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Abstract— We present a novel modelling and planning ap-
proach for multi-robot systems under uncertain travel times,
based on the use of generalised stochastic Petri nets (GSPNs).
Our approach allows for the specification of requirements on
team behaviour, including safety constraints and rewards. The
GSPN is interpreted as a Markov decision process (MDP)
for which we can generate policies that optimise the high-
level requirements. This representation is more compact than
the equivalent multi-agent MDP, allowing us to scale better.
Furthermore, we describe how the integration of the GSPN with
a lower-level team controller allows for accurate expectations
on team performance. We evaluate our approach based on an
industrial scenario where it outperforms hand-crafted policies
used in current practice.

I. INTRODUCTION

Multi-robot path planning is important in many real-world
robotics applications, such as mining, construction, and
warehouse automation. A desirable feature of any automated
multi-robot method is the ability to specify requirements over
team behaviour. For example, we may want to require that
a robot is always present to collect the packages output
by a conveyor belt; or that a taxi is always present at a
taxi rank to collect passengers. Providing such team-level
guarantees is challenging when dealing with mobile robots
due to uncertainty over the durations of navigation actions.
This uncertainty stems from many sources, e.g. the dynamics
of individual robots are typically only partially known; and
members of a robot team jointly navigating in a shared
space introduces further unmodelled dynamics deriving from
their interaction. Today’s commercial solutions for multi-
robot path planning remove uncertainty by extensively en-
gineering the environment, leading to hand-crafted policies
for assigning tasks to robots [1]. Whilst these are reliable,
every new environment or application requires significant
bespoke engineering, and the resulting system provides no
formal guarantees on team behaviour. To address this we
propose an automated planning method that can be used to
replace current practice.

More specifically, we propose a novel method for deriving
policies that regulate the behaviour of individual robots in ac-
cordance to high-level requirements on the overall behaviour
of the team. The team is modelled as a generalised stochastic
Petri net (GSPN) [2], in which paths and locations are rep-
resented as places, robots are represented as tokens, and the
uncertain navigation durations are encoded as probabilistic
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firing rates of transitions. We refer to this as a multi-robot
GSPN (MR-GSPN). With this we can represent team require-
ments, specifically safety specifications, as restrictions on the
markings of the GSPN; and team performance as a reward
to be maximised over the transitions of the GSPN. Robots
are represented anonymously in the MR-GSPN, reducing
the effect of the exponential blow-up usually associated
with multi-agent models. Following Markov automata (MA)-
based semantics [3], an MR-GSPN can be interpreted as
a Markov decision process (MDP) [4]. This MDP can be
solved to generate policies that optimise the team behaviour
against the team requirements and performance objective.
In order to robustly maintain the safety specification, we use
learnt probabilistic models of navigation task duration. These
models are learned from simulations of the team navigating
in the target environment. As a consequence, the policies
obtained from the MR-GSPN MDP account for the kino-
dynamics of the robots and of the team as a whole, and are
therefore appropriate for regulating the behaviour of a team
of real robots.

Our main contributions are the the introuction of (i) MR-
GSPN, a novel GSPN based modelling formalism for multi-
robot teams; and (ii) an MA-based process for using an
MR-GSPN to find policies that maximise team performance
whilst maintaining a team-level safety specification for as
long as possible. To the best of our knowledge, this is the
first time the semantics of GSPNs as MAs has been exploited
for robot planning. Similarly, this is the first work that builds
a GSPN model using accurate transition models from a kino-
dynamically feasible, lower-level controller.

II. RELATED WORK

The clear semantics of concurrency in Petri nets (PNs)
has led to their prior use in robotics. For example, [5] use
PNs to create single-robot behaviour models which support
robust execution strategies. PNs have been used previously
to model the behaviour of multi-robot systems. [6] used a
PN model to synthesise a supervisory controller for a team
of soccer playing robots. [7] map a homogenous robot team
to tokens in a PN to provide a compact representation of
interchangeable robots in order to generate multi-robot paths
satisfying a boolean team specification. We also exploit the
mapping of robots to tokens, but extend it to GSPNs in order
to cope with uncertain action durations.

