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Abstract— Multi-robot teams are useful in large-scale dan-
gerous missions, and human-supervision is needed for critical
decision making. Humans inherently lack in processing speed
and power, and are prone to making mistakes, especially at
stressful scenarios. We present an alert generation framework
for humans to overcome these problems, and assign tasks better
to improve resiliency. We demonstrate that our framework,
based our state machine simulation and formal methods, can do
probabilistic estimation on unfavorable events happening in the
mission. We have introduced smart simulation for improving
computationally efficiency compared to Monte-Carlo method.
Moreover, for some cases, our inference-based method can
provide guarantee on contingencies.

I. INTRODUCTION

Multi-robot teams have great promise in dull, dirty, and
dangerous applications, such as military applications and
disaster-relief (DR) and humanitarian-assistance (HA) op-
erations. Despite the ever-increasing capability of robotic
systems, we believe human supervision will always be
necessary because of diverse expertise, adaptive decision-
making, the potential for synergy [1], and most importantly
for critical decision-making in situations involving human
lives and safety. HA/DR missions are extremely complex,
and there is a large amount of uncertainty in the availability
and efficiency of agents [2] due to the size and unstruc-
tured characteristics of the operational environment, limited
communication, and the possibility of system and task-level
failure. The dynamic conditions and intermittent data flow
require the agents, including humans, to constantly adapt
with the latest information. Human efficiency can decrease,
especially in overly fatiguing and stressful situations of
HA/DR missions. Humans are prone to making mistakes,
and they have limited computational capability, and relatively
large response time.

Alerts can help to prevent human-introduced inefficiencies
and expedite decision-making, and thus improve resiliency.
We already have alert systems deployed in a number of tech-
nologies for our every-day tasks, e.g., ‘grammarly’ software
to prevent errors in our write-ups, lane departure warning
and parking assistance systems to prevent vehicular accidents
on roads. Likewise, an intelligent alert system can also
provide great benefit to human-robot teams in safety-critical
challenging applications. Researchers have already investi-
gated the human factor concerns associated with supervisory
control of multi-robot systems [3] and there exists several
different alert-generating architectures and interfaces such
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as alert systems used by NASA [4]. There have also been
several systems designed specifically for human-robot teams
in the HA/DR context [5], which are purely reactive, and
a notification is provided to the human once an undesirable
event has occurred. A more relevant work is the predictive
conventional interface and predictive virtual reality interface
designs [6], where the risk and relevance of a robot per-
forming some task are predicted. In this work, we also seek
a proactive approach to providing alerts; however, our focus
is on the generation of alerts for erroneous and inefficient,
human-issued task assignments.

An alert system for multi-agent systems cannot simply rely
on sensors and comprehensive observations unlike many alert
systems available for our everyday tasks. It requires inference
and probabilistic model estimation to account for the inherent
uncertainty in mission operations. It also has to be flexible
about the types of alerts offered, so that it can be tailored to
the human preferences and mission needs. Thus, timely alerts
can be generated in a meaningful way so that agents can take
the necessary, corrective actions. In this work, we propose a
novel, alert-generation framework that overcomes these chal-
lenges to improve resiliency of multi-agent teaming. We use
probabilistic temporal logic to express human-specified alert
conditions based on their preferences and requirements. We
present an inference engine that compares the conditions with
probabilistic outcomes from state machine-based simulations
of the mission, and generate alerts as needed. We introduce
smart simulation to provide computational efficient means to
make good probabilistic estimates, and an inference-based
technique to provide guarantees.

II. PROBLEM FORMULATION

We consider a generic HA/DR mission in a very large
environment, where a human-supervised team of robots is to
be deployed. The robots may need to efficiently explore the
affected regions, collect important information, and perform
specified tasks. As the robot team navigates through the
environment there is a nonzero probability of operational
failure, which could be a result of spatial factors, system
or subsystem failures or other stochastic events. Limited
communication range (between two robots, and between
humans and a robot), and the large scale nature of the
operation cause huge delay in humans receiving information
from the robots. We encode these typical challenges and
characteristics of a generic HA/DR operation in our specific
mission (described in Section III-A) in order to present and
test our proposed alert generation framework.

