
IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 1

Factory Calibration Fingerprinting of Sensors
Jiexin Zhang, Alastair R. Beresford, and Ian Sheret

Abstract—Device fingerprinting aims to generate a distinctive
signature, or fingerprint, that uniquely identifies individual com-
puting devices. Fingerprints may be a privacy concern since
apps and websites can use them to track user activity online.
To protect user privacy, both Android and iOS have included a
variety of measures to prevent such tracking. In this paper we
present a new type of fingerprinting, factory calibration finger-
printing, that bypasses existing tracking protection. Our attack
recovers embedded per-device factory calibration data from the
accelerometer, gyroscope, and magnetometer sensors that are
pervasive in modern smartphones by careful analysis of the
sensor output alone. We discuss the factory calibration behaviour
of each sensor and show that the calibration fingerprint is fast
to generate, does not change over time or after a factory reset,
and can be used to track users across apps and websites without
any special permission from the user. We find the calibration
fingerprint is very likely to be globally unique for iOS devices,
with an estimated 67 bits of entropy for the iPhone 6S. In
addition, we have analysed 146 Android device models from 11
vendors and found the attack also works on recent Google Pixel
devices. For Pixel 4/4 XL, we estimate the calibration fingerprint
provides about 57 bits of entropy. Following our disclosures,
Apple deployed a mitigation in iOS 12.2 and Google in Android
11. We analyse Apple’s fix and show that the mitigation is
imperfect although it is likely to be sufficient in most threat
models.

I. INTRODUCTION

When users visit a website, their web browser provides a
range of information to the website, including the name and
version of the browser, screen size, fonts installed, and so on.
Ostensibly, this information allows the website to provide a
great user experience. Unfortunately, this same information
can also be used to track users. In particular, this information
can be used to generate a distinctive signature, or device
fingerprint, to identify users. Similarly, mobile app developers
can also generate a device fingerprint using the idiosyncrasies
of software and hardware.

Realising the potential risk to user privacy, both iOS and
Android have included measures to prevent such tracking. On
iOS, developers do not have access to the UDID (Unique
Device IDentifier), IMEI (International Mobile Equipment
Identity), and MAC address of hardware modules after iOS
7. Similar restrictions are also deployed on Android O; de-
velopers cannot get access non-resettable unique hardware
identifiers even if users grant the app dangerous permissions
such as the READ_PHONE_STATE permission. While it is still
possible to track users by the advertising identifier on both
iOS and Android, this method comes with several drawbacks.
First, both platforms allow users to reset this identifier at

J. Zhang and A. Beresford are with the Department of Computer Science
and Technology, University of Cambridge, Cambridge, UK (email: {jz448,
arb33}@cl.cam.ac.uk).

I. Sheret is with Polymath Insight Limited, Stevenage, UK (email:
ian.sheret@polymathinsight.co.uk).

any time and iOS also provides an option to limit access to
this identifier. Moreover, apps requesting this identifier but do
not serve any in-app advertisements will be rejected by the
App Store. Last but not least, the advertising identifier is not
accessible from mobile browsers. Similarly, although Android
still allows apps to access the ANDROID_ID, it cannot be
obtained from a website and its value is scoped by the signing
key and user since Android 8. Different apps on a device will
have different values of ANDROID_ID and a factory reset
or an APK signing key change may also change its value [1].
Thus, it cannot be used to track users across apps and websites.

We have developed a new type of fingerprinting attack,
the factory calibration fingerprinting attack, which can by-
pass these restrictions. Modern mobile devices are shipped
with a variety of embedded motion sensors that apps rely
on to provide rich functionality, including workout tracking,
and improved user interaction. Natural variation during the
manufacture of embedded sensors means that the output of
each sensor is unique and therefore such natural variation may
be exploited to create a device fingerprint.

Previous work applies machine learning techniques directly
to sensor data in an attempt to create device fingerprints for
smartphones; this has been shown to be ineffective (§VII).
In our attack, instead of feeding sensor outputs into machine
learning algorithms, we infer the per-device factory calibration
data from the output of gyroscope, accelerometer, and mag-
netometer to construct a globally unique fingerprint. Overall,
our attack has the following advantages:

Practical the attack can be launched by any website or
any app on a vulnerable device without requiring
explicit confirmation or interaction by the user.

Efficient the attack takes less than one second to generate
a fingerprint.

Unique the attack generates a globally unique fingerprint
for vulnerable devices.

Robust the calibration fingerprint never changes, even
after a factory reset.

Effective the attack provides an effective means to track
users as they browse across the web and move
between apps on their device.

In our previous research we have focused mostly on iOS
devices and demonstrated its effectiveness on gyroscope and
magnetometer data available in iOS [2]. This paper extends our
previous work: we present our latest findings on accelerometer
calibration on iOS devices (§III-E); we conduct a large-scale
factory calibration behaviour analysis on popular Android
device models (§III-F); we compare the calibration fingerprint
with the Fingerprintjs2 fingerprint for Google Pixel phones
(§IV-B); we analyse the calibration fingerprint for vulnerable
Pixel devices and estimate entropy for each model (§V-B).

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 2

We followed a coordinated disclosure procedure and re-
ported the vulnerability to Apple on 3rd August 2018 and
Google on 10th December 2018. In iOS 12.2, Apple adopted
our suggestion and added random noise to sensor outputs
(CVE-2019-8541) while Google decided to round sensor out-
puts to a multiple of nominal gain in Android 11. In addition,
Apple removed access to motion sensors from Mobile Safari
by default and in later versions also removed motion sensor
access from WebKit. However, in this paper we show that
Apple’s fix is imperfect since a calibration fingerprint can still
be extracted if more sensor data is available (§VI).

We make the following contributions in this paper:
1) We introduce a new method of fingerprinting a device:

the factory calibration fingerprinting attack.
2) We describe how factory calibration data can be ex-

tracted from the accelerometer, magnetometer, and gy-
roscope found on recent smartphones.

3) We demonstrate that the factory calibration data of the
magnetometer and gyroscope together form a reliable
fingerprint for iOS devices that does not change after
factory reset or operating system updates.

4) We collect motion sensor data from 870 iOS devices and
show that our approach can generate a globally unique
identifier; we show that the calibration fingerprint of the
iPhone 6S has about 67 bits of entropy.

5) We implement our approach as an iOS app and find the
approach is lightweight and efficient: data collection and
processing typically takes less than one second in total.

6) We conduct a large-scale analysis on motion sensor
calibration in 146 Android device models from 11
vendors. We find that all Google Pixel phones except
for Pixel 1/1 XL can be fingerprinted by our attack; we
show that the calibration fingerprint of the Pixel 4/4 XL
has about 57 bits of entropy.

7) We analyse Apple’s fix and show that it is imperfect:
with ~50K samples the exact fingerprint can be ex-
tracted.

II. BACKGROUND

Motion sensors used in modern smartphones, including the
accelerometer, gyroscope, and magnetometer, are based on
MEMS (Micro-Electro-Mechanical Systems) technology and
use microfabrication to emulate the mechanical parts. The
accelerometer and gyroscope measure the proper acceleration
and rotation speed of a device in each of the axes, respec-
tively, while the magnetometer measures the Earth’s magnetic
field relative to the device. These sensors are pervasive in
modern mobile devices. Although MEMS technology has
greatly reduced the size and cost of motion sensors, MEMS
sensors are usually less accurate than their optical counterparts
due to various types of error. In general, these errors can
be categorised as deterministic and random: random errors
are usually caused by electronic noise interfering with the
output of sensors, which change over time and have to
be modelled stochastically; deterministic errors are produced
by manufacturing imperfections and can be classified into
three categories: bias, scaling factor, and nonorthogonality
misalignment errors [3], [4].

Calibration aims to identify and remove the deterministic
errors from the sensor. Many commercial sensors are fac-
tory calibrated and their calibration parameters are stored in
firmware or non-volatile memory, providing accurate measure-
ments off the shelf [5]. In the context of mobile devices, the
main benefit of per-device calibration is that it allows more
accurate attitude estimation [6]. By contrast, sensors embedded
in low-cost smartphones are usually poorly calibrated due to
the high cost and complexity of factory calibration [7]. For an
individual manufacturer, the choice of sensor calibration is,
therefore, an engineering trade-off.

MEMS sensors usually convert and store the analogue
measurement in a digital register through an Analogue-to-
Digital Converter (ADC) module. For a triaxial motion sensor,
let A = [Ax, Ay, Az]

T be the sensor ADC output. Considering
all three kinds of deterministic errors, the output of the motion
sensor can be represented by the following equation [8]:OxOy

Oz

 =

Sx 0 0
0 Sy 0
0 0 Sz

 1 Nxy Nxz
Nyx 1 Nyz
Nzx Nzy 1

Ax +Bx
Ay +By
Az +Bz

 (1)

Here, Si ∈ S is the scale factor; Nij ∈ N represents the
nonorthogonality between axis i and j; and Bi ∈ B is the bias.
A sensor’s sensitivity, or gain, is defined as the ratio between
the output signal and measured property. A sensor’s nominal
gain is the intended operating sensitivity of the sensor. It is a
single value that is usually documented in the sensor datasheet.
We use F to denote a sensor’s nominal gain in this paper.
If a sensor is ideal, its scale matrix S and nonorthogonality
matrix N should be F · I and I, respectively, where I is an
identity matrix. However, due to the existence of errors, the
scale factors can be as large as 2% of the nominal gain [9].
The above equation can be further simplified as:

O = G(A + B) (2)

where G = SN is referred to as the gain matrix.
A myriad of calibration techniques has been proposed to

calculate the gain matrix and bias vector during manufac-
ture [3]. Vendors can also choose to only calibrate the bias
vector to lower the cost. Once factory calibration is finished,
the calibration parameters of the sensor will be stored in non-
volatile memory inside the device and should not change over
time [10], [11]. Details of the calibration process used by
manufacturers are not made public.

