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Abstract— In many multi-robot applications it is critical
to maintain connectivity within robotic team to allow for
information exchange and coordination. In presence of possible
failure of robots, the maintained multi-robot network should be
able to stay connected even with a loss of certain robot members
to ensure robustness and resilience of the multi-robot systems.
In this paper, we consider the problem of robust connectivity
maintenance that seeks to maintain k−connectivity such that the
multi-robot network could stay connected with removal of fewer
than k robots. We propose a provably minimum k−connectivity
maintenance algorithm for multi-robot systems. This ensures
the robustness of connectivity network at all time and also
in a flexible and optimal way to provide highest freedom
for robots task-related controllers. Particularly, we propose
a k−Connected Minimum Constraints Subgraph algorithm
that activates the minimum k−connectivity constraints to the
original controllers, and then revise the original controllers in
a minimally invasive fashion. We demonstrate the effectiveness
of our approach via simulations of up to 40 robots in presence
of multiple behaviors.

I. INTRODUCTION AND RELATED WORK

Multi-robot systems have been widely studied for extend-
ing its capability of doing complex tasks through cooper-
ative behaviors in a number of applications. The ability
of collaboration in multi-robot systems often relies on the
local information sharing and interaction among networked
robot members through connected communication graph.
It is necessary to consider connectivity maintenance that
ensures robots stay connected by constraining inter-robot
distance while executing original tasks. On the other hand,
it is critical to consider the robustness of the multi-robot
network as the expected number of robot failures could grow
along with the increasing number of robots.

The problem of connectivity maintenance is particularly
challenging for existing work since (a) the additional con-
nectivity maintenance brings increased complexity for global
connectivity control algorithms [1]–[3] due to the disconti-
nuity from dynamic topology changes as pointed out in [4],
and (b) there are no theoretical guarantee on the optimality
of imposed connectivity constraints, e.g. [5]–[8] nor the
perturbation to the original behavior-prescribed controllers
due to the constraints, e.g. [1], [9]–[11]. Such issues could
lead to overly conservative robots motion and thus behavior
failure, for example, dead locks that might prevent the
desired execution of behaviors, and inefficiency incurred by
the perturbation of connectivity on control outputs between
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different behaviour groups. Hence, it is desired to derive an
approach to maintain minimum satisfying connectivity so as
to provide highest freedom for robots’ original controllers
while ensuring robustness of the multi-robot network.

The objective of this paper is thus to develop provably
optimal algorithms for robust but flexible multi-robot con-
nectivity control, by proposing minimum k−connectivity
maintenance methods that achieve global redundant network
connectivity while enabling the robot team to perform vari-
ous behaviors at best. Note that we are not optimizing multi-
robot task allocation that determines how to assign different
behavior controllers to the robots. We assume the behavior
allocation has been done and each robot already knows
its real-time behavior-prescribed controller before revising
it to accommodate the connectivity and collision avoidance
constraints. We propose to achieve provably optimal robust
connectivity maintenance by developing: 1) a novel quantifi-
able relationship between original behavior-prescribed con-
trollers and the candidate connectivity constraints, 2) a novel
k−Connected Minimum Constraints Subgraph (k−CMCS)
method to activate dynamic quantified minimum connectivity
constraints, which are least violated by the original unrevised
behavior-prescribed controllers, and 3) a unified optimization
framework to revise the robots controllers in presence of ac-
tivated connectivity and collision avoidance constraints that
are minimally invasive to the original behavior-prescribed
controllers. This enables the multi-robot systems to execute
different behaviors simultaneously on a single connected
robot team with required robust connectivity.

II. PROBLEM FORMULATION

Consider a heterogeneous robotic team S consisting of N
mobile robots in a planar space, with the position and single
integrator dynamics of each robot i ∈ {1, . . . , N} denoted
by xi ∈ R2 and ẋi = ui ∈ R2 respectively. Each robot can
connect and communicate directly with other robots within
its spatial proximity. The communication graph of the robotic
team is defined as G = (V, E) where each node v ∈ V
represents a robot. If the spatial distance between robot vi ∈
V and robot vj ∈ V is less or equal to the communication
radius Rc (i.e. ‖xi − xj‖ ≤ Rc), then we assume the two
can communicate and edge (vi, vj) ∈ E is undirected (i.e.
(vi, vj) ∈ E ⇔ (vj , vi) ∈ E).

We assume each robot i has been assigned to a sub-
group with some behavior-prescribed controller ui = ûi. To
ensure successful multi-robot coordination and information
exchange, it is required that the communication/connectivity
graph G is connected. Moreover, in presence of possible
robots failure, the graph should be robust in that the removal



of certain number of robot nodes won’t disconnect the
connectivity graph for the remaining robot team, which leads
to the following definition of k-node connected graph [12].

Definition 1. (k-node connected graph) A connected graph
G = (V, E) is said to be k-node connected (or k-connected)
if it has more than k nodes and remains connected whenever
fewer than k nodes are removed.

