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Abstract— Current methods for autonomous management
assume full collaboration between autonomous vehicles, using
a first-come, first-serve (FCFS) ordering to manage incoming
autonomous vehicles at an intersection. In this work, we
present a coordination policy that swaps agent ordering to
increase the system-wide performance while taking into account
communicating and non-communicating vehicles, as well as,
heterogeneous social preferences. By considering an agent’s
Social Value Orientation (SVO), a social psychology metric for
their willingness to help another vehicle, the central coordinator
can enable system-wide optimization across agents will ensuring
that each individual utility increases. The FCFS-SVO algorithm
is both computationally tractable and accounts for a variety of
real-world agent types. In addition, we show that the proportion
of human drivers, as well as, the distribution of pro-social and
egoistic vehicles in the system can have a prominent effect on
the performance of the system.

I. INTRODUCTION
A major challenge in autonomous driving is interacting

with human drivers. For roads with both human and au-
tonomous vehicles, it is important to design autonomous
policies that respect individual preferences and capabilities.
As autonomous vehicles proliferate, we can take advantage
of greater communication and cooperation among vehicles.
Inter-vehicle coordination can reduce congestion and wait
times at intersections. Smarter intersections can improve
optimization and scheduling of vehicles.

This paper considers smart intersection coordination for
both human and autonomous vehicles. We start from a
standard First-Come, First-Served (FCFS) policy that assigns
intersection reservations to vehicles, then locally optimize
based on the social preferences of the vehicles. As vehicles
queue in the intersection, we perform reservation swapping
to improve system performance, but only if it is seen as a
benefit to both individual vehicles. Each vehicle has different
social preferences, which manifests as varying tolerances to
accept delays at the intersection to help others. We leverage
communication with vehicles to determine their intent, but
do not require communication for scheduling.

At intersections, human drivers engage in socially-
compliant behavior, where drivers coordinate their actions
for safe and efficient joint maneuvers. We classify these
interactions as social dilemmas, where the group interests do
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Fig. 1: By considering an agent’s individual social value
orientation, vehicles may swapped to increase intersection
throughput. Initially, Car 2 (blue) is making a left turn
before Car 3 (green). However, since Car 2 is blocked by
Car 1 (black), the assignments swap so Car 3 can move
simultaneously with Car 1.

not necessarily align with the private interests. For example,
at intersections, the group interests are to reduce congestion,
while the individual interests are to reduce personal delays.
We define socially-compliant driving as behavior during
this sequence of social dilemmas that complies with the
social expectations of the group. Our goal is to design
autonomous system policies that conform to the socially-
compliant driving expected by the human drivers while
encouraging cooperation for group-wide improvements.

In this work, we design a central coordinator to assign
reservations and manage traffic through the intersection. The
central coordinator first assigns reservations using FCFS,
then swaps reservations between cars based on their social
preferences, as shown in Figure 1. We model each vehi-
cle’s social preferences through the Social Value Orienta-
tion (SVO), a common metric from social psychology that
measures how individuals weigh personal rewards against
rewards to others. While the SVO concept encompasses a
broad range of social interactions, we focus on a range of
egoistic to pro-social preferences. Here, the SVO intuitively
correlates to how an individual will tolerate an additional
time delay to reduce the wait time of another vehicle. An
egoistic vehicle will not tolerate any swapping that increases
its wait time, while a pro-social car will be more inclined to
take a minor increase in wait time if it improves the overall
system efficiency. For autonomous vehicles, we design the
SVO preference of the vehicle to best interact with the human
drivers. Our results show that both individual wait times and



system-wide average wait times decrease as the percentage
of pro-social cars increase in the system.

A. Related Work

Safe control of multiple autonomous vehicles has been
explored in a number of centralized and decentralized ap-
proaches. If the intent of all vehicles is known, the global
solution is known to be NP-hard and quickly becomes
intractable with large numbers of vehicles. Thus, many ap-
proaches look to find locally-optimal solutions, using control
policies that guarantee safe passage [1], [2], [3], [4], game
theoretic approaches [5], learning-based control methods [6],
and decentralized algorithms [7], [8].

System-wide optimization approaches focus on optimizing
all vehicles simultaneously, as if one collaborative team,
to achieve the system optimum. In [9], [10], the authors
use integer-programming using specific regions of the in-
tersection known as conflict-points to reduce the decision
variables. Importantly, [11] showed that in systems with a
mixture of compliant and selfish vehicles, the system-wide
equilibrium (that of all compliant vehicles) and the user
equilibrium (that achieved of selfish agents) may be very
different from one another. Thus, in considering only the
system-wide delays and not the agent-specific utility, current
optimization methods are at odds with the agent-centered
optimization that occurs by each vehicle in the system.