III. ATTACK METHOD

The goal of the adversary in this paper is to obtain a reliable
fingerprint from the built-in motion sensors of a smartphone.
Our threat model is as follows. We assume an adversary is
able to record motion sensor samples from a smartphone. The
attacker can do this if the user installs an app, or visits a
website (currently accelerometer and gyroscope only), under
the control of the attacker. Furthermore, we assume that
the software embedded in the app or web page is able to
communicate with a remote server under the control of the
attacker; this is typically the case for both apps and web pages.
We first look at the gyroscope in iOS devices; the calibration
fingerprinting for other sensors and devices is discussed later.

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 3

ɠ�
'DWD�&ROOHFWLRQ�

ɡ�
'DWD�3UHSURFHVVLQJ

ɢ
$'&�9DOXH�(VWLPDWLRQ

ɣ
*DLQ�0DWUL[�(VWLPDWLRQ

ɤ
9DOLGLW\�&KHFN

Failed

ɥ
)LQJHUSULQW�*HQHUDWLRQ

Pass
ΔA G~~

Update G~

Fig. 1: General steps to recover the device calibration fingerprint

TABLE I: Estimated gyroscope nominal gain for iOS devices

Model Nominal Gain
(mdps)

iPhone 5S∗/6/6 Plus/6S/6S Plus/7/7 Plus/8/8 Plus/SE
61iPhone X/XS/XS Max

iPad Pro 9.7/10.5/12 inch

iPhone 4/4S/5/5C/5S∗, 70iPad 3/Mini/Mini 4/Mini Retina/Air/Air 2
∗ iPhone 5S devices have two possible nominal gain values.

A. Gyroscope Calibration on iOS devices

We have found that the gain matrix of the gyroscope in iOS
devices is factory calibrated and further estimated the nominal
gain for different device models based on the gyroscope
outputs [2]. In particular, Table I lists the nominal gain (in
mdps, millidegrees per second) of the gyroscope for all the
iOS devices that we have measured. The estimated nominal
gain of 61 mdps indicates that the sensor is likely configured
to a measurement range of ±2 000 dps and resolution of 16
bits (4 000/216 ≈ 0.061). Furthermore, we have found that
the fractional part of motion sensor outputs in iOS only has
16-bit resolution. There are a few possible reasons for this,
but the simplest is that the value in the gain matrix G is
stored as a signed integer with a resolution of 2−16 degrees
per second (dps). After investigation, we find that every device
that uses an M-series motion coprocessor, which was released
by Apple in September 2013 with the iPhone 5S, shows this
pattern. The purpose of the motion coprocessor is to offload
the collection and processing of sensor data from the CPU.
However, for older devices such as iPhone 4 and iPhone 4S,
gain matrix values are stored with more precision and the
calibration involves truncation down to 2−16 dps after the gain
is applied. The complete set of devices that use the M-series
motion coprocessor can be found online.1

B. Fingerprinting from Mobile Apps

In general, manufacturing imperfections introduce idiosyn-
crasies across different sensors. If factory calibration is carried
out on a per-device basis, then the calibration matrices may
also be unique. Therefore, the gain matrix G may be used as
a robust device fingerprint.

The general process to recover the device calibration finger-
print is illustrated in Fig. 1, which consists of six major steps:

1https://en.wikipedia.org/wiki/Apple_motion_coprocessors

Data Collection, Data Preprocessing, ADC Value Estimation,
Gain Matrix Estimation, Validity Check, and Fingerprint Gen-
eration.

Data Collection. We collect a small number of samples
from the gyroscope through a mobile app at the maximum
sampling frequency. Empirically, we find 100 samples col-
lected in less than 1 second is sufficient. We use O =
[O1,O2, · · · ,ON] to denote the collected data, where Oi =
[Oix , Oiy , Oiz]T is a 3-by-1 vector.

Data Preprocessing. After collecting the data, we calculate
∆O by differencing the consecutive outputs for all three axes.
In other words, ∆O is calculated by the following equation:

∆O = [O2 −O1,O3 −O2, · · · ,ON −ON−1]

Then, we select only a subset of the data, ∆Oεi , where the
absolute value of all its elements is lower than a multiplication
of the nominal gain:

∆Oεi = {∆Oj ∈ ∆O | max(|∆Oj |) < (εi + 0.5)FG}

where εi is the threshold. We start εi from 1 and double its
value for each iteration (i.e., εi+1 = 2εi) until the subset covers
the whole dataset (e.g., ∆Oεi = ∆O). In each iteration, we
feed ∆Oεi to the next step and update the value of G̃.

ADC Value Estimation. In this step, we aim to recover
∆Aεi , which is the difference between consecutive ADC
outputs. From Equation 2 we have:

∆Aεi = G−1∆Oεi

where G−1 is the inverse of the gain matrix G. However,
the value of G is unknown at the moment. Nevertheless, we
can estimate G by its ideal value G0 = FG · I, where FG is
the nominal gain of the gyroscope. That is to say, we have
G̃ = G0 in the first iteration, where G̃ is the estimated gain
matrix. Deterministic errors are comparatively small, and thus
G should be relatively close to G0. Since ∆Aεi only has
integer values, we can estimate ∆Aεi by:

∆̃Aεi = round(G̃−1∆Oεi)

where the round(·) function rounds each element to the
nearest integer. However, since G0 is not equal to G, the
rounded value ∆̃Aεi may not be the true value. Therefore, we
calculate the rounding error Er ∈ R3×(N−1) by:

Er = |∆̃Aεi − G̃−1∆Oεi |

To ensure the estimated values are correct, we require that
every value in Er

k, which means the k-th column in Er,

https://en.wikipedia.org/wiki/Apple_motion_coprocessors

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 4

be lower than a threshold Γ (e.g., 0.1). If not, we believe
the rounding is ambiguous and thus remove both ∆̃Aεi

k

and ∆Oεi
k from the dataset. Once all ambiguous values are

removed, ∆̃Aεi can be regarded as a safe estimate of ∆Aεi .
Nevertheless, if the device is moving rapidly (e.g., vigorous
shaking), rounding errors could be accumulated and cause
rounding to an incorrect integer value (i.e., ∆̃Aεi 6= ∆Aεi).

Gain Matrix Estimation. After estimating the ADC value
matrix ∆̃Aεi , we can update the gain matrix estimate by:

G̃ = arg min
G

∥∥∥G∆̃Aεi −∆Oεi
∥∥∥2
2

where ‖·‖22 is the squared Euclidean 2-norm function. Or in
words, we use the least squares solution to G∆̃Aεi = ∆Oεi

as the gain matrix estimate.
After each update of G̃, we check if we have processed all

the output data. If so, we will pass the estimated G̃ to the
Validity Check process. Otherwise, the algorithm will go back
to the Data Preprocessing stage with an updated G̃, and a
new range of data will be processed with εi+1 = 2εi.

By way of an example, here is the G̃ that we estimated
from an iPhone XS in the units of 2−16 dps: 4012.000000000001 −35.999999999999318 −10.999999999999677

11.000000000000174 4030.999999999999 21.999999999999631
−3.999999999999980 −25.000000000000011 4016.000000000000

These numbers are extremely close to whole integers,

indicating that the gain matrix is stored in the units of 2−16

dps. In fact, we found that all iOS devices with an M-series
coprocessor store the gain matrix this way. For these devices,
we can simply round G̃ to obtain the true gain matrix G.

Validity Check. To quantify the deviation between G̃ and
the true value of G, we define the estimation error Ee ∈ R3×1

as follows:

Ee =

∥∥∥∆O− G̃∆̃A
∥∥∥
2

N − 1

If the estimation error is small (i.e., max(Ee) < Θ), then G̃
should be close to the true gain matrix G. Otherwise, it means
the ADC value estimation is incorrect, which is likely a result
of vigorous movement during the data collection. In this case,
we need to collect another batch of data and repeat the steps.

Fingerprint Generation. The generation of the gyroscope
calibration fingerprint, GYROID, can be categorised into two
groups based on whether the device has an M-series copro-
cessor. If the device does have an M-series coprocessor, the
GYROID is defined as follows:

GYROID = round(G̃) − round(G0) (3)

where both G̃ and G0 are in the units of 2−16 dps. Or in
words, the GYROID is the gain matrix G after subtracting the
nominal gain in units of 2−16 dps. For instance, the GYROID
of the iPhone XS in the previous example is:

GYROID =

 14 −36 −11
11 33 22
−4 −25 18

 (4)

−0.4

−0.2

0.0

0.2

0.4

0 100 200 300 400 500
Sequence

G
yr

os
co

pe
 O

ut
pu

t (
de

g/
s)

Axis x y z

(a) Fused gyroscope data

−0.4

−0.2

0.0

0.2

0.4

0 100 200 300 400 500
Sequence

D
iff

er
en

ce
 b

et
w

ee
n

G
yr

os
co

pe
 O

ut
pu

ts
 (

de
g/

s)

Axis x y z

(b) After differencing

Fig. 2: Gyroscope data collected via JavaScript (iPad Air)

When the device does not contain an M-series coprocessor,
the GYROID is calculated by:

GYROID = G̃ − round(G0)

because values in the gain matrix are not simply integers in
the units of 2−16 dps in this case.

