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ABSTRACT
We collected usage information from 12,500 Android devices in
the wild over the course of nearly 2 years. Our dataset contains 53
billion data points from 894 types of devices running 687 versions
of Android. Processing the collected data presents a number of
challenges ranging from scalability to consistency and privacy con-
siderations. We present our system architecture for collection and
analysis of this highly-distributed dataset, discuss how our system
can reliably collect time-series data in the presence of non-reliable
timing information, and discuss issues and lessons learned that we
believe apply to many other big data collection projects.

1. INTRODUCTION
In the Device Analyzer project we are building a dataset which

captures real-world usage of Android smartphones. The intention
is to share this dataset with industry and other researchers in order
to better inform product development or research directions.

We have been collecting detailed usage information in the wild
for nearly 2 years from 894 types of devices running 687 versions
of Android. Over 12,500 users from 167 countries installed a copy
of the software from the Android market and consented to their data
being collected. In total, our dataset covers over 1,450 phone-years
of usage, with days of inactivity removed. 10,320 of our partici-
pants contributed for at least one day, 3,680 users contributed more
than one month of usage information and over and 820 participated
for at least six months. The dataset contains a total of 53 billion
data points.

Device Analyzer captures a time-series log of more than 200 dif-
ferent events. As much detail as possible is captured. For exam-
ple, Device Analyzer not only records when a device connects to a
wifi access point; it records all the details captured whenever a wifi
scan occurs, including AP MAC address, SSID, signal strength,
frequency and capabilities. By way of example, events recorded
include changes to device settings (33 event types), installed ap-
plications (17), system characteristics (29), bluetooth devices (21),
wifi networks (11), disk storage (6), charging characteristics (5),
telephony (20), data usage (10), CPU and memory information for
each running app and background process (11) and many more. A
complete list of collected data is available on the project website.1

Processing the information collected by Device Analyzer and ex-
tracting higher-level insights from the large corpus of real-world
usage data presents us with a number of challenges ranging from
scalability to consistency and privacy considerations.

1
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In this paper we present our system architecture for collecting
data from a large number of distributed sources that is resilient
against failures of devices. There are six conceptual components to
our system and we describe the operation of each and some of the
problems which arise (Section 3). We explain how offline process-
ing can recover wall clock time where traditional collection meth-
ods would fail in the presence of errors during collection or user
interference (Section 4) and how our architecture accommodates
this. We conclude (Section 5) with a brief discussion of some of
the more general issues and lessons learned which we think might
also apply to other data collection and analysis projects. We are
interested in identifying productive areas of overlap.

2. BACKGROUND
Many previous projects have made use of volunteer contributions

to large scientific projects. SETI@Home [1] is an early example;
FoldIt [6] is a recent one in which researchers pose a computa-
tionally hard problem—protein folding—as a game which volun-
teers can play on the Internet. In SETI@Home and FoldIt, data
collection is centralised, and processing is distributed. In Device
Analyzer, data collection is decentralised, and data processing is
(largely) centralised, leading to a few key differences. For exam-
ple, there are no real privacy problems in SETI@Home, as data
does not contain personal information; similarly, as data collec-
tion is centralised in SETI@Home, the project does not experience
several difficulties we have experienced in determining an accurate
estimate of time. There are similarities too: both SETI@Home and
Device Analyzer run at the mercy of volunteer computers of du-
bious provenance, and both projects have experienced difficulties
with centralised components. SETI@Home removed reliance on a
database in favour of storing data in flat files for some parts of their
design; we did so as well in Device Analyzer.

Previous projects have collected data from smartphones. Exam-
ples include the MIT Reality Mining dataset in which 100 Nokia
6600 mobile phones were given to undergraduates [4] and a re-
cent study of application usage of 4,000 Android smartphones [2].
The Nokia Mobile Data Challenge [8] collected various informa-
tion from 200 Nokia N95 phones over the course of a year. Gi-
rardello and Michahelles studied installation and removal of An-
droid applications on 19,000 devices [5].

We believe that the very wide range of data collected, combined
with the length of data collection, sets Device Analyzer apart from
previous studies looking at usage of mobile devices. Most partici-
pants have given us permission to make their data available to other
researchers. We intend to release the dataset in the near future. To
the best of our knowledge, this is the largest, and most detailed,
dataset on smartphone usage to be made publicly available.
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3. DATA COLLECTION AND PROCESSING
Our data collection and processing system can be viewed as six

conceptual components: measurement; on-device processing; col-
lection; server-side soft real-time analysis; archival storage; and
server-side offline analysis. In this section we explain the opera-
tion of Device Analyzer with reference to these components and
highlight some of the principles which might apply more generally
to similar projects. We refer back to these components in our later
discussion of design choices.