Our approach is an example of multi-robot path planning
under uncertainty. Many existing multi-agent path planning
approaches ignore robot kino-dynamics and uncertainty [8]
and instead rely on lower level control to provide robustness



against execution time variations from planned behaviour [1].
Multi-agent MDPs [9] have been used to synthesise robot
team behaviour, but their general nature results in poor
scalability. This is typically mitigated by exploiting assumed
structure in the MDP, such as sparse interaction between
agents [10], [11]. We provide scalability through the use of a
GSPN model that yields an MDP with a smaller state space,
rather than assuming a particular structure. In contrast to
all this prior work, we synthesise team behaviour to meet
a formal safety specification. Only limited prior work exists
on this topic. [11] create policies for robots independently
which are then combined to provide team guarantees on task
completions given robot failures. Their approach assumes
sparse interactions between robots (not valid in our problem)
and requires that all robots wait for the team to complete
discrete actions (leading to inefficient robot behaviour).

III. GSPNS FOR MULTI-ROBOT PATH PLANNING

Modelling. A Petri Net (PN) is a tuple N =〈
P, T,W−,W+,M

〉
where P is a finite set of places; T

is a finite set of transitions; W+,W− : P × T → N are arc
weight functions; and M : P → N is the initial marking. A
marking M : P → N represents a state of the system, with
M(p) = q meaning that in M there are q tokens in place p.
The dynamics of a PN are defined by the firing rule, which
determines the flow of tokens between places according to
the given arc weight functions. For a marking M , transition
t is said to be enabled in M if each place p holds at least as
many tokens as the ones to be consumed by t. A transition
t enabled in a marking M can fire, resulting in the marking
M ′ where t consumes and produces tokens according to W−

and W+.
GSPNs are an extension of PNs where transitions are

partitioned into immediate and exponential transitions. More
precisely, a GSPN is tuple N = 〈P, T,W,M, λ〉, where P ,
T , W , and M are the same as for a PN, with T partitioned
into a set T i of immediate transitions and a set T e of
exponential transitions; and λ : T e → R>0 associates each
exponential transition te with a rate λ(te). Enabled imme-
diate transitions ti can be fired in zero time and represent
actions available to a control policy. Our approach essentially
boils down to finding transition firings that optimise some
objective. As explained below, this objective encodes a goal
specification that is expressed in terms of firing rewards and
markings that should be avoided.

Now, consider a team of n robots in an environment
discretised into a navigation graph G = 〈V,E〉, with init(v)
representing the initial number of robots at node v. Assume
that in certain nodes the robots interact with a process
that is not under our control (e.g., a robot collecting the
packages output by a conveyor belt; or a taxi being filled
with passengers). The nodes of the navigation graph are thus
partitioned into V = V i ∪ V e. Nodes in V i represent nodes
where the control policy can decide to trigger a navigation
action. Nodes in V e are nodes where the robots must wait
for the external process to finish.
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Fig. 1. Example of construction of a MR-GSPN. Top: two nodes v and
v′ connected by an edge in a navigation graph; Bottom: The fragment of
the MR-GSPN representing navigation between v and v′, where v ∈ V i.
Note that if v ∈ V e, then both depicted transitions would be exponential.
The depicted marking represents a state where one robot is at v and two
robots are navigating from v to v′.

By splitting navigation between two locations, v and v′,
into two transitions, with the first transition representing the
triggering of the navigation action to move from v to v′ and
the second the expected duration of the navigation action,
we can represent the above as a GSPN. This construction
yields what we call a Multi-robot GSPN (MR-GSPN) and is
illustrated in Fig. 1. The key point is that via GSPNs, we can
represent robots as tokens. We also partition V into V i and
V e. If v ∈ V i, then this transition is immediate and is under
our control. If v ∈ V e, then this transition is exponential,
with a rate representing the expected time a robot will spend
traversing the edge (v, v′). If a control policy chooses not
to fire an immediate transition (or there are no immediate
transitions enabled), a race condition is triggered and one
of the exponential transitions fires, with the probabilities of
firing of each transition being defined by their rates.
Goal Specification. A goal specification is defined in two
parts. First, we define the subset of markings satisfying linear
constraints over the markings of an MR-GSPN. Among
these, we assume there to be a special constraint C1 requiring
that the number of tokens in places representing nodes
for which the robots undergo an external process must
be maintained above a bound b. The transitions removing
tokens from such places are exponential transitions, subject
to an uncontrollable external process with an exponentially
distributed duration. Since we can only fire a finite number
of immediate transitions consecutively (at most equal to the
number of robots) before getting into a marking where no
immediate transition is enabled, race conditions will occur
infinite times in any infinite run of the MR-GSPN. In these
race conditions there is some probability of tokens from
places associating to V e being removed. Thus, it is not
possible to indefinitely keep the MR-GSPN in markings that
satisfy this special constraint. The set of markings in which
this constraint is not satisfied is a set of failure markings.