Summary. In this section we present the general idea and
procedure to generate a calibration fingerprint. Overall, the
calculations are light-weight and are easy to implement. The
attack works well under normal device interaction (e.g., device
is resting on a desk or held in hand when browsing a webpage);
it typically requires only 100 data samples that can be collected
in less than 1 second to generate the GYROID (§IV). If
the device is moving vigorously when collecting data, our
approach will detect fast movement, as the Validity Check will
fail, and keep trying until the movement is reduced. This attack
is therefore practical since people rarely shake their device
continuously and vigorously for extended periods.

C. Fingerprinting from Mobile Websites

JavaScript also provides APIs for web developers to access
the fused gyroscope data. In this paper, we state the sensor data
is fused if its value is a result of applying a time-varying bias
correction to the raw sensor data. In practice, it is common to
use a Kalman filter to combine, or fuse, the accelerometer and
gyroscope inputs to calculate the corrected bias values. Fig. 2
(a) presents the 500 sequential gyroscope samples collected
from an iPad Air through mobile Safari when the device is
at rest on a desk. As shown in Fig. 2 (a), quantisation in the
fused data is still visible because the gyroscope ADC outputs
are integers. However, there is a slowly varying continuous
component added to the bias due to the bias correction. Fig. 2
(b) shows that the bias part can be nearly eliminated by
subtracting consecutive samples. Therefore, we can apply the
same technique described in §III-B to recover the gain matrix.

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 5

D. Practical Calibration Fingerprinting Attacks

To launch a calibration fingerprinting attack, an adversary
can collect gyroscope samples from any device using an app
written by the attacker or that visits any website under the
attacker’s control. The attacker can then generate a device
fingerprint (e.g., GYROID) from the samples and store it in
a database. Then, the adversary can query the database to
determine when a particular physical device uses a particular
app or visits a particular website. The details of the generation
and query of the GYROID in the database differ depending on
the collecting source (app or web) and device model.

Specifically, for apps running on a device with an M-series
motion coprocessor, they can follow the steps in §III-B to
recover the exact GYROID. Otherwise, if the device does not
have a motion coprocessor (e.g., iPhone 4/4S/5) or adversaries
only have access to fused gyroscope data (e.g., via JavaScript),
there are two options to determine whether two GYROID
entries in the database represent the same physical device.
• Option 1 (Clustering): adversaries can directly use the

estimated gain matrix G̃ as the GYROID and store it in a
database. For every new device with the same model, they
can calculate its G̃ and compare the Euclidean distance
between its G̃ and the ones in the databases. If they are
close, then adversaries know they came from the same
device (the entropy of G is discussed in §V-A).

• Option 2 (Rounding): adversaries can still use Equation 3
to generate the GYROID. However, the estimated GY-
ROID may deviate from the true one by at most ±1 for
each of the 9 values. Therefore, adversaries can store the
estimated GYROID and perform a fuzzy query (i.e. accept
a ±1 fluctuation for each element). Note that this option
provides less entropy compared with Option 1.

E. Fingerprinting Other Motion Sensors

Magnetometer. We found that the magnetometer in iOS
devices can also be fingerprinted. Similar to the gyroscope, the
raw readings from the magnetometer only have a resolution
of 2−16 µT (microtesla). After subtracting consecutive raw
magnetometer measurements for every device model in our
dataset, we observed four types of pattern:
• Type I (different sensitivity, negligible fluctuation): Type

I devices have a slightly different sensitivity for each axis.
• Type II (fixed sensitivity, moderate fluctuation): Type II

devices have the same sensitivity for every axis but there
is a moderate fluctuation within each cluster.

• Type III (different sensitivity, moderate fluctuation): Type
III devices have a slightly different sensitivity for each
axis and there is a moderate fluctuation within each
cluster; the quantisation of the data is evident in this case.

• Type IV (different sensitivity, intense fluctuation): Type
IV devices show an intense fluctuation on the magne-
tometer output. In this case, the quantisation of the data
is not as evident as in other cases.

We summarise the magnetometer type of different iOS
device models and their estimated nominal gain in Table II.
Overall, the observation of the four patterns reveals the dif-
ferent underlying calibration procedures. For all four types of

TABLE II: Magnetometer type of different iOS device models

Type Model Nominal Gain (µT)

Type I iPhone 4S/5/5C/5S/6/6 Plus 0.35/0.28/0.17∗All iPad models

Type II iPhone 6S/6S Plus/7/7 Plus/SE 0.075

Type III iPhone 8/8 Plus 0.075

Type IV iPhone X/XS/XS Max 0.075
∗ Type I devices have three possible nominal gain values.

iPhone 4S iPhone 5

0 500 1000 1500 2000 0 500 1000 1500 2000

−0.002

0.000

0.002

Sequence
D

iff
er

en
ce

 b
et

w
ee

n
A

cc
el

er
om

et
er

 O
ut

pu
ts

 (
g)

Axis x y z

Fig. 3: Comparison between iPhone 4 and 5 (Accelerometer)

devices, we can use the same approach described in §III-B to
obtain the magnetometer fingerprint (i.e., MAGID). Although
the gain matrix of the magnetometer is not stored at 2−16 µT
resolution, adversaries can use the same techniques discussed
in §III-D to launch an attack by either clustering or rounding.
Compared with the gyroscope, the raw magnetometer data is
not currently accessible in major browsers. Nevertheless, the
MAGID provides additional entropy to the GYROID. Thus,
we can combine them as a finer-grained fingerprint when
analysing apps.

Accelerometer. We observed a similar quantisation pattern
for the accelerometer in older generations of iOS devices,
including the iPhone 4S and iPad Mini. For example, Fig. 3
shows the consecutive differences between 2 000 accelerome-
ter outputs from an iPhone 4S. The quantisation is clear and
thus we can apply the same approach described in §III-B to
recover the accelerometer fingerprint. Note that these devices
do not use an Apple motion coprocessor, and thus adversaries
would need to use techniques described in §III-D to launch
the attack. For newer versions of iOS devices, such as the
iPhone 5 also shown in Fig. 3, Apple uses a higher-resolution
accelerometer that conceals the quantisation in outputs. Our
attack currently does not directly apply to these devices.

In this paper, we define the SENSORID as a combination
of distinctive sensor calibration fingerprints. In the case of
iOS devices, the SENSORID includes both the GYROID and
MAGID. For older versions of iOS devices (e.g., iPhone 4S
and iPad Mini), the SENSORID also includes the accelerom-
eter fingerprint (i.e., ACCID).

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 6

Pixel 3 Pixel 4 XL

0 500 1000 1500 2000 0 500 1000 1500 2000
0.03

0.04

0.05

0.06

Sequence

D
iff

er
en

ce
 b

et
w

ee
n

A
cc

el
er

om
et

er
 O

ut
pu

ts
 (

m
s

−2
)

Axis x y z

Fig. 4: Comparison between Pixel 3 and 4 XL (Accelerometer)

F. Fingerprinting Android devices

To study whether Android devices are susceptible to similar
fingerprinting attacks, we used four automated testing plat-
forms to collect data from 146 Android device models from
11 vendors: BQ, Google, HTC, Huawei, LG, Motorola, Nokia,
OnePlus, Samsung, Sony, and Xiaomi (§IV-B). Among all the
Android devices we have tested, we found that all Google
Pixel phones, other than the Pixel 1/1 XL, can be fingerprinted
by our approach; we did not observe per-device calibration
behaviour on the Pixel C tablet. In addition, we noticed that
the calibration process applied to motion sensors varies across
device models. In particular, we found the full gain matrix
of both the accelerometer and gyroscope in Google Pixel 4
and 4 XL are per-device calibrated, while only the leading
diagonal of the gain matrix for the accelerometer is calibrated
in other Pixel devices.

Fig. 4 shows the consecutive difference between 2 000 ac-
celerometer outputs collected from a Pixel 3 and a Pixel 4 XL
when they were at rest on a desk. The quantisation in the
accelerometer outputs is clear in both cases. In addition, the
figure suggests that only the scale matrix of the accelerometer
is calibrated in Pixel 3 (i.e., only main-diagonal elements in the
gain matrix are calibrated); the same pattern is also observed
in Pixel 2/2 XL/3 XL/3a/3a XL. Fig. 4 also suggests that all
9 values in the gain matrix are calibrated in the Pixel 4 XL;
the same pattern is also observed in the Pixel 4. Apart from
the accelerometer, the gyroscope in Google Pixel 4 and 4 XL
is also per-device calibrated.

In addition to Pixel devices, we have noticed that the
accelerometer in Huawei Honor 20 Lite, MediaPad M3 Lite
10, and MediaPad T3 10 and the gyroscope in BQ Aquaris
X2 have different sensitivity in each axis. However, we only
have one device for each of these models and thus cannot
confirm whether they are per-device calibrated. So far we
have tested 321 unique devices (146 unique device models);
we did not observe per-device calibration behaviour on any
other Android device models we tested. We therefore focus
on Google Pixel devices in the rest of the paper. The choice

TABLE III: SENSORID composition

SENSORID Device Model

ACCID iPhone 4S, iPad Mini
Pixel 2/2 XL/3/3 XL/3a/3a XL/4/4 XL

GYROID iOS devices, Pixel 4/4 XL

MAGID iOS devices

of factory calibration is up to individual manufacturers.
For vulnerable Google Pixel phones, we can extract the

SENSORID from both an Android app and a website running
on an Android browser. In the case of Google Pixel 4 and
4 XL, the SENSORID includes both the ACCID and GYROID.
For other Pixel models excluding Pixel 1, the SENSORID only
includes the ACCID. In summary, Table III lists all device
models whose SENSORID includes the ACCID, GYROID, and
MAGID, respectively.

