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The design of large groups of simple robots that coordi-
nates through local interactions has attracted great interest
in engineering research and defined the field of swarm
robotics [1]. For most operations, a fundamental ability
is collective decision making, that is, the ability of the
swarm to reach an agreement among all robots [2]. Several
studies proposed alternative solutions, under complementary
assumptions, to the collective decision making problem [1],
[2], [3]. Most problems analysed the decision performance
in terms of speed-accuracy, and took into consideration how
problem paramaters, such as decision difficulty, number of
options, or spatial correlation, had an impact on the system
dynamics. Recently, some attention has been devoted to
studying the resiliency of the swarm to disturbances which
could be either intrinsic properties, such as robots failures
[4], [5], or extrinsic factors, such as malicious attacks [6],
[7], [8], [9], [10], [11]; however, only a few work considered
decision making tasks [12], [13].

In this study we investigate the swarm resiliency in col-
lective decision making, that is, its ability to reach correct
decisions under attacks carried out by malicious robots. We
analysed and quantified the ability of existing methods to
remain operational in the face of attacks. Note that existing
methods do not include strategies to identify and counteract
disturbances and therefore we only measured the resiliency
of each strategy. As resiliency to attacks in collective decision
making has not been extensively investigated, a categori-
sation of attacks and relative dysfunctions is missing. We
made a first endeavour to define and formalise possible
dysfunctions and we proposed three representative attacks
for collective decision making.

This study focused on the best-of-n problem which con-
sists of reaching an agreement in favour of the best quality
option among n alternatives. We identified in the literature
four methods that matched our assumptions on the problem
and the robot’s capabilities (see Sec. I). We computationally
tested the resilience of these methods to three types of attacks
that have been designed to implement three types of dysfunc-
tions, i.e. denial of service, slowdown, and wrong addressing.
Denial of service refers to incapability to make a decision,
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i.e. the swarm remains hung at indecision with split robots’
opinions. Slowdown prolongs the decision time requiring
longer to reach an agreement; extreme slowdown leads to
a denial of service. Finally, wrong addressing consists in
leading the swarm to decide for an inferior-quality option.

To identify what made a method more resilient of another,
we inspected the robots’ behaviour of each method. We
described all the investigated behaviours through a common
structure which consists in a sequence of phases repeated
by every robot each control loop. All behaviours are com-
posed by the same phases with different implementations. A
specific implementation of a phase is what we call module.
Making use of the modularity of the behaviours, we were
able to investigate which module makes behaviours more
resilient to malicious attacks.

We conducted our resiliency tests via computational anal-
ysis using DeMaMAS—a multiagent simulator for com-
parison of decentralised decision making strategies. DeMa-
MAS has been implemented for this study, however, we
designed it to be as generic as possible and allow systematic
comparisons of decentralised decision making strategies. In
DeMaMAS, robots’ behaviours are specified through the
sequencing of reusable unitary modules. Once we identified
the most resilient modules through systematic comparison,
we exploited the flexibility and modularity of DeMaMAS to
quickly compose a novel behaviour comprising those most
resilient modules. The generated behaviour demonstrated the
best performance in most of the investigated cases.

Finally, we validated our findings implementing some of
the investigated methods on physical devices. In particular,
we conducted a set of experiments on a swarm of 50
Kilobot robots [14] under a slow down attack. These tests are
preliminary results as they only investigated a limited set of
conditions. Notwithstanding, they are promising indication
that simulations results can generalise to physical devices
systems.

I. DECISION PROBLEM

We investigate the best-of-n decision problem. We assume
there are n options characterised by a quality qi and a
location pi in a 2D environment, with i ∈ {1, . . . ,n}. The
robot swarm task is to discover the available n options and
select the option with the highest quality. The swarm is
composed of S simple robots; they have no prior knowledge,
minimal memory, and limited sensing and communication
capabilities. In fact, robots start without knowing the number
of options, their qualities, and their locations. A robot can
only store the information (position and quality) about a



single option to which it is committed to, we refer to it
as the robot’s opinion ωa = {pa,qa} with a ∈ {1, . . . ,S}.
Robots can locate an option and estimate its quality only
when it is in its immediate surrounding (range rd). Robots
make noisy individual estimates q̂i of the nominal option’s
quality qi; we assume estimates to be normally distributed
around the correct value, i.e. q̂i = N (qi,σ). Finally robots
can communicate with neighbours within a local range rc and
only exchange the location of the preferred option pa (if any)
without additional information such as estimated quality qa,
commitment confidence, or ad-hoc weighted aggregates. We
assume that a decision is taken when a quorum of Q = 0.8S
robots are committed to the same option.