Our framework takes the following as the inputs: (i)
human-issued commands to the robots, (ii) estimated system



models, and (iii) latest mission information. The framework
also requires a list of mission-relevant alert conditions,
specified by humans. Using the mission model, it determines
whether a particular alert condition may hold True, given
the most recent information. The goal is to estimate the like-
lihood of unfavorable events in a computationally efficient
manner and generate alerts to the human supervisors.

III. OVERVIEW OF APPROACH

A. Background

We assume, human supervisors provide high level instruc-
tions to each robot before deployment, and the robot carries
out the operation. Then eventually, the robot returns to the
humans to share information and receive new commands.
Typical tasks for robots in a HA/DR mission include navi-
gation, exploration, observation and information collection,
identification of objects-of-interests, interact with environ-
ments/objects, collaborative tasks, which we abstract away
using some basic tasks like navigation, exploration, halting,
and rendezvous. For example, rendezvous typically stands
for a pre-scheduled meeting between robots, however it can
also be the first step of a pre-scheduled collaborative task.
In order to improve resiliency in a mission where robotic
failures are inevitable, robots need to attempt some rescues
on temporarily-disabled robots to maximize performance.
Any functional robot aware of a disabled robot can provide
assistance to it for its revival, which we call a rescue attempt
[2]. This rescue operation comes with its own risks, and it has
stochastic outcomes. We also include relay task for robots
which can be used to send one robot to another robot on
field, and change the second robot’s instruction-set. Since
one of the focuses of this work is to provide alerts for future
contingencies, this relay task can be particularly to useful
for humans to execute new strategies in order to mitigate
the adverse effects of potential contingencies indicated by
generated alerts.

B. System Architecture

Fig. 1: Block diagram of the proposed alert-generation
framework. The grey slanted rectacles are data blocks and
blue rectangles are processing components of the system.

Since we are looking at large-scale challenging missions,
the robots can be tasked for a long time, with a complex
instruction-set with conditionals. First, The instruction-set
given to each robot is converted to a task transition model
as shown in Figure 2, and we use it to model each robot’s

behavior as a state machine. Whenever any robot returns
to a human with new information, they provide state infor-
mation of other robot teammates encountered in the field.
We assume there are some estimated models of different
stochastic parameters within the entire system. Using these
models, the latest state information, and the state machine
models of the robots, a series of simulations of the entire
system are performed. Each simulation run is a collection
of parallel, but inter-dependent, state machine simulations
for all robots in the field. The results from simulations give
probabilistic estimates on feasible outcomes in the mission.
To do this, we perform simulation with intelligent sampling
to minimize number of simulations needed to achieve a good
probability estimation. Adaptive sampling is particularly
important because the system may never be able to detect
a low-probable critical situation with a limited number of
simulations if simulations are done purely using Monte-
Carlo method. Simultaneously, humans define their preferred
list of unwanted situations that they feel are important to
detect. These contingency conditions are then expressed
as mathematical propositions. Our framework provides an
inference engine that utilizes the results from the simulations,
and finds Truth values for the user-specified alert conditions
to issue alerts. This alert can be based on probabilistic
estimates from the simulations (Section III-D), or it can
provide guarantees on particular situations happening with
100% certainty (Section III-E). The proposed framework is
represented in the block diagram in Figure 1.

C. Specification of Alert Conditions

We have identified some exemplary alert-triggering sce-
narios that may be useful or relevant, and have outlined
the mathematical expressions for detection of these situa-
tions. We use different parameters and functions in order
to formulate the conditions in a probabilistic temporal logic
framework. Humans in a real-world mission might want dif-
ferent alerts for many new situations. Probabilistic temporal
logic used here is a powerful language to mathematically
express many kinds of complex conditions. Humans are
free to choose different alert conditions from a potential list
relevant to each mission, or craft their own conditions based
on their preferences.