IV. EVALUATION

A. Fingerprinting iOS Devices

We developed both a website and an iOS app to collect
sensor data. The iOS app collects raw data from the motion
sensors (accelerometer, gyroscope, and magnetometer) at 200
Hz and does not ask users to put the device in any particular
position. The app also embeds a WebView; the embedded
WebView and the separate website both collect fused ac-
celerometer and gyroscope data via JavaScript.

For both the app and the website, we use the Finger-
printjs2 [12] library in the default configuration to generate
a browser fingerprint for evaluation purposes. In addition to
volunteers, we recruited participants from Amazon Mechanical
Turk2 and Prolific3 to download the app and contribute sensor
data. The public data collection exercise has been approved by
the ethics committee of the Department of Computer Science
and Technology at the University of Cambridge.

To date, the SENSORID app has collected data from 795
unique iOS devices; 761 of them contain an M-series motion
coprocessor. In addition, the website has collected fused data
from another 75 devices. Some users chose to participate in
this study multiple times. Thus, there might be more than
one record for each unique device. On both the app and the
website, we ask users to tell us whether they have submitted
the data from this device before.

Using the raw gyroscope data collected from the 761 iOS
devices with an M-series coprocessor, we are able to recover
the exact GYROID. For the other 34 devices that do not contain
an M-series coprocessor, we use the rounding option in §III-D
to generate the GYROID due to the small sample size. Based
on the GYROID, we successfully identify multiple records that
are submitted by the same device. This is confirmed by user-
supplied data about whether they have submitted samples from
this device before and the device IP address when they submit.
The GYROID of each device is distinct.

2https://www.mturk.com
3https://prolific.ac

https://www.mturk.com
https://prolific.ac

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 7

TABLE IV: Comparison of iOS device fingerprints

Devices Fingerprint Group Size # Groups

870

GYROID 1 870

Fingerprintjs2
1 391

2–36 96
45 1

795

MAGID 1 775
2 10

Fingerprintjs2
1 308

2–36 97
45 1

10
ACCID 1 10

Fingerprintjs2 1 8
2 1

Since the website only collects fused gyroscope data, we
choose the rounding option in §III-D to generate the GYROID.
Then, we compare it with the GYROID of the 795 devices
that we recovered from the raw data. As a result, we identify
3 devices submitted through both the website and the app.
The app also collects fused sensor data from the built-in
WebView. For this data, we use the clustering approach to
generate a group of gain matrix estimates. Then, we apply
the Multivariate ANalysis Of VAriance (MANOVA) technique
to analyse these estimates and successfully identify all 795
unique devices in the dataset. In particular, we also identify
6 devices that submitted multiple times through the app. The
results are the same as we obtained from the raw data.

In addition, we apply the improved approach to fingerprint
the magnetometer with the rounding option. After generating
the MAGID, we group devices by their MAGID and present
the results in Table IV. In the table, the group size records
the number of different devices sharing the same MAGID.
Therefore, a group of size 1 means the device has a unique
MAGID in our dataset. We find that the 10 groups of size
2 are all old device models with a Type I magnetometer,
indicating they have a higher chance of collision on MAGID
than others. The reason is that the entropy of the MAGID for
Type I devices is only provided by the scale matrix (i.e., main-
diagonal elements in MAGID). Nevertheless, the MAGID is
orthogonal to the GYROID, and thus, they can be combined
together to provide additional entropy.

Similar to the analysis of data collected from the built-in
WebView, we use the clustering option in §III-D to analyse
the accelerometer fingerprint and apply MANOVA to identify
unique devices. As discussed in §III-E, our attack only applies
to the older generations of iOS devices. In our dataset, that
includes 9 iPhone 4S devices and an iPad 3. We apply our
attack on these 10 devices and find that all of them have a
unique ACCID. It is likely that other iOS devices prior to
iPhone 4S can also be attacked by our approach, but we do
not have data from these devices to confirm it.

Finally, we compare the GYROID, MAGID, ACCID with
the default configuration of Fingerprintjs2, which utilises font
detection, canvas, WebGL, etc to fingerprint devices. Table IV
presents the results and demonstrates GYROID, MAGID,
and ACCID provide more entropy than traditional browser
fingerprinting techniques. While GYROID is unique for every

TABLE V: Comparison of Pixel device fingerprints

Device Model Fingerprint Group Size # Groups

Pixel 2/2 XL

ACCID 1 46

Fingerprintjs2

1 17
2 4
4 1
5 2
7 1

Pixel 3/3 XL
&

Pixel 3a/3a XL

ACCID 1 61

Fingerprintjs2

1 25
2 8
3 5
5 1

Pixel 4/4 XL

ACCID 1 45
GYROID 1 45

Fingerprintjs2

1 10
2 1
9 1

10 1
14 1

device in our dataset, 45 out of 135 iPhone 7 devices have
the same Fingerprintjs2 fingerprint; these 45 devices are all
from the UK. In the case of ACCID, it identifies all 10 unique
devices, while Fingerprintjs2 generates the same fingerprint
for two iPhone 4S devices; both devices are from Germany.
The results indicate that the Fingerprintjs2 fingerprint may be
correlated with a particular handset configuration.

We have also developed a proof of concept app for iOS
devices with an M-series motion coprocessor. The app imple-
ments our attack to generate the GYROID of the test device.
The code is written in Swift 4.1 with XCode 9.4.1. The app
collects 100 raw gyroscope samples and attempts to generate
the GYROID. If it fails (due to intense shaking of the phone)
the app automatically collects another 100 raw samples and
repeats the process. Overall, it takes about 0.5 seconds to
collect 100 gyroscope samples and another 0.01 seconds to
generate the GYROID. Vigorous movement during extraction
may require additional samples, but the task nevertheless
completes within a few hundred samples and takes a few
seconds. In any case, the generated GYROID always stays
the same. A proof-of-concept webpage and demo videos can
be found on our website: https://sensorid.cl.cam.ac.uk.

B. Fingerprinting Google Pixel devices

In general, it is difficult to find many people with a Pixel
device via crowdsourcing platforms due to the relatively small
market share. Nevertheless, we found most online app testing
platforms provide access to Pixel devices. Therefore, we
developed an Android app to collect raw motion sensor data
and send it back to our server. In a method similar to the one
used in our iOS app, our app also embeds a WebView that
collect web sensor data via JavaScript as well as a fingerprint
generated by Fingerprintjs2. In addition, the app records the
ANDROID_ID that is unique to each combination of the app-
signing key, user, and device to identify unique devices in our
dataset.

https://sensorid.cl.cam.ac.uk

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 8

During our experiment, we deployed the Android app on
AWS Device Farm4, Firebase Test Lab5, App Centre6, and
Sauce Labs7 to collect data from various Android device
models. Since we only found per-device calibration on Pixel
phones other than the Pixel 1/1 XL, we focus our analysis on
these devices. By the end, we have collected data from 152
unique Pixel devices.

Using the raw accelerometer data, we generate the ACCID
for each device and use clustering to determine whether two
devices have the same ACCID. We compare the results with
Fingerprintjs2 in Table V. For Pixel 4 and 4 XL devices,
we also calculate their GyroID and compared it with other
fingerprints. As shown in the table, both ACCID and GYROID
uniquely identify every Pixel device while multiple devices
have the same fingerprint generated by Fingerprintjs2. In
particular, 14 out of 45 Pixel 4/4 XL devices have the same
Fingerprintjs2 fingerprint. This is likely because the embedded
WebView with default configuration does not expose many
distinctive characteristics when two devices are running the
same Android version. The fingerprint is likely to have more
entropy if Fingerprintjs2 is running in an Android browser.
Nevertheless, unlike SENSORID, which is a hardware iden-
tifier, Fingerprintjs2 cannot track users as they move across
Android browsers.

In addition, we have tried to generate the SENSORID for
each device using the web sensor data collected via JavaScript
in the embedded WebView. We then differentiate devices based
on their SENSORID, generated from the web data, using
clustering. We successfully identified all unique Pixel devices
by their ACCID. For Pixel 4 and 4 XL phones, we were also
able to identify every individual device by their GYROID.

V. DISCUSSION

In this section, we discuss some possible concerns regarding
the validity of this research.

A. Is SENSORID unique for iOS devices?

To study how unique is SENSORID, we first study the
GYROID of all iOS devices with an estimated nominal gain
of 61 mdps. Device models included in this category can be
found in Table I. We choose this category for two reasons.
First, all device models in this category are modern devices
which contain an M-series motion coprocessor and this makes
it possible to extract their exact gain matrix. Second, devices
with different default gain may have a different GYROID
distribution, so we select the larger size group, which contains
693 devices in total. For simplicity, we denote the GYROID
as D ∈ Z3×3 in the following analysis.

Normality Analysis. To test for normality, we applied
both the Kolmogorov-Smirnov test and the Shapiro-Wilk test
of normality for each element in D. Results show that the
non-diagonal elements in D have strong normality, while
elements in the main diagonal (D11, D22, D33) are rejected

4https://aws.amazon.com/device-farm
5https://firebase.google.com/docs/test-lab
6https://appcentre.ms
7https://saucelabs.com

by both tests at the 0.05 significance level. The result suggests
that we may need a finer-grained analysis for the main-
diagonal elements. When we run a normality test on data from
each device model separately we find that the main-diagonal
elements also show strong normality.

Correlation Analysis. To test for correlation, we run the
Pearson correlation test on each Dij and find that D12 and
D13 are strongly correlated with D21 and D31 at the 0.01
significance level, respectively. Therefore, we exclude D21 and
D31 from our entropy calculation to avoid over-estimation.

