
Optimal Task Allocation in Heterogeneous Multi-Robot Systems Using
a Mixed Centralized/Decentralized Strategy

Siddharth Mayya1, Gennaro Notomista2 and Magnus Egerstedt1

Abstract— We present a mixed centralized/decentralized
strategy to allocate tasks to a team of robots with heterogeneous
capabilities. In the decentralized part of the algorithm, where
the robots only have access to local information, individual
robots choose between tasks based on the energy consumed
in performing each task. This is done by encoding task as
constraints in an energy minimization problem being solved by
the robots at each point in time and using slack variables in the
constraints to achieve relative prioritization among the tasks to
be executed. Furthermore, global specifications on the required
allocation of tasks among the robots are enforced by placing
relative constraints among the slack variables themselves. In
this paper, we demonstrate how a central computer can enforce
global specifications on the task allocation by performing a
centralized computation and intermittently disseminating infor-
mation to all the robots. Real robot experiments demonstrate
the efficacy of the proposed task allocation framework.

I. INTRODUCTION

Multi-robot task allocation is an active area of research
with various solutions tailored for specific application sce-
narios [1], [2], [3]. The problem becomes especially involved
when individual robots differ in their capabilities to perform
different tasks [4] and when robots are expected to operate
in unknown and dynamic environments for long periods of
time, e.g., [5].

In [6], we presented a task allocation framework which ex-
hibits the following salient features: (i) constraint-based task
execution which explicitly accounts for the energy required
by the robots in executing the tasks (ii) task allocation that
accounts for the heterogeneous capabilities of the robots (iii)
a mechanism to incorporate global specifications in the task
allocation as well the energy considerations of the robots.

We allow individual robots execute all tasks at the same
time but with different levels of effectiveness—which is
encoded via slack variables in a constrained optimization
problem. In this formulation, the execution of M tasks by a
given robot i is encoded in the following manner:

min
ui

‖ui‖2 s.t. ctaskm(xi, ui) ≥ 0,∀m ∈ {1, . . . ,M},

where ui is the control effort expended by robot i, xi is its
state, and ctaskm denotes a constraint function which ensures
the execution of task m. This constraint-based formulation is
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centralized (executed at a slower rate)

decentralized (executed in real-time)
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Fig. 1. A mixed centralized/decentralized architecture for task allocation
in a team of robots with heterogeneous capabilities.

better suited for long-term autonomy applications than cost-
based formulations [5]. The feasibility of this task execution
framework is ensured by the introduction of slack variables
corresponding to each constraint:

min
ui,δi

‖ui‖2 + ‖δi‖2

s.t. ctaskm(xi, ui) ≥ −δi,m,∀m ∈ {1, . . . ,M},

where δi = [δi,1, δi,2, . . . , δi,M ]T is the set of slack variables
corresponding to robot i’s execution of the M tasks. Then,
for robot i, a task prioritization can be introduced by adding
constraints on the slack variables pertaining to each task:

min
ui,δi

‖ui‖2 + ‖δi‖2

s.t. ctaski(xi, ui) ≥ −δi
Kiδi ≥ 0, ∀i ∈ {1, . . . ,M}.

(1)

In [6], we formulated a mixed-integer quadratic program
(MIQP) to compute the task priorities Ki, slack variables
δi, and control inputs ui for the individual robots. In this
formulation, the computation of the task priorities requires
knowledge of the current task allocation of the swarm,
thus not allowing for a decentralized implementation of
the framework. Furthermore, the computational burden of
solving an MIQP prevents it from being solved at each point
in time, due to which the problem was relaxed to a quadratic
program (QP) in [6].

In this paper, we propose a mixed central-
ized/decentralized [7] task allocation framework that
addresses both of the above mentioned problems. We
envision a central computer—which has access to the states



of the robots—that computes an unrelaxed solution to the
MIQP. These solutions are computed at regular intervals of
time and the resulting task priorities Ki are transmitted to
the individual robots. The robots utilize the most recently
received Ki matrices to solve the QP given by (1) at a
real-time frequency. Thus, the computational burden of
solving an unrelaxed MIQP is transferred to the cloud, while
the robots optimize for their own energy consumption in a
decentralized manner. Real robot experiments demonstrate
the efficacy of the developed task allocation architecture.

II. TECHNICAL BACKGROUND

In this section, we present some technical results which
will be used in this paper. Let h : Rn → R be a continuously
differentiable function, and define the safe set S as its zero-
superlevel set:

S = {x ∈ Rn | h(x) ≥ 0}. (2)

Let ∂S = {x ∈ Rn | h(x) = 0} and S◦ = {x ∈ Rn | h(x) >
0} denote the boundary and the interior of S, respectively.
The function h is called a (zeroing) control barrier function
(ZCBF) if the following condition is satisfied:

sup
u∈U
{Lfh(x) + Lgh(x)u+ γ(h(x))} ≥ 0 ∀x ∈ Rn, (3)

where γ is a Lipschitz continuous extended class K function
[8], and Lfh(x) and Lgh(x) denote the Lie derivatives of
h in the directions of f and g, respectively. The following
theorem summarizes two important properties of ZCBFs.