For the second part of the goal specification, we consider
a transition firing reward rT i : T i → R≥0, representing the
utility of firing certain transitions in the MR-GSPN (e.g.,
ti can represent an AGV starting to move after unloading
goods at a processing station or a bus starting to move
after dropping its passengers at its destination). Our goal
is to find a mapping from all possible markings to T that
maximises the expected cumulative value of rT until a failure
marking is reached. Note that in any infinite run the system
will eventually reach a failure marking, because C1 will



eventually stop being satisfied. This means that we assume
that, regardless of what we do, the system will eventually
fail. Our goal is to gather as much reward as possible before
it does so.

IV. MDPS AS PLANNING MODELS FOR MR-GSPNS

Taking an MA-based semantincs [3], we interpret the
GSPN as an MDP for the purpose of computing policies that
maximize firing reward while adhering to the constraints over
markings. The MDP represents the possible evolutions of the
state of the system: in each state and discrete time step t,
any of the enabled actions at time t can be selected, and the
system evolves to a successor state according to the values
of the MDP’s transition function. States represent possible
markings of the modelled MR-GSPN, and the transition
function captures the possible transitions among them.

We consider deterministic and stationary policies that
maximise the expected cumulative value of a reward struc-
ture. The goal specification over the MR-GSPN is reduced to
the problem of finding policies that maximise an expected
reward until a set of unavoidable states is reached, which
correspond to the failure markings in the MR-GSPN. Fur-
thermore, a reward structure is defined so as to reflect the
triggering reward mentioned above. By first preprocessing
the MDP, replacing transitions from failure states with zero-
reward self-loop transitions, we effectively reduce the prob-
lem to an infinite horizon cumulative reward maximisation
problem, which can be solved with standard techniques such
as value iteration. In the resulting MDP, we can choose an
enabled immediate action to fire. Also, we do not disallow
the firing of exponential transitions in markings where there
are also immediate transitions are enabled. This is because
in certain cases we might want some robots to wait for more
information about the actions being executed by other robots
before committing to a certain decision.

V. SIMULATION-BASED DURATION ESTIMATES

In order to robustly maintain the safety specification, we
require accurate models of the durations of navigation on
the edges of the navigation graph G. Obtaining such models
is challenging as the precise dynamic model of a robot
is often unknown. Moreover, interactions among multiple
robots moving in a shared environment affect durations (e.g.,
robots yielding to, or avoiding each other). Other sources
of uncertainty in the environment further complicate the
computation of duration models. For these reasons, we learn
the durations by observing realistic simulations of the robot
team performing navigation tasks in the target environment.

To explore the range of multi-robot navigation experiences
relevant for the target environment, the robot team must
operate in a way that is as similar to the desired behaviour as
possible. To achieve this we control the team in simulation
using an existing team controller which integrates coordina-
tion, motion planning and low-level robot control [1]. This
controller is specifically designed to support external injec-
tion of navigation choices for robots. Given these choices, the
controller generates multi-robot paths that take into account

Primary 
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Crusher

Unloading Station
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Fig. 2. Evaluation environment. Robots are red, planned paths yellow. The
navigation graph is overlayed with key locations indicated.

the kino-dynamic constraints of individual robots. These
paths are jointly executed and supervised by the controller.
When generating data for learning we use a randomised
policy to provide navigation choices. One simulation run of
approximately one hour per team size provides us sufficient
data for fitting exponential distributions for each transition
of the MR-GSPN. In the experiments described below we
use the same multi-robot controller to execute the policies
produced from our MR-GSPN approach. This ensures both
that the policies are realisable on the robots, and that the
transition models match well to runtime performance.