In our proposed framework, we use Metric Temporal
Logic (MTL) specifications to detect certain characteristic
within each mission simulation. Let Ψ be a set of atomic
propositions, crafted from the aforementioned items rele-
vant to the mission threads, and the MTL formulae are
built from Ψ using Boolean connectives (and ∧, or ∨,
not ¬), propositions >(True) and ⊥ (False), and time-
constrained or -unconstrained versions of temporal opera-
tors (eventually ♦, always�, next©, until U). A time-
constrained temporal operator is ΓI , where Γ ∈ {♦,�,U},
and time interval I ⊆ (0,∞), while the unconstrained
version is Γ ≡ Γ(0,∞). P∼pth

Φ indicates that the probability
of Φ being True is ∼ pth, where, ∼∈ {<,≤, >,≥,=},
0 ≤ pth ≤ 1, and Φ is an MTL formula.

Example of some situations that human supervisors might



Fig. 2: An example of the language decomposition offered by our proposed framework. English instructions provided by
the human (a) are converted to pseudocode (b) that is used to generate a task transition model (c). Here, each AoI (area-
of-insterest) is a specific region, and the rectangles in (c) are task names along with its arguments in the brackets.

want to get alerted about are (1) wasted time due to os-
cillatory states, (2) improbable rendezvous, (3) improbable
or redundant rescue attempts, (4) navigation through risky
region, (5) redundant exploration, (6) excessive travel time
for rendezvous or rescue etc. In our work, we have specified
condition corresponding to the detection of each above-
mentioned situation, and its mathematical expression in
MTL. Here, we are providing a simple case for improbable
rendezvous where an alert is issued if there is a high proba-
bility (≥ pth) of robot Ri and Rj never being together at the
pre-scheduled rendezvous location X between time (t1, t2).
MTL expression of this condition is P≥pth

[♦(t1,t2) ¬ (LRi
=

X ∧ LRj
= X))], where LRk

is the instantaneous location
of any robot Rk.

D. Using Simulation to Issue Alerts

We use discrete-time high level simulations of the mission
to issue alerts. Each simulation uses the system model along
with the latest information. It generates data on a single
way the system can progress throughout the mission, out
of infinitely many possibilities. We perform a number of
simulations, and see what percentage of the simulations have
a specific unwanted situation occurring. In stead of only
relying on Monte Carlo runs, we do adaptive sampling. This
means we simulate some missions with carefully-selected
failure-modes (or contingencies) which can potentially in-
fluence occurrence of the adverse situation to be detected
by the system. This can significantly reduces the number of
simulations required to detect all possible adverse situations.
Then we use the probability of those failure-modes (from
estimated model of the system), along with estimated proba-
bility of certain alert condition given those failures occurring
(from simulations with adaptive sampling), in order to get
the overall estimated probability of certain alert condition
to hold True. Human supervisors specify each condition

they want to detect, along with a corresponding probability
threshold. If the estimated probability meets the thresholding
specification, the interface for humans shows an alert to
notify them about the possibility of contingency.

The system model includes the robots’ instructions along
with the estimated models on stochastic parameters. Each
task in the task transition model of a robot (Figure 2) is split
into multiple states and their corresponding transitions. These
individual state machines are dependent on each other and
the environment. While staying within a state, a robot keeps
performing some low-level actions, which affect itself (it’s
location, health, etc.), others, and the environment. At the
start of the simulation, each state machine, i.e., robot model,
needs to be properly initiated with appropriate state, history
and other information corresponding to the latest update time
for that robot. Then forward simulation is done on the entire
system to assess probability of potential events in the past
or future.

