framework, discussed in the next
subsection, requires a desired trajectory and the correct input
that makes the system track said trajectory. To construct this
pair of desired trajectory and corresponding correct input,
we use an optimization-based ILC [13] to modify the input
and improve the tracking performance of the system, which
now behaves close to (2), in a small number of iterations
1, . . . , j. After each iteration, we use an iteration-domain
Kalman filter to obtain an estimate of the disturbance in
the system, based on measurements from iterations 1, . . . , j.
Finally, based on the disturbance and system (2), the next
input sequence is calculated by minimizing a quadratic cost
function that includes the estimated output error.

Remark 1. If the source and target systems have underlying
L1 adaptive controllers with different reference models, then
it is still possible to implement the multi-robot framework by
using the reference models to build a map from the source
system to the target system [3]. Using this map, trajectories
learned on the source system can be transferred to the target
system, which has a different reference model.

B. Multi-task transfer

The multi-task transfer scheme learns a map between
a single desired trajectory and the inputs that make the
system track the desired trajectory accurately. This map is
used to calculate the inputs needed to track a new, unseen
trajectory with high accuracy. Suppose that we are given a
smooth desired trajectory y∗2 and using a learning approach,
such as ILC, we are able to obtain for this particular
desired trajectory an input sequence vector u2 that achieves
high-accuracy tracking performance. Our proposed multi-
task transfer learning framework uses insights from control
systems theory to identify the components of the map.

Lemma 1. Consider a minimum phase, discrete-time,
MIMO, LTI system (e.g. the one obtained by discretizing (2)),
and a smooth desired trajectory y∗2 . Then, there exists a
control input sequence u2 that achieves perfect tracking of
y∗2 . Moreover, at time instant k, the control input u2(k) can
be represented as a linear combination of the state x(k) and
the values y∗2,1(k + r1), . . . , y∗2,p(k + rp), where y∗2,i(j) is
the value of the ith component of the desired output at time
index j, and (r1, . . . , rp) is the vector relative degree of the
system.

The proof of this lemma can be found in [10]. We know



from Lemma 1 that to achieve perfect tracking, u2,i(k),
i = 1, . . . , p, should be a linear combination of x(k) and
y∗2,1(k+r1), . . . , y∗2,p(k+rp), where (r1, . . . , rp) is the vector
relative degree of the system. We assume, for now, that
the state x(k) can be measured or estimated, and stored.
Hence, we propose to build, with the available information,
the following windowing function:

W (x,y∗2) =


xT (0) ȳ∗2(0)

...
...

xT (Nr) ȳ∗2(Nr)

 , (3)

where ȳ∗2(a) = [y∗2,1(a + r1), . . . , y∗2,p(a + rp)], and
Nr = N−maxj∈{1,...,p}(rj). Using the windowing function
W (x,y∗2), we define the following learning process:

u2,i = W (x,y∗2)θi , (4)

where u2,i = [u2,i(0), . . . , u2,i(Nr)]T is the collection of
the ith elements of u2, obtained from the ILC algorithm.
This is a linear regression problem for the parameter vector
θi ∈ Rn+p.

Remark 2. The vectors of unknowns θi, i ∈ {1, . . . , p}, are
all functions of the system matrices.

Therefore, we can reuse the calculated vectors θi, which
build an invariant map, to calculate for new, unseen, de-
sired trajectories correct input vectors that achieve perfect
tracking. In particular, we use the vectors θi to calculate the
control input that achieves perfect tracking of a new desired
trajectory y∗,new2 as follows:

unew2,i (k) =
[
xT (k) ȳ∗,new2 (k)

]
θi ∀i ∈ {1, . . . , p} , (5)

where θi, i ∈ {1, . . . , p} are calculated by (4) and
ȳ∗,new2 (k) = [y∗,new2,1 (k + r1), . . . , y∗,new2,p (k + rp)].

Remark 3. Our proposed control law (5) only assumes the
knowledge of the vector relative degree of the system, which
can be obtained through experiments, see details in [10].

Notice that the construction of the windowing function
W (x,y∗2) requires the knowledge of the system states or
estimated values of the states. We extend our approach using
Lemma 1 from [14] to use past inputs and outputs of the
system instead of state measurements.

It should be noted that the proposed multi-task transfer
framework can be also extended to nonlinear systems
with well-defined vector relative degrees and stable inverse
dynamics. Analogous to Lemma 1, it can be shown that
there exists a control input satisfying perfect tracking of
an arbitrary, smooth trajectory y∗2 , and this input is a non-
linear function of the state x(k) and the values y∗2,1(k +
r1), · · · , y∗2,p(k + rp), where (r1, . . . , rp) is the system’s
vector relative degree. The nonlinear function can be approxi-
mated for the whole state space using a nonlinear regression
model, or by partitioning the state space and using local,
affine/linear models in each region.
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Fig. 2. The six different trajectories that are used to test the multi-robot,
multi-task transfer framework. The source and target trajectories used to
assess repeatability and different reference models are depicted in dark blue
and orange, respectively.