Market-based approaches coordinate vehicles by allowing
each vehicle to enter an auction for time in the intersection
given some budget. The Intersection Time-Slot Auction
(ITSA) [12] allows agents to bid in the auction based on
their own budget and wait-time. In [13], subsidies allow for
agents within the same lane to pool resources to bid on the
intersection. However, auctions are limited in that they rely
on a fixed budget constraint for each vehicle.

Reservation-based systems often rely on a First-Come,
First-Serve (FCFS) policy that provide a tractable method
for allocating agents safely within an intersection. In [14],
the authors introduce a tile-based reservation (TBR) policy
which discretizes the intersection into tiles so the intersec-
tion coordinator can reserve portions of the intersection for
vehicles as they arrive. While these methods perform best in
systems with only connected vehicles, [15] accounted for the
uncertainty in human intentions by reserving all trajectories
in the intersection. Alternatively, [16] propose a priority-
preserving control law that ensures even human drivers only
enter the intersection according to their FCFS ordering. A
common result in these approaches is that human drivers
lead to large inefficiencies in the system, compared to the au-
tonomous vehicles which can share the intersection. A major
drawback of current reservation-based systems is that they
rely on a simple FCFS policy for ordering the vehicles. While
FCFS provides a tractable solution to an otherwise NP-Hard
scheduling problem, [17] highlights major limitations in the
system’s ability to effectively coordinate vehicles.

Individualistic

Prosocial
AltruisticMartyr

Masochistic

Sadomasochistic

Sadistic
Competitive

Reward to self

R
ew

ar
d 

to
 o

th
er

Fig. 2: The Social Value Orientation represented as an
angular preference θ that relates how individuals weight
rewards in a social dilemma. Experimental data from [18]
has been added to represent individual preferences.

II. PROBLEM FORMULATION

We consider a four-way intersection through which
human-driven and autonomous vehicles traverse. A con-
trol coordinator negotiates reservations for each vehicle,
based on their arrival lane and if known, desired path
through the intersection. We denote the vehicles vi for i =
{1, ...,nv} total vehicles, with state xi and intention ai ∈
{ LEFT, RIGHT, STRAIGHT, UNKNOWN }.

A. Social Value Orientation

In a social dilemma game, the reward for an individual
agent is often at odds with the reward of the other agents.
Similarly, in our setting the wait time of one agent is at
odds with the wait time of another agent. We can enable
a more collaborative coordination of vehicles if a more
nuanced view on agent-specific utility function is considered.
As such, a key insight of this paper is that an agent’s utility
function is not only a function of their own wait time but
depending on the agent’s personality it also shows an interest
in the wait times of other agents in the system. We use
the Social Value Orientation (SVO), a common metric from
social psychology [19], [20], to quantify heterogeneity in
human personalities. The SVO indicates how an individual
weights personal rewards against rewards to others. The
corresponding mapping shown in Fig. 2, relates the reward
to self against the reward to other in a social dilemma game.
This tendency to consider the wait time of other vehicles in
the group can thus be categorized using SVO in the ego-
vehicle’s utility function ui which now includes the other
agent’s reward

ui = Ri cosθi +R j sinθi. (1)

Here θi is the SVO angle of agent i, a representation of agent
i’s amount of consideration for the other agents’ rewards
R j. Note from (1) that an agent i’s utility is a function of
its own SVO and the rewards of everyone in the system.
While θi can take any value, in a cooperative setting such as
traffic assignment, realistic values of θi will be in the range
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θi ∈ [0,π/4], where the extreme behaviors correspond to an
individualist (θi = 0) and pro-social (θi = π/4).

III. SVO-BASED RESERVATION SWAPS

A. Pairwise SVO Swapping

A main limitation of TBR methods is that the reserva-
tions are required to follow the FCFS queue ordering. Our
approach, FCFS-SVO, allows the coordinator to consider
pairwise swapping of two sequential agents within the queue.
More specifically, if agent vi is located at position p within
the queue and agent v j is located at position p + 1 (im-
mediately afterwards), then the coordinator may consider
swapping positions and reserving v j first. Implicit in this
procedure is that agent vi is willing to forgo its earlier
position in the queue. Since agents can readily observe (and
are aware) of the FCFS ordering of agents, a socially “fair”
swap must ensure that both agents benefit from such a
swap. The realization that each agent has their own Social
Value Orientation allows the coordinator to swap the agents.
Theoretically, the coordinator could consider every possible
re-ordering of agents within the queue, however, to maintain
a tractable solution (similar to that of FCFS), we limit swap
to single, sequential swaps through the queue.