II. DECISION BEHAVIOURS

As robots start without prior knowledge about environment
nor options, i.e. ωa = { /0, /0}, they explore the environment to
locate and estimate the quality of the available options. Then,
through communication, each robot spreads its opinion ωa
in order to reach an agreement with the rest of the swarm.
A few models addressed the best-of-n problem of Sec. I. To
the best of our knowledge, we identified four representative
types of behaviours. We analysed the characteristics of these
behaviours and decomposed them in a sequence of phases
common to all the models. The four selected behaviours were
• Direct Modulation of Voter-based Decisions (DMVD)

[15]. This behaviour combines the component of
random neighbour selection from the classical voter
model [16], [17] with modulation of communication
proportional to the quality. Each control loop, the robot
selects the opinion of only one randomly selected neigh-
bour. This strategy allows robots to select an option with
probability equal to the proportion of neighbours with
that opinion. Each selected option becomes the agent
opinion, this mechanism is known as direct switch.

• Direct Modulation of Majority-based Decisions
(DMMD) [18], [19]. This behaviour differentiates from
DMVD by selecting the neighbours’ opinion through
the majority-rule [20], [21], [17], [22], [23], i.e. the
agent selects the more frequent option among the
received messages (tie-breaking with random choice).

• Collective Decision through Cross-Inhibition (CDCI)
[24], [25] is a behaviour inspired by the honeybee
house-hunting process [26]. It is similar to the DMVD
and differentiates by letting a robot lose its opinions
if the randomly selected option is different from the
robot’s opinion. Therefore, robots with already their
opinion, i.e. ωa 6= { /0, /0} do not take new options as
their opinion, rather, only robots without an opinion
ωa = { /0, /0} adopt a received option.

• The k-unanimity [27] behaviour differentiates from
DMVD in the way it selects the option from neighbours.
In this behaviour, a robot randomly picks k messages
and selects the option of these k messages if it is
the same among all, otherwise it ignores the social
information. In this study, we considered the case of
k = 3, therefore we refer to this method as 3-unanimity.

From the simulation results, we were able to identify
the most resilient component of the tested behaviours. This
allowed us to design a novel behaviour, Collective Deci-
sion through Majority-based Cross-Inhibition (CDMCI), by
combining these most resilient component. The CDMCI
behaviour combined the DMMD with the CDCI. The robot
selects the neighbours’ opinion through the majority-rule and
updates its opinion through the cross-inhibition mechanism.

A. Three types of malicious robots

We implemented three types of malicious robots to per-
form three types of dysfunctions:
• The contrarians are malicious robots that always oppose

to the majority of the group [28], [29]. Therefore,
the behaviour of a contrarian differentiates from the
DMMD by applying a ‘minority-rule’ [17] by which a
robot selects the less popular option among the received
messages. The contrarian robots lead to a slow down of
the decision process (e.g. see Fig. 1).

• The wishy-washy are malicious robots that keep chang-
ing their opinion every control loop. These robots ignore
any information from the environment and the neigh-
bours and just introduce a sort of noise into the swarm
communications. The wishy-washy robots lead to a de-
nial of service which corresponds to a decision deadlock
in which the swarm is unable to reach the quorum Q.
Increasing the number of options n, the impact of small
proportions of wishy-washy also considerably increases.

• The sect is an organised group of zealots which are
malicious robots that ignore any information from the
environment and the neighbours and keep communicat-
ing a constant opinion for a (possibly) inferior option.
Zealots organised in sects all share the same opinion
and lead to a wrong addressing, i.e. the swarm selects
an inferior quality option (e.g. see Fig. 2).