Entropy Calculation. We first calculate the entropy of
non-diagonal elements in D, excluding D21 and D31. For
each non-diagonal element, we estimate the parameters of
the normal distribution, including the mean µ and standard
deviation σ, from the dataset. Technically, it is not a strict
normal distribution since each element can only be an integer.
Nevertheless, it is a result of rounding, and thus we can still
use the normal distribution to estimate the entropy.

In general, the entropy of a discrete random variable X ,
which is denoted as H(X), can be calculated by:

H(X) = −
∑
xi∈X

P(xi) log2 P(xi) (5)

where P(xi) is the probability of X being equal to xi. In
our case, we regard the element Dij as the variable X . Then,
we have xi ∈ {−65535, . . . , 65535} because of the 16-bit
resolution. Suppose X ∼ N (µ, σ2) with the density function
f(x), then we can calculate P(xi) as follows:

P(xi) =

∫ xi+0.5

xi−0.5
f(x) dx, if xi ∈ (−65535, 65535)∫ −65534.5

−∞
f(x) dx, if xi = −65535∫ +∞

65534.5

f(x) dx, if xi = 65535

(6)

By this equation, we calculate the entropy of D12, D13,
D23, and D32. For main-diagonal elements (i.e., D11, D22,
and D33), we calculate their entropy on a per device type basis.
Here, we use the iPhone 6S as an example to calculate the
GYROID entropy because it is the most popular device model
in our dataset (127 devices). For these iPhone 6S devices, we
adopt a similar approach and apply both Equation 5 and 6 to
calculate the entropy. As a result, we estimate the GYROID
for iPhone 6S has about 42 bits of entropy.

By the same analysis, we estimate the entropy of the
MAGID for iPhone 6S. If adversaries launch the attack using
the rounding option (§III-D), each element could have ±1
uncertainty. In this case, we estimate that the MAGID contains
about 25 bits of entropy. The MAGID should have more
entropy if adversaries choose the clustering option. Since we
only have 10 old-generation iOS devices that have an ACCID,
we do not include ACCID into the SENSORID entropy calcula-
tion. We observe no evidence of strong correlation between the
MAGID and GYROID. Therefore, we estimate the SENSORID
for iPhone 6S has around 67 bits of entropy.

Uniqueness Analysis. There were 728M active iPhones
worldwide in April 2017 and the iPhone 6S devices accounted
for 18% of them [13]. Therefore, there were around 131M

https://aws.amazon.com/device-farm
https://firebase.google.com/docs/test-lab
https://appcentre.ms
https://saucelabs.com

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 9

iPhone 6S devices. From the birthday problem, we know that
the chance of two iPhone 6S devices having the same SEN-
SORID is around 0.0058%, suggesting it is a globally unique
device fingerprint. In addition, the SENSORID is orthogonal
to other fingerprinting techniques. Therefore, adversaries can
combine the SENSORID with other metadata (e.g., system
language) or other fingerprinting techniques (e.g., canvas fin-
gerprinting) to further increase the fingerprint entropy.

Limitations. Results from both the Kolmogorov-Smirnov
and Shapiro-Wilk normality tests suggest that values in D are
consistent with a normal distribution, but it is possible that
the actual distribution is not normally distributed in the tail
regions. For example, manufacturers may discard sensors that
have an extreme value in the gain matrix; this would reduce the
available entropy. We therefore need to consider whether non-
normal distributions might invalidate our entropy calculations.

Firstly, it is worth mentioning that this kind of rejection
policy is unlikely in practice; one of the key benefits of factory
calibration is that sensors with anomalous physical gains will
still perform well when calibrated. More importantly, the
calculation of entropy is dominated by the core shape of the
distribution, where we have abundant data. Non-Gaussianity
may affect the tails of the distribution, but this would have a
negligible effect on the calculated entropy. To give a concrete
example: we found all values in D fall inside the range
(µ−4σ, µ+4σ). If we make the assumption that values outside
this range are discarded, we still estimate the SENSORID
provides around 67 bits of entropy for the iPhone 6S.

A related concern is there could be undetected higher-order
correlations between values in D. A similar argument applies
in this case: the entropy calculation is dominated by the core
of the (now multivariate) distribution, where we have abundant
data, and where we see no evidence of non-independence. In
the tail regions, non-independence might go undetected, but
this would have little impact on the calculated entropy.

Ultimately, the calculation of entropy cannot be done with
absolute rigour given a finite number of samples from an un-
known distribution, but it is still possible to perform a thorough
analysis, and significant errors in the estimated entropy of
SENSORID due to non-Gaussianity or non-independence are
very unlikely.

B. Factory calibration in Android devices

Rooted Android handsets provide access to the gain matrix
values for the motion sensors in the local file system on boot.
We therefore confirmed that our distinct estimates for the
ACCID on two Pixel 3 devices were correct as well as our
estimated ACCID and GYROID values for a Pixel 4 device.
While the magnetometer in the Pixel 3/4 also has a full gain
matrix, its values appear to be the same for all devices of
the same model and thus does not provide any entropy. The
motion sensors in other Android devices may also be factory
calibrated. If the calibration is restricted to offsets (i.e., bias
compensation) then our approach is ineffective since it targets
the gain matrix and cannot recover bias compensation.

To estimate the entropy of SENSORID for vulnerable Pixel
devices, we group these devices into three categories: Pixel 2

TABLE VI: SENSORID entropy estimation (Pixel devices)

Fingerprint Device Model # Devices Entropy (bits)

ACCID
Pixel 2/2 XL 46 ~14

Pixel 3/3 XL/3a/3a XL 61 ~12
Pixel 4/4 XL 45 ~25

GYROID Pixel 4/4 XL 45 ~45

series (Pixel 2/2 XL), Pixel 3 series (Pixel 3/3 XL/3a/3a XL),
and Pixel 4 series (Pixel 4/4 XL). For each category, we anal-
yse the normality of each value and the correlation between
values in the fingerprint. For Pixel 2 and 3 series, the ACCID
only has non-zero values in the leading diagonal (D11, D22,
D33), and thus it provides less entropy than the Pixel 4 series.
For Pixel 4 series, we find that some off-diagonal values in
the ACCID/GYROID are strongly correlated with each other.
Thus, we only keep one of the dependent variables in the
entropy calculation to avoid over-estimation.

Using a similar method to the one used in our previous
work on the iOS magnetometer, we estimate the entropy based
on the assumption that adversaries choose to attack using the
rounding option, which has ±1 uncertainty for each element.
Results are presented in Table VI. In addition, we find off-
diagonal elements in GYROID are strongly correlated with off-
diagonal elements in ACCID in Pixel 4 series devices. This
is likely because the accelerometer and gyroscope are inte-
grated into the same chip (LSM6DSR). Therefore, to estimate
the entropy of SENSORID, the combination of ACCID and
GYROID, we simply add the entropy provided by the main-
diagonal variables in the ACCID to the entropy provided by
the GYROID. As a result, we estimate the SENSORID provides
around 57 bits of entropy; a precise estimate of entropy is
difficult since we only have data from 45 Pixel 4/4 XL devices
whereas in our previous study with iOS we used data from
127 iPhone 6S devices. Assuming that our entropy estimate
is accurate, and analysing this as an example of the birthday
problem, if there are 100 million Pixel 4/4 XL devices in the
market, then the probability that every device has a globally
unique SensorID is around 97%.

C. Is SENSORID correlated with the manufacturing batch?

To answer this question, we first study the correlation
between the SENSORID and the country of the device, which
is inferred from the IP address when a user submits data.
We do not find any evidence of strong correction at the 0.05
significance level. In addition, we collected gyroscope data
from 25 iOS devices in an Apple Store. Some of these devices
have similar serial numbers, which suggests they may come
from the same manufacturing batch. However, the GYROID
of these devices differs significantly. Furthermore, there is no
significant difference in the GYROID distribution for devices
from the Apple Store and for devices that we collect otherwise.

D. Consistency of SENSORID
We have not observed any change in the SENSORID of

our test devices in the past 16 months. Our dataset includes
iOS devices running iOS 9/10/11/12 and Pixel devices running

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 10

Android 8/9/10. We have tested compass calibration, factory
reset, and updating operating system; the SENSORID always
stays the same. We have also tried measuring the sensor data
at different locations and under different temperatures; we
confirm that these factors do not change the SENSORID either.

E. Impact and responsible disclosure

We followed a responsible disclosure procedure and re-
ported this vulnerability to Apple on 3rd August 2018 and
Google on 10th December 2018. In particular, we suggested
two possible countermeasures. The first is to add a random
noise ε ∈ R3×1, from the uniform distribution in the range
[−0.5, 0.5], to each ADC output. The added noise obfuscates
the effect of quantisation making the attack much harder.
The second approach we proposed is to round the calibrated
sensor output to the nearest multiple of the nominal gain. This
approach is more practical to apply since it does not require
access to the ADC values.

In iOS 12.2, Apple adopted our suggestion and added
random noise to sensor outputs (CVE-2019-8541). In addition,
Apple removed access to motion sensors from Mobile Safari
by default and in later versions removed motion sensor access
from WebKit as well. Recently, Google pushed a fix in
Android 11 that rounds the motion sensor outputs to the
nearest multiple of the nominal gain.