Given a desired number of k due to robustness require-
ments on robots failure, assuming the current multi-robot
graph G is already k−connected (for the rest of the paper,
k−connected refer to k−node connected), we would like
to enforce such constraint as robots execute their behavior-
prescribed controllers such that the time-varying connectivity
graph G(t) is k−connected at all time. The inter-robot
collisions and velocity constraint should also be considered.

A. Safety and Connectivity Constraints using Barrier Cer-
tificates

During movements of multi-robot systems, the robots
should avoid collisions with each other to remain safe.
Consider the joint robot states x = {x1, . . . , xN} ∈ R2N and
define the minimum inter-robot safe distance as Rs, for any
pair-wise inter-robot collision avoidance constraint between
robots i and j. We have the following condition defining the
safe set of x.

hsi,j(x) = ‖xi − xj‖
2 −R2

s , ∀i > j

Hs
i,j = {x ∈ R2N : hsi,j(x) ≥ 0}

(1)

The set of Hs
i,j indicates the safety set from which robot

i and j will never collide. For the entire robotic team, the
safety set can be composed as follows.

Hs =
⋂

{vi,vj∈V:i>j}
Hs

i,j (2)

[13] proposed the safety barrier certificates Bs(x) that map
the constrained safety set (2) of x to the admissible joint
control space u ∈ R2N . The result is summarized as follows.

Bs(x) = {u ∈ R2N : ḣsi,j(x) + γhsi,j(x) ≥ 0, ∀i > j} (3)

where γ is a user-defined parameter to confine the available
sets. It is proven in [13] that the forward invariance of
the safety set Hs is ensured as long as the joint control
input u stays in set Bs(x). In other words, the robots will
always stay safe if they are initially inter-robot collision free
and the control input lies in the set Bs(x). Note that at
any time point t with known current robot states x(t), the
constrained control space in (3) corresponds to a class of
linear constraints over pair-wise control inputs ui and uj for
∀i > j. Note that static obstacles may also be modelled in
the same manner if treated as robots with zero velocity.

Next, we consider the pair-wise connectivity constraints
among the robotic team. If the connectivity constraint is
enforced between pair-wise robots i and j to ensure inter-
robot distance not larger than communication range Rc, we
have the following condition.

hci,j(x) = R2
c − ‖xi − xj‖

2

Hc
i,j = {x ∈ R2N : hci,j(x) ≥ 0}

(4)

The set of Hc
i,j indicates the feasible set on x from which

robot i and j will never lose connectivity. Consider any
connectivity graph Gc = (V, Ec) ⊂ G to enforce, the
corresponding constrained set can be composed as follows.

Hc(Gc) =
⋂

{vi,vj∈V:(vi,vj)∈Ec}
Hc

i,j (5)

Similar to the safety barrier certificates in (3), the connectiv-
ity barrier certificates are defined as follows and indicate
another class of linear constraints over pair-wise control
inputs ui and uj for (vi, vj) ∈ Ec at any time point t.

Bc(x,Gc) = {u ∈ R2N : ḣci,j(x)+γh
c
i,j(x) ≥ 0, ∀(vi, vj) ∈ Ec} (6)

B. Objective Function

Consider that a task-related primary behavior control input
ûi has been computed for each robot i before considering the
mentioned constraints. The robotic team needs to determine
whether and how to best modify its primary control input
in a minimally invasive manner so as to achieve task-related
behaviors while ensuring safety and k−connectivity. With
the defined forms of constraints in (3) and (6), we formally
define the minimum k−connectivity maintenance problem as
follows given k.

u∗ = argmin
Gc,u

N∑
i=1

‖ui − ûi‖2 (7)

s.t. Gc = (V, Ec) ⊆ G is k−connected (8)

u ∈ Bs(x)
⋂
Bc(x,Gc), ‖ui‖ ≤ αi,∀i = 1, . . . , N

(9)

The above Quadratic Programming (QP) optimization prob-
lem is to find the optimal active connectivity spanning
subgraph Gc from current connected multi-robot connectivity
graph G and the alternative control inputs u∗ ∈ R2N

bounded by maximum velocity αi for each robot, so that
k−connectivity, safety and velocity constraints described in
(8) and (9) are satisfied while ensuring minimally invasive
to the primary controller as shown in (7).

III. MAINTAINING MINIMUM k−CONNECTIVITY

First we consider the sub-problem of selecting optimal
k−connectivity spanning subgraph Gc∗ = G∗k(V, E∗k ) ⊆ G in
(7) that introduces minimum k−connectivity constraints. As
each edge (vi, vj) ∈ Ec in a candidate graph Gc enforces
one pair-wise linear constraint over primary control inputs
ûi and ûj for robot i and j as shown in (4), the graph Gc
whose edges define the minimum connectivity constraints
must exist among the set of all minimum k−connected
spanning subgraph from current connectivity graph G that
cover all the vertices V with minimum number of k−node
connected edges.