All attackers do not modulate the probability of communica-
tion proportionally to the option’s quality but send a message
with their (malicious) opinion every timestep.

In opinion dynamics studies, several studies have already
investigated the effect of zealots [30], [31], [32], [33], [34],
[35], [36] and contrarians [28], [29], [37] on decentralised
collective decision. However, these studies investigated de-
cision models in which all options had no quality and the
goal was to select any available option (e.g. the naming game
[38]). On these models, some studies observed that zealots
could speed up the consensus dynamics [39], [40], or having
multiple sects voting for various options caused decision-
deadlocks (i.e. denial of service) [41].

III. EXPERIMENTS

We conducted a large set of simulation experiments for
various experimental conditions through the multiagent sim-
ulator DeMaMAS. We considered the best-of-n case of a
superior option with quality qH and n− 1 distractors with
inferior equal quality qL ≤ qH . We varied the number of
options n ∈ {2,4,6}, the decision difficulty κ = qL/qH ∈
[0.4,1], and the proportion of malicious robots m∈ [0,0.2] in



Fig. 1. Effect of contrarians on the decision dynamics of a swarm of
S = 100 simulated robots with n = 6 options and decision difficulty κ =
qL/qH = 0.8. The points show the average of 100 multiagent simulations.
The top panel shows the slow down effect of contrarians that increase the
decision time. High decision time hinders the accuracy of the swarm (bottom
panel). The most resilient method is the CDMCI (orange dash-dotted line).
Comparing CDCI (gray full line) and DMVD (blue short-dashed line), we
can appreciate a resiliency increase for the method that relies on the cross-
inhibition model rather than the direct switch model. Comparing DMVD
(blue short-dashed line) and DMMD (red dotted line), we can appreciate
a resiliency increase for the method that relies on the majority-rule rather
than the random selection (voter model).

a swarm of S = 100 robots for a maximum time of 10’000
timesteps.

The results showed in most cases the same trend. The
majority-rule performed consistently better than the simple
voter method (random neighbour selection). For instance,
compare the DMVD with the DMMD, or equivalently the
CDCI with the CDMCI, in Fig. 1 and 2. This results can be
justified by a larger use of information of the majority-rule
compared with the minimalistic voter method. Interestingly,
the results also showed the cross-inhibition method more
resilient than the direct-switch method. For instance, com-
pare the CDCI with the DMVD, or equivalently the CDMCI
with the DMMD, in Fig. 1. Both methods use the same
information quantity and computational resources, however
a slight change in the opinion update rule led to a more
resilient behaviour. Further investigations in this direction
may help in understanding the adaptive benefits of this
mechanism that evolved in various natural systems [26], [42],
[43]. Finally, the 3-unanimity behaviour performed poorly in
most cases, except in easy scenarios. As soon the number
of options n or the decision difficulty κ increased, the 3-
unanimity behaviour could not reach the quorum even in
absence of any attack (see Fig. 1). This limitation is due
to the high selectivity of the k-unanimity method which has
been initially designed for binary decision making problems.

We conducted a set of 20 preliminary experiments with
a swarm of 50 Kilobots in binary decision problems (see
Fig. 3). The Kilobot were able to perceive localised options
through the Augmented Reality for Kilobots system [44].
We tested the performances of the swarm with the CDCI
and CDMCI behaviours under no attack and an attack of 5

Fig. 2. Sect attacks cause wrong addressing. Results from 100 simulations
of a swarm of S = 100 robots that includes 5 malicious robots (zealots)
delivering a sect attack. Through the coordinated attack, all 5 zealots favour
the same inferior option. The scenario is for n = 4 options and difficulty
κ = 0.4. The dimer colours bars indicate the swarm proportion of converged
runs to a decision. The brighter colour bars indicate the proportion of runs
that selected the superior quality option. A sect of 5 coordinated zealots is
sufficient to let most behaviour select an much inferior quality option. The
behaviours relying on majority rule (CDMCI and DMMD) are the most
resilient.

Fig. 3. We tested the most resilient methods on a swarm of 50 Kilobots
with 5 contrarians.

contrarians (m = 10% of S). The results were in agreement
with the simulations.
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