III. EXPERIMENTAL RESULTS

We assess three aspects to verify the effectiveness of
the proposed framework: (i) capability to transfer different
trajectories between different quadrotor platforms, (ii) re-
peatability of results, and (iii) use of different reference
models for the L1 adaptive controllers of the source and
target systems.

The vehicles used in the experiments are the Parrot
AR.Drone 2.0 and the Parrot Bebop 2. Each quadrotor
has an underlying L1 adaptive controller that makes both
vehicles behave close to a reference system. In what follows,
the signals u2,i(t) are the desired translational positions
and y2,i(t) are the quadrotor translational positions in the
i = x, y, z directions, respectively. A central overhead
motion capture camera system provides position, roll-pitch-
yaw Euler angles and rotational velocity measurements. We
propose six different trajectories to test our approach, as
shown in Fig. 2. To quantify the tracking performance, an
average position error along the trajectory is defined by:

e =
1

N

N∑
i=1

√
e2x(i) + e2y(i) + e2z(i) , (6)

where ej(i) = u2,j(i)− y2,j(i) and j = x, y, z.

A. Multi-robot, multi-task transfer: capabilities

We generate six different trajectories (see Fig. 2) to be
transferred from the AR.Drone 2.0 to the Bebop 2. We learn
each of the six trajectories on the AR.Drone 2.0 using the
multi-robot framework (Section II-A). We devise a one-to-all
transfer scheme, in which we use one of the six trajectories as
a source trajectory to transfer to each of the six trajectories,
now called target trajectories (including the source trajectory,
which is the the multi-robot transfer learning case). Using the
multi-task framework (Section II-B), we apply the one-to-all
scheme six times such that each of the six trajectories is
the source trajectory once (6 source × 6 target trajectories).
Fig. 3 shows, for each of the six target trajectories, the
tracking error on a Bebop 2 during a learning process at
iteration 1 (open circles) and at iteration 10 (filled circles)
when no transfer information is used. The tracking errors in
the first iteration after applying the one-to-all, multi-robot,
multi-task transfer are summarized in six boxplots, each of
which corresponds to one target trajectory. The red mark
on each box indicates the median, while the bottom and
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Fig. 3. Tracking errors of six learning processes without transfer infor-
mation on the Bebop 2 at iteration 1 (open circles) and iteration 10 (filled
circles). Boxplots summarize the six one-to-all experiments of the multi-
robot, multi-task framework, which significantly decreases the error in the
first iteration after transfer. On each box, the red mark indicates the median,
while the bottom and top edges indicate the 25th and 75th percentiles,
respectively. The whiskers represent the most extreme data points.

top edges of the box indicate the 25th and 75th percentiles,
respectively. The whiskers represent the most extreme data
points. On average, the percentage of error reduction for the
36 experiments is 74.12%, when using only 6 seconds of
training data (length of each trajectory).

B. Multi-robot, multi-task transfer: repeatability

To test the repeatability, we choose a single pair of source
and target trajectories (in Fig. 2, dark blue and orange trajec-
tory, respectively). Fig. 4 shows the mean error when we re-
peat ten times a 10-iteration learning process on the Bebop 2
with underlying L1 adaptive controller and ILC when (i) no
transfer is used (shown in black), and (ii) transfer information
from the source trajectory learned on the AR.Drone 2.0
is used to initialize the learning process (shown in blue).
The proposed framework significantly decreases the tracking
error in the first iteration.

C. Multi-robot, multi-task transfer: different reference mod-
els for the L1 adaptive controllers

We include experimental results for Remark 1, when the
source and target systems have L1 adaptive controllers with
different reference models. We modified the reference model
of the Bebop 2, and used a mapping between the reference
models in addition to the proposed multi-robot, multi-task
transfer framework. The tracking error of a 10-iteration ILC
process using transfer information is shown in magenta in
Fig. 4. The proposed framework reduces the tracking error
in the first iteration after transfer by 74.86%, even when the
L1 adaptive controller of the target system has a different
reference model.

IV. CONCLUSIONS

We introduced a multi-robot, multi-task transfer learning
framework for MIMO systems. We focused on the trajectory
tracking problem. The multi-robot transfer learning frame-
work is based on a combined L1 adaptive controller and ILC.
The L1 adaptive controller makes systems to behave like
a specified linear reference model, even in the presence of
disturbances, allowing learned tasks to be directly transferred
to other systems. The multi-task transfer learning framework
uses control theory results to build a time- and state-invariant
map from the desired trajectory to the input that accurately
tracks this trajectory. This map can be used to generate inputs
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Fig. 4. For a single source and target trajectory pair, the average position
errors over ten 10-iteration ILC processes when the Bebop 2 is tracking
the target trajectory are shown (i) in blue, when the proposed multi-
robot (AR.Drone 2.0 to Bebop 2), multi-task (source to target trajectory)
framework is used, and (ii) in black, when no transfer information is
used. The errors after the proposed multi-robot, multi-task transfer when
the source and target systems have L1 adaptive controllers with different
reference models are shown in magenta.

for new desired trajectories. Experimental results on two
different quadrotors and six different trajectories show that
the proposed framework reduces the first-iteration tracking
error by 74% on average, when information from tracking a
different, single trajectory on a different quadrotor is utilized.
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