First, the coordinator reserves the intersection with FCFS,
assigning agent vi its reservation rp

i before assigning v j its
reservation rp+1

j . From the initial assignments, the coordina-
tor computes the utility in (1) of each agent based on their
SVO and wait times,

ui =−tw,i cosθi− tw, j sinθi,

u j =−tw, j cosθ j− tw,i sinθ j.

Here, we define the reward for each agent Ri as the inverse
of the wait time of each agent, −tw,i. The coordinator then
computes the reservations r̂p+1

i and r̂p
j as if the queue

order was swapped, and then determines the corresponding
utilities,

û j =−t̂w, j cosθ j− t̂w,i sinθ j,

ûi =−t̂w,i cosθi− t̂w, j sinθi,

where ûi, û j are the utilities of agents i and j when the order
of reservations are swapped, and t̂w,i, t̂w, j are the respective
wait time in the swapped configurations. If both agents’
SVO-utilities are higher after the swap

ûi > ui

û j > u j,
(2)

then the order is swapped. Equation (2) becomes the decision
equation to determine the ordering of agents vi and v j.

IV. RESULTS

A. Effect of SVO on Vehicle Wait Time

The performance of FCFS-SVO is directly impacted by
the distribution of SVO personalities within the system.
Figure 3 compares the wait time distributions when we vary
the SVO distributions in the group, compared to a strict FCFS
baseline. In Figure 3, simulations with all ego vehicles lead

to less improvement compared to all pro-social or even a mix
of SVO personalities. The mean wait times corresponding to
Figure 3 are recorded in Table I. The wait time in the system
is calculated as the time from when the vehicle enters the
system to when the vehicle passes through the intersection.
This wait time includes any time the vehicle spends in its
lane queue waiting for preceding vehicles. As we increase the
percentage of pro-social agents in the system, the mean wait
time decreases. Furthermore, we notice the overall variation
in wait times is reduced, seemingly creating a more equitable
distribution of delays across the system.

Figure 4 illustrates the distribution of changes in individ-
ual wait time categorized by their SVO preference. While
egoistic agents benefit more, the distributions show that pro-
social agents are not greatly disadvantaged by this system.

TABLE I: Mean Wait Times for Vehicles

Policy tw
FCFS 5.25 s

All Egoistic 4.94 s
Mixed SVO 4.43 s

All Pro-social 4.07 s

B. Effect of Human Drivers

Figure 5 shows how the average wait time across vehicles
is affected by the total number of humans. As the number of
human drivers increases, the average wait time also increases,
as human drivers do not communicate their intent and must
reserve the entire intersection. We also note that for all cases,
increasing the total number of pro-social vehicles reduces the
average wait times across the system.

In Figure 6, we look at the number of swaps that occur
throughout the simulation. We notice that for all egoistic
drivers, the fraction of vehicles that swap reservations is quite
small, and the fraction of swaps increases as the fraction of
pro-social vehicles increases. The fraction of swaps stays
relatively consistent across the number of human drivers
in the system, until there are more human drivers than
autonomous vehicles.

Figure 7 shows the difference in wait times for human
and autonomous vehicles using FCFS-SVO, with all SVO
preferences set to pro-social. This scenario appears to benefit
the autonomous vehicles more than the human vehicles, with
a greater number of the autonomous vehicles reducing their
time delay. Since human drivers reserve the full intersection,
while autonomous vehicles only reserve their intended path,
swapping tends to favor the autonomous vehicle.

V. CONCLUSIONS

In this work, we present a centralized coordination al-
gorithm that can plan for multiple levels of cooperation,
from fully autonomous vehicles to human vehicles with
limited communication, ensuring that any optimization does
not come at a cost to social utility of each agent. We
leverage SVO preferences among vehicles to enable socially-
compliant navigation through the intersection while improv-
ing system performance.
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(a) Strict FCFS (b) All Egoistic (c) Mixed SVO (d) All Pro-social

Fig. 3: Vehicle wait times for different SVO distributions. When all agents are egoistic, marginal improvement occurs over
FCFS. Wait time reduction occurs as agents become increasingly pro-social, with the minimal wait time occuring when all
agents are pro-social.

Fig. 4: Changes in wait time change compared to FCFS for
different Social Value Orientation preferences.

Fig. 5: Average vehicle wait time at the intersection for
varying amount of human drivers in the system. All three
types of SVO-swapping see improvement over the FCFS
policy, with the largest decrease of delays occurring when
all agents are pro-social.

Fig. 6: Fraction of swaps executed by the central coordinator
during FCFS-SVO. Since egoistic agents only swap when it
incurs zero delays, very few swaps occur. In mixed SVO and
pro-social settings, swaps occur 20%-40% reservations.

Fig. 7: Histogram of wait time change compared to FCFS in
simulations where all agents are pro-social. Swapping leads
to increased delays in human drivers, allowing for more
efficient autonomous vehicles to enter the intersection first
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