VI. EVALUATION

We evaluate the quality of the obtained policies given
varying environmental dynamics. Our industrially-motivated
evaluation scenario features a team of autonomous electric
haulers operating in a quarry, moving between stations. At
the unloading station, a hauler can unload gravel obtained
from two crushers. The primary crusher (PC) constantly
produces gravel, which is continuously output via a conveyor
belt. The production of gravel at the PC cannot be stopped
under normal circumstances, hence, there should always be a
robot under the PC so that gravel does not accumulate on the
ground, obstructing access to the PC and halting the entire
process. Also, robots have a limited capacity (4 metric tons of
gravel), and are thus required to leave the PC when full. The
secondary crusher (SC) does not have these constraints, as
the gravel produced there is loaded onto haulers manually.
Thus, for this scenario, the safety constraint is that there
should always be a hauler under the PC, and reward is
obtained when a hauler drives to the unloading station. In
our evaluations we use an instance of this problem shown in
Fig. 2 which matches a real-world quarry.

The purpose of the following evaluation is to measure how
robust the team behaviour is to disturbances affecting nav-
igation duration. We compare team behaviour as regulated
by two policies: a synthesised policy (SP) obtained from our
automated planning approach and a hand-coded policy (HP)
currently used in an industrial setting. The HP prescribes that
a robot should be assigned to the SC if there is at least one
robot queuing behind the robot under the PC.

Note that the HP ignores the durations of navigation tasks,
and is hence not capable of predicting the likelihood of a
robot being able to reach the PC before the robot currently
loading from it leaves. Conversely, the SP is computed
with knowledge of the transition rate models, which are
in turn directly related to the durations of navigation. We



Fig. 3. Success rate for HP and SP for different disturbance profiles, in 8
problems. Legend is of the form < n,PC >.

therefore expect the HP to perform well in terms of reward
(representing tons of dumped material), but to fail to maintain
the team requirement (always one robot under the PC) when
disturbances are applied to the duration of the navigation
actions. Conversely, we expect the SP to be more conserva-
tive in dispatching robots to the SC, as it can consider the
probability of robots taking longer to reach their destinations,
according to the corresponding learnt exponential transitions.
While this should entail less reward than the HP in nominal
situations, we expect the SP to be more robust to higher
disturbances in navigation duration.
Experimental setup. We use the simulation depicted in
Fig. 2. 32 problems of the form 〈n, PC,D〉 are generated,
where n is the number of robots, D is the disturbance profile,
and PC is the number of seconds it takes the PC to fill a
robot. The disturbance profile is a delay in seconds, applied
to a robot as it navigates between any two locations, with
a fixed probability of 0.5. Each policy is run for 15 times
on each problem for 10 minutes each time and less than 10
minutes if there is no robot under the PC.
Results. Fig. 3 shows the success rate for problem categories,
with n ∈ {4, 5}, D ∈ {6, 8, 10, 12}, and PC ∈ {30, 45}.
The rate measures the percentage of the 15 instances of each
problem type in which team constraint was not violated. SPs
are in average 64% more successful than the corresponding
HPs. Also our experiments show that despite the low success
rate of the HPs, the accumulated rewards are similar between
the HPs and the SPs. However, note that if we leave the
system running for more time, the higher robustness of the
SPs allows them to continue accumulating reward, whilst the
runs with HPs will likely halt earlier.

VII. DISCUSSION

We finish with a brief discussion on the problem tackled
in this paper, the assumptions made and advantages of using
MR-GSPNs. We note that the linear constraints must be
satisfied by the team in all states, however they cannot be
held true by only one team member. One typical approach
to address this constraint optimally is to take into account
the joint state of the team, using models such as multi-agent
MDPs (MMDP) [9], in order to plan for replacement of the
robot maintaining the constraint. MMDPs have two main

issues in the context of multi-robot systems. First, there is an
issue with scalability. Even without considering uncertain du-
rations, given a navigation graph with k nodes and n robots,
we need at least nk states in the MMDP. Second, MMDPs
assume fully synchronised action execution. This can lead
to very inefficient team behaviour as robots need to wait for
the team to synchronise at every decision point.We are able
to mitigate some of the scalability issues by exploiting: the
assumption of a homogeneous robot team; the fact that our
objective is not robot specific; and our modelling of robots
as tokens in the GSPN (making robots anonymous).

Finally, by using a GSPN, an event based model, we
bypass the need for synchronisation: triggered immediate
transitions correspond to sending navigation commands to
robots; as they navigate and change state they inform the
control policy and the state is immediately updated by
firing the corresponding exponential transition and updating
state accordingly. This allows for smooth and asynchronous
execution of the policies.
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