Measurement Data in Device Analyzer is measured by an ap-
plication running on Google Android smartphone handsets. We
distribute this as a free application on Google Play. The Device
Analyzer application registers with the operating system to receive
notifications when various events occur on the handset. A huge va-
riety of information is available in this manner with notifications
ranging from incoming or outgoing calls or texts and installation of
new applications, to changes in volume settings. Some metrics such
as the data counters on network interfaces are not available through
a publish-subscribe interface and so these are polled at a 5 minute
interval. Reliably measuring and recording this information across
an open population of devices is a significant engineering effort:
storing data using the platform-provided SQLite layer seemed ap-
pealing at first glance but having to work around issues with multi-
threaded database operations on many devices and occasional data
corruption on other handsets led us to simply storing data in flat
files. Compressing these files (using gzip) requires care because
some handsets have shipped with a compression library that oc-
casionally (and silently) discards data by truncating files. These
problems are specific to the Android platform but we expect any
project running for an extended period of time with large numbers
of data collection devices to be plagued by similar issues.

Data is stored as key-value pairs. Both values are plain-text and
can contain (practically) arbitrarily long data. A single data point
may contain as little information as the signal level of a WiFi access
point or as much as the timestamps of all images in the device’s
photo library. The keys themselves are organized in a hierarchical
structure to allow for prefix- matching during the analysis phase.

On-device processing In order to provide feedback and overview
statistics about their device usage to the participant, the application
processes data on the device itself. These statistics include the du-
ration of phone calls, number of texts sent and received, historic
battery level, and many more. In this stage we also remove direct
personal identifiers and other sensitive information using a salted
hash function (see Section 5).

Collection Building a dataset means that measured information
must be collated at some central point. The Device Analyzer appli-
cation batches measurements and attempts to periodically upload
them to a server using HTTP over SSL. We add a strong check-
sum on every batch of data since we have seen transmission errors
overcome the inbuilt checking in TCP/IP.

Due to the resource-limited nature of mobile phones we delay
uploads until the phone is attached to a charger; users can further
elect to upload only over WiFi connections. The application is de-
signed to store data until it has been delivered (and receipt con-
firmed). If a preset maximum amount of data is stored we suspend
data collection until the application was able to upload data.

Archival storage The principle task of the server process is to
reliably receive and record the measured data from devices. We use
a simple ARQ protocol with back-off to recover from transmission
errors. Valid batches of measurements are appended to a flat file
for the device in question. Duplicated data produced by repeated

transmissions from the client are discarded at this point. New de-
vice files are started when the previous one reaches 10MB. Old files
are compressed and moved to a permanent repository location.

Server-side soft real-time analysis Live statistics have proven
to be extremely useful to the project. We provide information as
to the current and overall number of participants to all users and
the Device Analyzer website shows a dynamic map of the world
showing uploads as they happen. We have made much use of these
when presenting the projects to others as a recruitment strategy,
but also as an indicator of overall system health when the map is
blank. We currently compute these statistics as simple filters which
are executed as incoming data arrives. Crucially, online processing
does not interfere with the primay task of receiving device uploads,
and data may be silently dropped in the presence of errors. We may
increase the range of live information we provide to participants in
the future as a way of better rewarding their participation.

Server-side offline processing During the offline phase we pro-
cess all archived files of a given device in order and feed the data
tuples to a directed graph of stateful processing plug-ins. Each
plug-in exposes its state for other plug-ins to exploit. For exam-
ple, the screen plug-in tracks “screen on” and “screen off” events
in order report the state of the device’s screen at any point in time
to other plug-ins which list it as a dependency, e.g. when measuring
data transferred while the screen was on. Prefix matching of keys
allows us to quickly filter relevant data for a given plug-in.

Some of our work on the Device Analyzer dataset requires us to
run simulations of device activity with a large number of varying
parameters. We decided to implement these simulations as jobs for
Apache Hadoop. We make use of the independence of measure-
ments between devices: One job reads the output of the plug-in
stage for one device only and uses the included data to run a sim-
ulation. The job outputs a set of results for each combination of
parameters that it evaluated. Hadoop makes it very easy to aggre-
gate these results across all devices based on parameter values for
the individual simulation runs. Our simulations typically run be-
tween one minute and one hour per device, depending on the nature
of the simulation. While Apache Hadoop was not designed to run
these types of workloads on time-series data, we found it to be an
easy-to-use framework that abstracts away much of the complexity
normally associated with distributed computing.

The final stage of our analysis deals with generating human-
readable statistics over the previously generated data. This may
take the form of textual or graphical representations. We typically
generate graphs and summative statistics using short ad-hoc scripts
written in Python that parse the output of the plug-in or simulation
stages to create graphical representations using matplotlib. In this
final stage we typically use only a few megabytes of input data,
down from several terabytes of raw data collected.