E. Using Inferences to Issue Alerts

The estimated probability of alert-triggering situations,
calculated from simulations, might produce a poor repre-
sentation of the real scenario. As the uncertainty and size
of the system increase, the required number of simulations
even with adaptive sampling can be very large. Also, it
is difficult to build an adequate model of the stochastic
parameters in the mission. Therefore, we attempt to perform
quick inferences using only the non-stochastic parts of the
system, (i.e., instruction-sets of the robots and maximum
navigation speed) instead of using simulations to detect
certain contingencies with significantly-higher confidence.
For a complicated mission, it might not be always possible;
nevertheless, it can produce useful results in some cases.
Preliminary simulation-based results can aid in automated



identification of the cases where this approach might be
effective to provide guarantee.

Many of the alert conditions that we have mentioned refer
to the probability of the system (or its agents) reaching a
certain state within a time range. If an alert condition can be
modeled in this way, and the simulation-based testing shows
absolutely zero probability, this inference-based approach is
attempted. This method firstly converts the state transition
model of each robot into a directed graph without the transi-
tion conditions. Using a graph search algorithms to conduct
reachability tests, and considering some simple Boolean
literals, this approach can provide the humans with a much
stronger assessment of an alert condition. In fact, in these
cases it can guarantee absolute certainty. It may appear as
though confirming reachability for an individual agent may
be sufficient in this inference. However, HA/DR missions are
actually much more challenging. For example, rescue and
relay can complicate the inference process because they can
make a disabled robot functional again and can change the
state transition model of a robot by issuing a new instruction-
set respectively.

Assume, we want to prove that robot Ri can not reach
state Sf and location Lf by time Tf . In our research, we
have found several conditions for providing guarantee for
it. Here, we are providing two example conditions in the
case of Ri being functioning; (1) Sf is not reachable from
Ri’s current state, and no functioning robot will attempt a
rescue on any disabled robot, and not relay new instruction
to Ri; (2) Ri’s earliest possible arrival time (based on
robot’s maximum navigation speed and euclidean distances)
to destination location Lf is later than time Tf .

IV. PRELIMINARY RESULTS AND CONCLUSIONS

We have tested several alert conditions in our python-
based custom simulator for some mission scenarios. We use
estimated models for parameters related to failures, and high
level task progress of the robots.

Let robot Ri be currently on the field, with the instruction-
set described in Figure 2. For improbable rendezvous alert,
let’s assume we want to check the likelihood of event-
A, which represents the case where “Ri does not reach
rendezvous location Lr in time”. There are several ways
event-A may happen, but we only present selected cases as
examples here. We carefully sample specific failure-modes
which can affect the occurrence of event-A. As shown in
the task transition diagram, rescue is a higher priority task,
which can take over if there is a disabled robot nearby.
Clearly, if a robot is found disabled near Ri’s location during
(or close to) its scheduled travel towards rendezvous, it can
deviate for attempting a rescue, and eventually not have
enough time to make it to rendezvous. For simplicity of the
example, we are not describing other avenues like robotic
failures from making rescue attempts. If the probability of
robotic failure at a particular time instance is not very large,
other robots’ disability cases might not occur in a large
fraction of simulations in Monte-Carlo method. Therefore,
we do adaptive sampling where we specifically consider

cases in which other robots get disabled at different locations
and times (based on their models), and we estimate the
probability of Ri missing rendezvous from simulations, given
those failures. These conditional probabilities along with
the probability models of robotic failures give the overall
probability of event-A.

We also demonstrate that disability of a random robot can
have impact on Ri’s probability to rendezvous, and this effect
is dependent on both the location and time components. If a
disabled robot is never near Ri’s location or it is found long
before rendezvous or after rendezvous, this disability does
not affect Ri’s rendezvous. In our testing scenario we have
found, if humans receive new information on one disabled
robot in the environment, the estimated probability (from
simulations) of event-A gets different values between 0 −
0.41, depending on the combination of location and time.
Realistically, this complex inferring can not be done easily
or efficiently by human commanders themselves during a
real operation.

Our alert generation framework shows promise in detect-
ing different adverse scenarios and provide alerts. These
alerts, when provided in a meaningful way, can assist in
preventing human errors, and improving decision-making of
humans supervising a multi-robot team in large challenging
missions.
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