Recall that resultant connectivity constraints due to en-
forced edges are in the form of (6) over the robots’
controllers. Thus, to quantify the strength of connectivity
constraint by an edge (vi, vj) ∈ E , we introduce the weight
assignment defined as follows.

wi,j = ḣci,j(x, ûi, ûj) + γhci,j(x), ∀(vi, vj) ∈ E (10)



Compared to the connectivity constraint in (6), wi,j indicates
the violation of the pair-wise connectivity constraint between
the two robots, with the higher value of wi,j the less
likely the connectivity constraint being violated. To that
end, the present connectivity graph G can be converted
to a weighted connectivity graph Ĝ = (V, E ,W) with
wi,j ∈ W . Given such undirected connected graph Ĝ and
k, we propose the following summarized algorithm that
outputs a weighted min-size k−connected spanning subgraph
Ĝ∗k , which is formally defined as k−Connected Minimum
Constraints Subgraph (k−CMCS).

Algorithm 1 k−Connected Minimum Constraints Subgraph
(k−CMCS)

Input: Ĝ = (V, E ,W), k
Output: Ĝ∗k
1: find a min-size k − 1 edge cover M ← arg min{β|M | −

Σ(vi,vj)∈M{wi,j} : degM (v) ≥ k − 1, ∀v ∈ V,M ⊆ E}
with β >> 2 · Σ∀wi,j∈W |wi,j | as any staisfying user-defined
parameter.

2: find an inclusionwise minimal edge set F ⊆ E \M such that
(V,M ∪ F ) is k−connected

3: return Ĝ∗k ← (V,M ∪ F )

With the Algorithm 1, we have the following theorem re-
garding its known approximation of the derived k−connected
spanning subgraph G∗k .

Theorem 2. Given weighted undirected graph Ĝ =
(V, E ,W) of node connectivity ≥ k. Then the Algorithm
1 finds the k−CMCS Ĝ∗k = (V, E ′k,Wk) such that |E ′k| ≤
(1 + 1

k )|Eopt|, where Eopt denotes the cardinality of the
optimal solution.

Due to limited space we skip the proof here but would
refer to the work [14], [15] for concluding the proof. Hence
Algorithm 1 provides a bounded solution to find a k−CMCS
Ĝ∗k ⊆ G with minimum number of edges that are least restric-
tive and can be used to define active pairwise connectivity
constraints for ensuring k−connectivity.

With the final k−CMCS Ĝ∗k obtained from our Algorithm
1 as the optimal k−connectivity subgraph Gc∗ = Ĝ∗k in (9),
we can specify the safety and connectivity barrier certificates
(3) and (6) to invoke linear constraints and efficiently solve
the original quadratic programming (QP) problem in (7) to
get optimal revised robot controllers satisfying safety and
k−connectivity constraints with minimum invasion to the
original controllers.

IV. RESULTS

To evaluate our proposed k-CMCS method for robust
connectivity maintenance, we designed experiments in sim-
ulation: n = 40 robots divided into m = 3 subgroups
simultaneously performing 3 behaviors such as rendezvous
to goal and circle formation behaviors. As shown in Figure 1
for 2−connectivity requirement (k = 2) with the enforced
connectivity constraints (preserved red edges), taking out no
more than k − 1 = 1 robots will not disconnect the rest

multi-robot connectivity graph. In Figure 1a-c, our k-CMCS
approach is able to generate minimum connectivity graph
(red edges) from the present connectivity graph (grey edges)
so that the invoked connectivity constraints are minimally
invasive to the primary behavior controllers.

In comparison, we present converged results of other
three methods shown in Figure 1d-f: which are i) always
preserving initial connected edges (grey edges in Figure 1a)
with converged result depicted in Figure 1d, ii) preserving
edges in present k-Node Connected Spanning Subgraph (k-
NCSS) [14], [15] that seeks to select minimum number of
edges without consideration of robot motions (result depicted
in Figure 1e), and iii) always preserving edges in initial k-
CMCS (red edges in Figure 1a) without updating (result
shown in Figure 1f). For results in Figure 1d and f, due to the
rigid invoked connectivity graph as the robots move, they can
hardly achieve circle formation and could fall into deadlock
before reaching the target regions. Without considering the
robots’ original controllers, k-NCSS method in Figure 1e
imposes overly constrained edges even if the number of
them are minimum. In contrast, our k-CMCS method selects
minimum number of edges and at the same time ensures
they are most in favor of the robots original controllers,
thus leading to more flexible motions. Numerical results
are also provided in Figure 2 showing our method ensures
safety and robust k−connectivity, while having minimal
control perturbation due to connectivity as compared to other
mentioned methods above.

V. CONCLUSION

In this paper, we considered the problem of minimum
k−connectivity maintenance for flexible multi-robot behav-
iors. In particular, we proposed a k−Connected Minimum
Constraints Subgraph (k−CMCS) algorithm to compute
provably minimum k−connectivity constraints as to the
robots behavior-prescribed controllers. In this way, the robots
controllers will only be revised as necessary in a minimally
invasive manner with dynamic and possibly discontinuous
communication topology. This algorithm enables simultane-
ous behaviors at best while maintaining constraints due to
collision avoidance and required redundant connectivity that
is robust to robots failure.
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