When running an iOS version prior to iOS 12.2, all iOS
devices that have motion sensors can be fingerprinted by this
approach, including the iPhone XS and iPhone XS Max. A
SENSORID can be generated by both apps and mobile web-
sites and requires no user interaction. Both mainstream iOS
browsers (Safari, Chrome, Firefox, and Opera) and privacy-
enhanced browsers (Brave and Firefox Focus) were vulnerable
to this calibration-based fingerprinting attack, even with the
fingerprinting protection mode turned on. For Google Pixel
phones running Android 10, we notice that some privacy-
enhanced browsers, including Brave and Tor Browser, do block
access to motion sensors by default while others (Chrome,
Firefox, Firefox Focus, Opera, and Duckduckgo) do not. Using
a browser that blocks motion sensor access could protect Pixel
phone users from this attack when browsing online. A recent
study shows that motion sensor data is accessed by 2 653
of the Alexa top 100K websites, including more than 100
websites exfiltrating motion sensor data to remote servers [14].
This is troublesome since it is likely that the SENSORID
can be calculated with exfiltrated data, allowing retrospective
device fingerprinting. The latest iOS devices which always
run iOS 12.2 or later so the attack described does not work.
Nevertheless, a dedicated attacker may still be able to extract
the fingerprint (§VI).

VI. APPLE’S FIX

Apple declined to share the details of the fix deployed in iOS
12.2. Therefore we reverse-engineer Apple’s fix by studying
the gyroscope outputs in iPhone devices with iOS 12.2 or later;
we show that the random noise applied does not fully conceal
the calibration fingerprint.

iO
S

 11.4.1
iO

S
 12.3.1

−40000 −30000 −20000 −10000 0

0

10

20

30

0

5

10

Gyroscope Output in y axis (2 −16 dps)

C
ou

nt

Fig. 5: Histogram of raw gyroscope data of an iPhone X

A. Analysis of Apple’s Fix

Fig. 5 presents the histogram of the raw gyroscope data in
the y axis collected from the same iPhone X with two different
iOS versions. In both cases, the device is at rest on a desk.
When the device is running iOS 11.4.1, the quantisation in the
histogram is clear and we can recover the exact gain matrix
(§III-B). To mitigate our attack, Apple added random noise to
the gyroscope outputs in iOS 12.2, concealing the quantisation
information. Fig. 5 suggests that the added noise follows a
uniform distribution, which is one of the countermeasures
we proposed to Apple. However, we notice there are some
peculiarities in the noise added.

To figure out the range of the uniform noise applied, we
first obtain the gyroscope gain matrix of an iOS device when
it is running an iOS version before iOS 12.2. Then, we update
the device to the latest iOS version and take 20K gyroscope
measurements from the device at 200 Hz when the device is
at rest on a desk. We denote the gain matrix as G and these
gyroscope outputs as O. Then, the underlying bias-corrected
ADC outputs I (i.e., I = A + B) can be estimated by:

Ĩ = round(G−1O) (7)

Although the estimated ADC values may not be accurate
due to perturbation, it gives us useful insights about the added
noise. Furthermore, we can get the noise estimate, Ñ, by:

Ñ = O−GĨ

By way of an example, Fig. 6 presents the histogram of
the estimated gyroscope noise of an iPhone XS. As shown in
the Fig. 6, the majority of the estimated noise are distributed
uniformly in the range [−1997, 1997] × 2−16 dps. The small
number of outliers are likely produced due to the inaccurate
estimation of the ADC values in Equation 7.

We have also tested other iOS devices and observed the
same result. This confirms that Apple did not add ran-
dom noise in the range [−0.5, 0.5] to the ADC values as
we proposed but instead added random noise in the range
[−1997, 1997]×2−16 dps to the calibrated signal. Because the
width of the random noise is slightly narrower than the sensi-
tivity of some gyroscope axes, it leaks more information than

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 11

−2000 −1000 0 1000 2000
0

50

100

150

200

1980 2000 2020
0

50

100

150

200

Estimated Gyroscope Noise (2 −16 dps)

C
ou

nt

Axis x y z

Fig. 6: Histogram of estimated gyroscope noises (iPhone XS)

our original proposal. In the case of the iPhone XS in Fig. 6,
the width of the perturbation, 3995, is lower than the sensitivity
of all three axes (4012, 4031, and 4016, respectively). Here, we
show that we can recover the gain matrix from the noisy data
by performing a maximum likelihood search using simulated
annealing.

B. Attack of Apple’s Fix

In this section, we first define the objective function to quan-
tify the likelihood of observing the outputs given a gain matrix.
Then, we show that the exact gain matrix can be estimated
from the objective function using simulated annealing.

Objective Function. For a candidate gain matrix G̃, we
estimate the corresponding bias-corrected ADC outputs I by:

Ĩ = round(G̃−1O)

Here, we did not subtract sensor outputs to remove the bias as
we did in §III-B because it would spread the noise (double the
noise range) and make the ADC value estimation less accurate.
Both the O and G̃ are in the units of 2−16 dps so they only
contain integer values. Nevertheless, the estimated Ĩ is not
guaranteed to be correct due to the perturbation, which is why
we observed a few outliers in Fig. 6.

Then, we estimate the clean gyroscope outputs (i.e., without
added noise) by:

Õ = G̃Ĩ

And the offset between the estimated outputs Õ and observed
outputs O can be calculated by:

∆ = O− Õ

Since the added noise is uniformly distributed in the range
[−1997, 1997] × 2−16 dps, any offset beyond this range is
caused by either an incorrect gain matrix (i.e., G̃ 6= G) or
incorrect ADC estimations (i.e., Ĩ 6= I). To quantify the error
in each data sample, we define the following error function:

f(∆i) =
∑
δ∈∆i

max(|δ| − 1997, 0)

Furthermore, we define the range-related likelihood function
for each data sample as follows:

lr(∆i) = exp(−f(∆i)

T
)

where exp(·) is the natural exponential function and T is
the temperature variable used in simulated annealing that
decreases over iterations.

Although the likelihood function lr(∆i) penalises data
samples with an offset beyond the added noise range, it does
not give us any information about the distribution of data
within the range. In general, the ADC outputs of the gyroscope
in every axis follow a normal distribution when the device is
resting on a platform such as a desk (as shown in Fig. 5). If
the device has moved during the data collection, we can use a
stationary position filter to get the segments with stationary
measurements. Therefore, we can fit a normal distribution
N(µa, σa) to Ĩa for each axis a ∈ {x, y, z}. Then, based
on the normal distribution, we can calculate the distribution-
related likelihood function, ld(Ii), by:

ld(Ii) =
∏

a∈{x,y,z}

pa(Iia)

where pa(·) is the probability density function of the normal
distribution N(µa, σa) and Iia is the output Ii in the axis a.

Finally, we define our objective function L(O|G̃) as a
negative log likelihood function:

L(O|G̃) = −
N∑
i=1

log(lr(∆i)ld(Ii))

where N is the number of gyroscope outputs. Then, the true
gain matrix can be estimated by the following equation:

G = arg min
G̃

L(O|G̃) (8)

Simulated Annealing. Simulated annealing is a probabilis-
tic technique for solving optimisation problems and is often
used in the presence of large numbers of local optima [15].
Since the objective function in Equation 8 is highly non-
smooth, we use simulated annealing to solve this optimisation
problem.

First, we set the initial state of the candidate gain matrix
to the nominal value (i.e., G̃0 = G0) and the temperature
parameter T to 10. The temperature T will decrease in each
iteration and finishes at 0.1. Then, we calculate the objective
function L(O|G̃0) and denote its value as L0.

In each following round t, we propose a new candidate gain
matrix by adding a random perturbation to the previous state:

G̃t = G̃t−1 + round(σtRt) (9)

Here, Rt is a 3-by-3 matrix that contains random floating-
point values sampled from a standard uniform distribution at
round t. We also use a step parameter σt to control the step
size at each round; its initial state is set to 5 (i.e., σ0 = 5) to
allow bigger steps in the beginning.

Then, we calculate the objective value Lt and compare it
with the previous objective value Lt−1. If Lt is lower than

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 12

−40

−20

0

20

0 1000 2000 3000 4000 5000
Iteration

V
al

ue
Variable

D11

D12

D13

D21

D22

D23

D31

D32

D33

Fig. 7: Estimated GYROID at each iteration (iPhone XS)

Lt−1, we always accept the proposal and keep G̃t as the latest
estimate of gain matrix. Otherwise, we choose to accept G̃t

or keep G̃t−1 probabilistically to prevent getting stuck in a
local minimum. If the proposal is accepted, we also keep the
corresponding object value (i.e., Lt = Lt−1) and increase the
step size slightly (e.g., σt+1 = σt × 1.05) to allow faster
exploration. Otherwise, the step size will be decreased slightly
(e.g., σt+1 = σt/1.05) to help finding the minimum. We also
set a lower bound for σt at 0.7 to prevent the step size being
too small to update the candidate gain matrix in Equation 9.

Result. We test the algorithm on our iPhone XS test handset;
the GYROID of this iPhone XS is shown in Equation 4. In
particular, we first collect 50K gyroscope samples from the
device at 200 Hz when it is stationary. We run our algorithm
on this data for 5K iterations and present the result in Fig. 7.
The figure shows the estimated GYROID stabilises after round
3383; the stabilised GYROID is the same as the one we
estimated before noise was added. We have also tested the
algorithm on an iPhone X and we were also able to recover
the exact gain matrix using the same approach and setups.

Discussion. The experiments show that Apple’s fix is still
susceptible to probability-based attacks. However, we found
that the attacker would need at least 50K data samples. Since
the sample frequency of the gyroscope in recent iOS devices
is 200 Hz, this means the attacker would need to collect
gyroscope output for at least 4.2 minutes when the device
is resting on a platform. In addition, the attack we proposed
is also computation-intensive and thus it is unlikely to be
implemented directly inside a mobile app. These restrictions
make the attack less practical. Since Apple has also removed
access to motion sensors from Safari and Webkit such an
attack can now only be conducted via an app.