Theorem 1. Consider a dynamical system in control affine
form ẋ = f(x) + g(x)u, where x ∈ Rn and u ∈ Rm
denote the state and the input, respectively, f and g are
locally Lipschitz. Let S ⊂ Rn be a set defined by a
continuously differentiable function h as in (2). Then, any
Lipschitz continuous controller u such that (3) holds renders
the set S forward invariant and asymptotically stable, i. e.,:

x(0) ∈ S ⇒ x(t) ∈ S ∀t ≥ 0

x(0) /∈ S ⇒ x(t)→∈ S as t→∞,

where x(0) denotes the state x at time t = 0.

Proof. See [8] and [9].

As our primary objective is the allocation of tasks among
different robots, we abstract the motion of the robots using
single integrator dynamics, assuming that we can manipulate
their velocities directly. We are interested in synthesizing a
control signal u(t) that allows the minimization of the cost
J(x(t)). This can be achieved by solving, at each point in
time, the minimization problem

min
u
J(x), (4)

where x and u are coupled through the single integrator
dynamics ẋ = u.

As explained in [5], the constraint-driven control strategy
has advantages in terms of robustness against unpredictable
and changing environmental conditions—properties which

are useful when considering long-duration autonomy. In [9],
we show that solving (4) in order to synthesize u(t) is equiv-
alent to solving the following constraint-based optimization
problem, in the sense that they both achieve the goal of
minimizing the cost J :

min
u,δ

‖u‖2 + |δ|2

s.t.
∂h

∂x
u ≥ −γ(h(x))− δ

(5)

where δ ∈ R is the slack variable signifying the extent
to which the task constraint can be violated, γ is an ex-
tended class K function, and h(x) = −J(x) is a (zeroing)
control barrier function. The zero-superlevel set of h is
S = {x | h(x) ≥ 0} = {x | J(x) ≤ 0} = {x | J(x) = 0},
where the last equality holds because the cost J(x) is a non-
negative function. In the particular case in which J is strictly
convex and J(0) = 0, we have that ∂J∂x (x) 6= 0 ∀x 6= 0. Then,
Theorem 1 directly implies that x→∈ S, i. e., J(x(t))→ 0,
as t→∞. For a proof of the general case, we refer to [9].

In the next section, we introduce the heterogeneous task
allocation framework developed in [6], and motivate the need
for a centralized/decentralized architecture.

III. PREVIOUS WORK

Consider a team of N robots executing M different tasks
T1, . . . , TM . Each task Tm is encoded as the minimization
of a cost function Jm,m ∈ M = {1, . . . ,M}. We assume
that the costs Jm have the following structure:

Jm(x) =

N∑
i=1

∑
j∈Ni

Ji,m(‖xi − xj‖),

i.e. they can be broken down into the sum of pairwise costs
among each robot i and its neighboring robots j ∈ Ni.
In [10], the authors illustrate the various multi-robot tasks
represented by such a cost, and demonstrate the decentralized
nature of the control law obtained by performing a gradient-
descent on this cost. Furthermore, in [9], we showed that
in this case, the constraint-based task execution can be
rendered decentralized provided that certain conditions on
the extended class K function γ are satisfied. We also assume
single integrator robot dynamics ẋi = ui, i ∈ N =
{1, . . . , N}.

As described by the formulation in (5), the execution of
M tasks by each robot can be encoded using the following
quadratic program:

min
ui,δi

‖ui‖2 + ‖δi‖2

s.t.
∂hi,m
∂xi

ui ≥ −γ(hi,m(x))− δi,m, ∀m ∈ {1, . . . ,M}

‖δi‖∞ ≤ δmax
where hi,m = −Ji,m for each i ∈ N and each m ∈
{1, . . . ,M}. Now, let π∗ = [π∗1 , . . . , π

∗
M ]T denote the de-

sired task allocation for the entire team where π∗m denotes the
desired fraction of robots that need to perform task Tm with
the highest priority. Also, let αi = [αi,1, αi,2, . . . , αi,M ]T



denote the vector that indicates the priorities of the tasks for
robot i:

αi,m =

{
1, if task Tm has the highest priority for robot i
0, otherwise.

Since δi,m denotes the relative effectiveness with which robot
i executes task Tm, this implies that

αi,m = 1 ⇒ δi,m ≤
1

κ
δi,n ∀n ∈M, n 6= m,

where κ > 1 allows us to encode how the task priorities
impact the relative effectiveness with which robots perform
different tasks.

The heterogeneity in the capabilities of the robots
is encoded using the specialization matrix Si =
diag([si,1, . . . , si,M ]) where si,m denotes the relative suit-
ability of robot i towards executing task Tm. This allows us
to formulate the following Mixed Integer Quadratic Program
(MIQP) to obtain the task priorities α, slack variables δ, and
control input u:

min
u,δ,α

C‖π∗ − πh(α)‖2 +
N∑
i=1

(
‖ui‖2 + ‖δi‖2Si

)
(6a)

s.t.
∂hi,m
∂xi

ui ≥ −γ(hi,m(x))− δi,m (6b)

δi,n ≥ κ
(
δi,m − δmax(1− αi,m)

)
, n 6= m (6c)

1Tαi = 1 (6d)
‖δi‖∞ ≤ δmax (6e)

α ∈ {0, 1}NM (6f)
∀i ∈ N , ∀n,m ∈M,

where πh(α) is the current task prioritization of the robot
team, and C is a constant which allows a trade-off between
achieving the global task allocation specifications and mini-
mizing energy consumption of the robots.