Even if Apple had adopted our proposed mitigation (adding
uniform noise in the range [-0.5, 0.5] to ADC outputs) this
maximum likelihood estimation based attack would still work.
However, the attacker would need even more samples. A
better-designed noise scheme may enhance security further,
but it might be harder to implement in mobile devices and
could degrade the user experience.

VII. RELATED WORK

Device fingerprinting is an important technique for app
developers and advertisers to track their users. The IP address
is one of the earliest identifiers used to fingerprint devices.
However, the adoption of dynamic IP allocation and network
address translation, particularly for home PCs and mobile
devices, has greatly reduced the effectiveness of this approach.
Cookies are also commonly used to track users across web-
sites. However, cookies are stored locally and can be changed
by users at any time. In fact, many privacy-focused browsers,
such as Brave and Safari, by default block all third-party
cookies. In addition, regulations in the US and Europe require
websites to obtain user-permission before using cookies, which
also decreases the usability of this approach [16].

A variety of IDs in the device can be used as fingerprints,
including the IMEI, UDID, and MAC address of hardware
modules. A study in 2011 showed that these identifiers were
widely used in mobile apps [17]. However, both Apple and
Google have adopted more stringent privacy policies to pre-
vent developers from accessing these unique IDs. Addition-
ally, many information flow tracking systems, such as Taint-
Droid [18] and Panorama [19], can capture these malicious
behaviours and report them to users.

Passive Device Fingerprinting Passive device fingerprint-
ing is the action of characterizing a target device by observing
its network traffic. It analyses the captured data to reveal
fingerprintable patterns (e.g., the software, operating system,
or hardware components). Since passive fingerprinting only
relies on network traffic, it is compatible with more devices,
difficult to discover, and can track users across different
browsers. In general, most passive fingerprinting techniques
rely on machine learning models to differentiate devices.
Uluagac et al. applied Artificial Neural Networks (ANNs)
to classify devices based on the time-variant behaviour in
their traffic [20]. Neumann et al. evaluated several features
extracted from network traffic and found that the frame inter-
arrival time, which is correlated with the hardware status and
installed applications, is the most effective feature for device
fingerprinting [21]. Machine learning approaches usually re-
quire more computing resources and a large amount of data for
training. Thus, passive fingerprinting techniques usually have
a longer response time than active fingerprinting techniques.

Active Device Fingerprinting Active fingerprinting tech-
niques deploy embedded code to actively gather informa-
tion about a device and use these characteristics to make a
distinction between different devices. For example, Finger-
printjs2 [12] is a popular browser fingerprinting library that
utilises the characteristics of a browser, including the user-
agent, version, plugins, fonts, and canvas. Apple has realised
the risk of browser fingerprinting. From macOS Mojave,
Safari scrubs most distinctive browser data, exposing only
generic configuration information and default fonts [22]. The
information about the operating system (e.g., version and root
permission) and system configurations (e.g., network and flash
configurations) can also be used to identify devices. Although
this information cannot uniquely identify a device, it can be
combined with other features from browsers and embedded

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 13

hardware to increase precision.
Hardware Fingerprinting Hardware fingerprints are gen-

erally consistent because it is typically difficult to replace
the embedded hardware. Some embedded hardware, such as
motion sensors, can be accessed by both JavaScript running in
a web browser and by mobile apps installed on a smartphone
and does not require any permission from users. Hardware
modules that have been studied for fingerprinting purposes
include: RF modules [23], [24], motion sensors [25], [26],
clocks [27], camera [28], [29], and acoustic components [30],
[31]. In particular, a well-known hardware fingerprint in digital
forensics is the Photo Response Non-Uniformity (PRNU)
of digital cameras. The PRNU is a result of manufacturing
imperfections and inhomogeneity of silicon wafers. The classic
algorithm to estimate the PRNU was presented by Lukás
et al. [32]. Similar to SENSORID, the PRNU itself is stable to
environmental conditions and is likely to be globally unique.
Nevertheless, the exact value of the PRNU cannot be extracted
and the quality of the estimated PRNU is dependent on the
imaging processing used in the camera. Recently, Ba et al.
presented a protocol named ABC to authenticate smartphones
using the PRNU of their built-in camera [33]. According to
their study, the PRNU estimated from one photo alone can
identify the source smartphone camera with high accuracy.
However, their study only focuses on two device models with
a single camera. It is unclear whether the image fusion process
in multi-camera devices would degrade the performance. In
addition, accessing the camera or photos would require explicit
permission from the user and thus it is less practical. In
addition to smartphones, hardware fingerprinting also has
applications on other targets. In particular, Son et al. used
the power-on offset calibration of the gyroscope embedded
in a drone to serve as its identity [34]. However, this power-
on offset calibration is not factory calibration. The calibrated
offsets are dynamically calculated every time the drone is
turned on. Thus, it changes over time and varies with tem-
perature. By comparison, our work is the first to recover the
factory calibration parameters that are digital values stored in
persistent memory and do not change afterwards.

Existing hardware fingerprinting techniques are mostly
based on machine learning approaches. Bojinov et al. demon-
strated it is possible to fingerprint both the speakerphone-
microphone system and the accelerometer using typical clus-
tering approaches [26]. However, they only correctly identified
53% of the devices in their dataset even after integrating
the UA string into their model. Das et al. applied several
supervised machine learning models to make a distinction
between devices based on the gyroscope and accelerometer
readings [35]. To increase accuracy, they used inaudible sound
to stimulate the motion sensors. As a countermeasure, they
suggested to better calibrate the motion sensors. However, they
did not realise that the calibration process could leak informa-
tion if not properly implemented. More recently, they further
improved its accuracy by introducing a voting scheme among
different classifiers [36]. Nevertheless, their approach requires
a lot of computing resources, which cannot be implemented
locally on the device. Even then, their approach achieved less
than 60% F1 score in an open-world setting when devices were

held in hand. They also applied their approach to making a
distinction between 85 iPhone 6 devices. When devices were
held in hand, only 60% of these devices produced unique
fingerprints, which, by reference to the birthday problem, in-
dicates that their approach provides around 13 bits of entropy.
Based on the motion sensor data that they collected through
JavaScript, we correctly identify all iOS devices in the dataset
based on the calibration behaviour without knowing the device
model in advance. Most recently, Das et al. studied the sensor
API usage in popular websites [14]. They showed that 2 653 of
the Alexa top 100K websites accessed motion sensor data and
63% of the scripts for accessing motion sensors also engaged
in browser fingerprinting. Although the prior art has realised
the idiosyncrasies across different sensors, none of them, to
the best of our knowledge, has exploited the factory calibration
to form a device fingerprint; this paper fills the gap.

VIII. CONCLUSION

In this paper we introduced the factory calibration finger-
printing attack: a new method of fingerprinting devices with
embedded motion sensors by careful analysis of the sensor
output alone. We demonstrated the effectiveness of this attack
on iOS devices and found the lack of precision in the M-
series coprocessor helps the generation of such a fingerprint.
Our attack is easy to conduct by a website or an app in
under 1 second, requires no special permissions, does not
require user interaction, and is computationally efficient. Our
attack can also be applied retrospectively to an historic archive
of sensor data. Using the iPhone 6S as an example, we
showed that the GYROID contains about 42 bits of entropy
and the MAGID provides an additional 25 bits of entropy.
Furthermore, we demonstrated that the combination of the
MAGID and GYROID is very likely to be globally unique for
iPhone 6S, does not change on factory reset or after a software
update. For older generations of iOS devices, such as the
iPhone 4S and iPad Mini, we can further extract the ACCID
and use it to provide extra entropy. In addition to iOS devices,
we also conducted a large study of popular Android device
models in the market and found that all Google Pixel phones
except for Pixel 1/1 XL can be fingerprinted by our attack.
We estimate the SENSORID entropy for each vulnerable Pixel
model and show that it provides approximately 57 bits of
entropy for Pixel 4/4 XL.

Furthermore, we analysed Apple’s fix to our attack and
showed that it is still possible to extract the GYROID even after
the fix, although doing so would require significantly more
data and computation power. Since it is no longer possible to
access the motion sensors in iOS browsers, the opportunity to
launch this attack is restricted to installed apps.

The concept of a calibration fingerprint is widely applica-
ble. Although this paper mainly targets the motion sensors
found in mobile devices, we anticipate the factory calibration
information used in other embedded sensors may also be
recovered and used as a fingerprint, and therefore we expect
future research will successfully perform factory calibration
fingerprinting attacks on other types of sensor.

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 14

ACKNOWLEDGEMENT

Jiexin Zhang is supported by the China Scholarship Council.
Alastair R. Beresford is partly supported by EPSRC under
Grant No.: EP/M020320/1. We would like to thank Nokia
Bell Labs for supporting this work and valuable discussions.
The opinions, findings, and conclusions or recommendations
expressed are those of the authors and do not necessarily
reflect those of the funders. We thank Matthew Hall, Stephan
A. Kollmann, Diana A. Vasile, Ricardo Mendes, Andrew Rice,
and Amanda Prorok for helpful discussion and insight. We also
thank anonymous reviewers for their feedback on the paper.

REFERENCES

[1] G. Hogben. (2017) Changes to device identifiers in android o.
[Online]. Available: https://android-developers.googleblog.com/2017/
04/changes-to-device-identifiers-in.html

[2] J. Zhang, A. R. Beresford, and I. Sheret, “Sensorid: Sensor calibration
fingerprinting for smartphones,” in 2019 IEEE Symposium on Security
and Privacy (SP). IEEE, 2019, pp. 638–655.

[3] S. Poddar, V. Kumar, and A. Kumar, “A comprehensive overview of
inertial sensor calibration techniques,” Journal of Dynamic Systems,
Measurement, and Control, vol. 139, no. 1, p. 011006, 2017.

[4] A. Grammenos, C. Mascolo, and J. Crowcroft, “You are sensing, but
are you biased? a user unaided sensor calibration approach for mobile
sensing,” Proceedings of the ACM on Interactive, Mobile, Wearable and
Ubiquitous Technologies (IMWUT), vol. 2, no. 1, p. 11, 2018.

[5] D. Tedaldi, “Imu calibration without mechanical equipment,” Ph.D.
dissertation, University of Padova, 2013.

[6] T. Michel, P. Geneves, H. Fourati, and N. Layaïda, “On attitude
estimation with smartphones,” in 2017 IEEE International Conference
on Pervasive Computing and Communications (PerCom). IEEE, 2017,
pp. 267–275.

[7] D. Tedaldi, A. Pretto, and E. Menegatti, “A robust and easy to implement
method for imu calibration without external equipments,” in 2014 IEEE
International Conference on Robotics and Automation (ICRA). IEEE,
2014, pp. 3042–3049.

[8] W. Ren, T. Zhang, H. Zhang, L. Wang, Y. Zhou, M. Luan, H. Liu, and
J. Shi, “A research on calibration of low-precision mems inertial sen-
sors,” in 2013 25th Chinese Control and Decision Conference (CCDC).
IEEE, 2013, pp. 3243–3247.

[9] I. Frosio, F. Pedersini, and N. A. Borghese, “Autocalibration of mems
accelerometers,” IEEE Transactions on Instrumentation and Measure-
ment, vol. 58, no. 6, pp. 2034–2041, 2009.

[10] STMicroelectronics. (2010) L3g4200d: three axis digital output
gyroscope. [Online]. Available: https://www.elecrow.com/download/
L3G4200_AN3393.pdf

[11] ——. (2009) Lis331dlh: Mems digital output motion sensor. [Online].
Available: http://www.st.com/resource/en/datasheet/lis331dlh.pdf

[12] Valve. (2018) Modern & flexible browser fingerprinting library.
[Online]. Available: https://github.com/Valve/fingerprintjs2

[13] J. Dunn. (2018) It looks like apple will have plenty
of iphone owners that could use an upgrade this
holiday season. [Online]. Available: http://uk.businessinsider.com/
apple-iphone-most-popular-model-newzoo-chart-2017-7

[14] A. Das, G. Acar, N. Borisov, and A. Pradeep, “The web’s sixth sense:
a study of scripts accessing smartphone sensors,” in Proceedings of
the 2018 ACM SIGSAC Conference on Computer and Communications
Security (CCS), 2018.

[15] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by
simulated annealing,” science, vol. 220, no. 4598, pp. 671–680, 1983.

[16] Wikipedia. (2002) Privacy and electronic communications directive
2002. [Online]. Available: https://en.wikipedia.org/wiki/Privacy_and_
Electronic_Communications_Directive_2002

[17] W. Enck, D. Octeau, P. D. McDaniel, and S. Chaudhuri, “A study of
android application security.” in USENIX Security Symposium, vol. 2,
2011, p. 2.

[18] W. Enck, P. Gilbert, S. Han, V. Tendulkar, B.-G. Chun, L. P. Cox,
J. Jung, P. McDaniel, and A. N. Sheth, “Taintdroid: an information-
flow tracking system for realtime privacy monitoring on smartphones,”
ACM Transactions on Computer Systems (TOCS), vol. 32, no. 2, p. 5,
2014.

[19] H. Yin, D. Song, M. Egele, C. Kruegel, and E. Kirda, “Panorama:
capturing system-wide information flow for malware detection and
analysis,” in Proceedings of the 14th ACM conference on Computer
and communications security (CCS). ACM, 2007, pp. 116–127.

[20] A. S. Uluagac, S. V. Radhakrishnan, C. Corbett, A. Baca, and R. Beyah,
“A passive technique for fingerprinting wireless devices with wired-
side observations,” in 2013 IEEE Conference on Communications and
Network Security (CNS). IEEE, 2013, pp. 305–313.

[21] C. Neumann, O. Heen, and S. Onno, “An empirical study of passive
802.11 device fingerprinting,” in 2012 32nd International Conference
on Distributed Computing Systems Workshops (ICDCSW). IEEE, 2012,
pp. 593–602.

[22] L. H. Newman. (2018) Apple just made safari the good
privacy browser. [Online]. Available: https://www.wired.com/story/
apple-safari-privacy-wwdc

[23] T. Kohno, A. Broido, and K. C. Claffy, “Remote physical device fin-
gerprinting,” IEEE Transactions on Dependable and Secure Computing,
vol. 2, no. 2, pp. 93–108, 2005.

[24] V. Brik, S. Banerjee, M. Gruteser, and S. Oh, “Wireless device identi-
fication with radiometric signatures,” in Proceedings of the 14th ACM
International Conference on Mobile Computing and Networking. ACM,
2008, pp. 116–127.

[25] S. Dey, N. Roy, W. Xu, R. R. Choudhury, and S. Nelakuditi, “Accelprint:
imperfections of accelerometers make smartphones trackable,” in Pro-
ceedings of the 2014 Network and Distributed System Security (NDSS)
Symposium, 2014.

[26] H. Bojinov, Y. Michalevsky, G. Nakibly, and D. Boneh, “Mobile device
identification via sensor fingerprinting,” Computing Research Repository
(CoRR), 2014. [Online]. Available: https://arxiv.org/abs/1408.1416

[27] I. Sanchez-Rola, I. Santos, and D. Balzarotti, “Clock around the clock:
time-based device fingerprinting,” in Proceedings of the 2018 ACM
SIGSAC Conference on Computer and Communications Security (CCS),
2018, pp. 1502–1514.

[28] J. Fridrich, “Digital image forensics,” IEEE Signal Processing Magazine,
vol. 26, no. 2, 2009.

[29] D. Valsesia, G. Coluccia, T. Bianchi, and E. Magli, “Compressed
fingerprint matching and camera identification via random projections,”
IEEE Transactions on Information Forensics and Security, vol. 10, no. 7,
pp. 1472–1485, 2015.

[30] A. Das, N. Borisov, and M. Caesar, “Do you hear what i hear?
fingerprinting smart devices through embedded acoustic components,”
in Proceedings of the 2014 ACM SIGSAC Conference on Computer and
Communications Security (CCS). ACM, 2014, pp. 441–452.

[31] Z. Zhou, W. Diao, X. Liu, and K. Zhang, “Acoustic fingerprinting
revisited: Generate stable device id stealthily with inaudible sound,” in
Proceedings of the 2014 ACM SIGSAC Conference on Computer and
Communications Security, 2014, pp. 429–440.

[32] J. Lukas, J. Fridrich, and M. Goljan, “Digital camera identification from
sensor pattern noise,” IEEE Transactions on Information Forensics and
Security, vol. 1, no. 2, pp. 205–214, 2006.

[33] Z. Ba, S. Piao, X. Fu, D. Koutsonikolas, A. Mohaisen, and K. Ren,
“Abc: Enabling smartphone authentication with built-in camera,” in 25th
Annual Network and Distributed System Security Symposium, NDSS
2018, 2018.

[34] Y. Son, J. Noh, J. Choi, and Y. Kim, “Gyrosfinger: Fingerprinting drones
for location tracking based on the outputs of mems gyroscopes,” ACM
Transactions on Privacy and Security (TOPS), vol. 21, no. 2, pp. 1–25,
2018.

[35] A. Das, N. Borisov, and M. Caesar, “Tracking mobile web users through
motion sensors: attacks and defenses.” in Proceedings of the 2016
Network and Distributed System Security (NDSS) Symposium, 2016.

[36] A. Das, N. Borisov, and E. Chou, “Every move you make: exploring
practical issues in smartphone motion sensor fingerprinting and counter-
measures,” Proceedings on Privacy Enhancing Technologies Symposium
(PETS), vol. 2018, no. 1, pp. 88–108, 2018.

https://android-developers.googleblog.com/2017/04/changes-to-device-identifiers-in.html
https://android-developers.googleblog.com/2017/04/changes-to-device-identifiers-in.html
https://www.elecrow.com/download/L3G4200_AN3393.pdf
https://www.elecrow.com/download/L3G4200_AN3393.pdf
http://www.st.com/resource/en/datasheet/lis331dlh.pdf
https://github.com/Valve/fingerprintjs2
http://uk.businessinsider.com/apple-iphone-most-popular-model-newzoo-chart-2017-7
http://uk.businessinsider.com/apple-iphone-most-popular-model-newzoo-chart-2017-7
https://en.wikipedia.org/wiki/Privacy_and_Electronic_Communications_Directive_2002
https://en.wikipedia.org/wiki/Privacy_and_Electronic_Communications_Directive_2002
https://www.wired.com/story/apple-safari-privacy-wwdc
https://www.wired.com/story/apple-safari-privacy-wwdc
https://arxiv.org/abs/1408.1416

	Introduction
	Background
	Attack Method
	Gyroscope Calibration on iOS devices
	Fingerprinting from Mobile Apps
	Fingerprinting from Mobile Websites
	Practical Calibration Fingerprinting Attacks
	Fingerprinting Other Motion Sensors
	Fingerprinting Android devices

	Evaluation
	Fingerprinting iOS Devices
	Fingerprinting Google Pixel devices

	Discussion
	Is SensorID unique for iOS devices?
	Factory calibration in Android devices
	Is SensorID correlated with the manufacturing batch?
	Consistency of SensorID
	Impact and responsible disclosure

	Apple's Fix
	Analysis of Apple's Fix
	Attack of Apple's Fix

	Related Work
	Conclusion
	References