IV. A MIXED CENTRALIZED/DECENTRALIZED
APPROACH

The optimization problem (6a)-(6f) introduced in the
previous section is a MIQP since the entries of α, which
determine the task priorities for each robot, can be either
0 or 1. As discussed before, there are two main issues
related to solving this MIQP: (i) in most cases, it is a NP-
hard problem and, as such, it is practically impossible to
solve it in an online fashion [11]; (ii) in order to solve it,
information about all robots is required in the evaluation of
πh(α). For these reasons, in this section, we introduce a
mixed centralized/decentralized approach which allows each
robot to solve a QP instead of a MIQP using only locally
available information.

The presented approach is schematically represented in
Fig. 1. We assume there exists a central agent that is able to
communicate with all the robots and, in particular, gather all
the information required to solve the MIQP (6a)-(6f), namely
the positions x of all the robots. Once these values have been
received, solving the MIQP provides the central agent with

the optimal task allocation, α. The values of the entries of αi
are then transmitted from the central agent to robot i. Each
robot, with the knowledge of the received αi, can solve the
following optimization problem:

min
ui,δi

‖ui‖2 + ‖δi‖2Si
(7a)

s.t.
∂hi,m
∂xi

ui ≥ −γ(hi,m(x))− δi,m (7b)

δi,n ≥ κ
(
δi,m − δmax(1− αi,m)

)
, n 6= m (7c)

‖δi‖∞ ≤ δmax (7d)
∀n,m ∈M,

where the constraint (7c) encodes the relative priority be-
tween each pair of tasks. The problem (7a)-(7d) is a QP
and, therefore, it can be efficiently solved by each robot even
under real-time constraints [11].

It is worthwhile pointing out that the presented task
allocation strategy is dynamic and it does not need to be
synchronous with the calculation of the robots’ inputs ui. In
fact, as will be shown in the next section through experiments
with real robots, while each robot evaluates its control input
through (7a)-(7d), the central agent allocates the tasks to
the robot by solving (6a)-(6f). This way, if the global task
specification π∗ changes over time, the robots will receive
an updated value of α which will affect the task priorities
through the constraint (7c).

V. EXPERIMENTS
The presented centralized/decentralized task allocation

framework has been implemented on a team of 6 differential-
drive robots operating on the Robotarium, a remotely acces-
sible swarm robotics testbed [12]. The experimental setup
consists in the robots moving in a 2.5m×1.5m rectangular
domain and performing two tasks: environmental surveil-
lance and formation control. The former is realized by
implementing the coverage control algorithm proposed in
[13], whereas the latter task consists in driving to specified
locations in the domain. Figure 2 presents snapshots of the
experiment.

The robots are heterogeneous in their ability to perform
the two different tasks, with three different specialization
matrices: Si = diag([0.75, 0.25]) for i = 1, Si =
diag([0.25, 0.75]) for i = 2, Si = diag([1, 0]) for i ∈ {3, 4},
and Si = diag([0, 1]) for i ∈ {5, 6}. The global specification
on the task allocation π∗ is changed from π∗ = [1, 0]T to
π∗ = [0.5, 0.5]T halfway through the experiment.

The robots are initialized at random locations in the
domain. When π∗ = [1, 0]T , the robots are asked to surveil
the environment. The centralized unit assigns, to all the
robots, an αi = [1, 0]T which places highest priority on
performing the coverage task. As a result, the robots execute
the gradient descent algorithm presented in [13] and attain a
centroidal Voronoi tessellation (CVT). Figure 2a illustrates
the robots attaining this configuration. At a certain point
in time, the π∗ changes to π∗ = [0.5, 0.5]T . The robots
receive updated values of αi from the centralized computer



(a) (b)

Fig. 2. Experimental deployment of the proposed mixed centralized/decentralized task allocation strategy on a team of 6 differential-drive robots operating
on the Robotarium [12]. With the initial task allocation specifications set to π∗ = [1, 0]T , all the robots perform coverage control with a higher priority
than formation control. Consequently, they achieve a centroidal Voronoi tessellation (CVT). At a later time, the task allocation specifications are changed
to π∗ = [0.5, 0.5]T . As a result, the fraction of robots executing coverage control and formation control with highest priority are equal. The centralized
computer assigns task priorities to the robots by solving the MIQP in (6) taking into account the heterogeneity in the capabilities of the robot.

and accordingly change their task prioritizations. Figure 2b
illustrates half of the robots achieving the formation while the
rest continuing to perform coverage. This takes into account
the specialization matrices of the robots as well as the energy
required to execute each task.
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