4. TIMESTAMPING MEASUREMENTS
Android exposes a number of different clocks to the program-

mer: uptime is the timespan since the device was last turned on;
it does not count time while the device is off. The real-time clock
continues counting time while the device is off and tracks UTC.
Wall-clock time is a real-time clock with attached time zone infor-
mation; it is used for displaying the local time to the user. External
time sources can be used to set the local real-time clock to a known
good value: Network time can be obtained by querying a server for
a reference timestamp and GPS time is a highly accurate source of
timing information available on many Android devices.

The most immediately appealing of these clocks is wall-clock
time, as it represents time the way the user experiences it and al-



lows us capture diurnal patterns. However, both real-time clock
and wall-clock time are subject to automated changes from the cel-
lular network or a network time source, or manual changes by the
user. An application using these clocks would record time in a non-
linear fashion which may include overlaps if the time was set back.
In particular, we have frequently observed devices reporting a date
in the 1980s for a short period of time when they first start up after
an operating system upgrade.

To avoid this phenomenon, we timestamp every measurement
with the device’s uptime in milliseconds. To know the user’s local
time, we additionally store the wall-clock time when Device Ana-
lyzer starts, and record all adjustments of the wall-clock time when
they occur. Android helpfully provides notifications for this.

Notably, we observed thousands of jumps in the system-reported
uptime across our dataset. These jumps may be a number of min-
utes to many tens of thousands of years either into the future or
the past. The vast majority of jumps are transient and we can eas-
ily recover the correct uptime. However, a small fraction of jumps
(roughly 1.5%) are not transient and continue increasing monoton-
ically after the jump. As an additional safety measure we period-
ically log the network time obtained from our server. GPS time
provides better accuracy, but requires the app to ask the user for
GPS permissions, which we chose not to do.

We believe that constructing a reliable time source from differ-
ent unreliable clocks is a challenge that many other distributed log-
ging applications face. Indeed, Oliver found in 2010 that time syn-
chronization “is the most problematic challenge to overcome in au-
tonomous logging.” [9]

We use a plug-in during the server-side offline processing stage
to reconstruct a valid wall-clock time for any point in the dataset,
based on the uptime measurements of every data point, the wall-
clock time adjustment events we have collected, and the periodic
network time measurements we collect. The reason for doing of-
fline processing is that we can improve algorithms and re-compute
timing information after the data was collected.

Figure 1 visualizes the relationship between uptime and wall-
clock time. Yellow dots indicate wall-clock time reference points
that are stored on application start and when adjustments are re-
ceived. Line segments indicate the time for which the device was
active without restarting (“session”) and connect sequential time
reference points or continue with gradient one until the device turns
off. Ideally, both sources of time agree perfectly and for each sec-
ond that uptime increases, we observe wall-clock time increase by
one second as well. In reality minor corrections will be needed due
to clock skew, which materialize in the graph as lines with gradients
that are slightly different than 1.

We generate a global time frame per session by finding the best-
fit line with gradient 1 and checking how much the best-fit without
the furthest outlier differs. If removing the outlier makes the best-
fit line move more than 30 seconds in wall-clock time, we remove
the outlier and repeat the first step. Once the fit moves only little,
we use it to generate wall-clock time references. Figure 1 shows an
obvious case for one such outlier (marked red).

5. DISCUSSION
In this section we discuss aspects of our work which we believe

address issues that the majority of big data projects need to handle
in one way or another. We hope that this discussion can help to
identify projects with common goals and provide a stepping stone
to share code, architectual ideas or resources.

Privacy Smartphones contain a lot of private data. As researchers
we have a duty of care to our participants and aim to minimise any
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Figure 1: Relationship of device uptime against wall clock time.
Yellow dots indicate time reference points. Red segments be-
long to an erroneous time after boot and need to be corrected.

intrusion. Our approach is based on both the European legal frame-
work, and the seven principles of Privacy by Design, an inclusive
approach to data projection written by the Information Commis-
sioner of Ontario, Canada. Our approach is compatible with an
earlier set of recommendations made to researchers in ubiquitous
computing [7].

Transparency, consent, and purpose Our data collection is both
transparent and explicitly given by the participant: Device Ana-
lyzer is distributed as a stand-alone application on the Google Play
store; it is never bundled with other software or pre-installed on
devices. We require consent inside the application to activate data
collection and remind the user of on-going data collection via a
monthly notification. Data collection can be suspended at any time
inside the application.

Security Communication between the Device Analyzer applica-
tion and the server is secured using TLS and data is securely stored
on a server hosted by our department.

Access and withdrawal Participants can access data collected
from their smartphone. Due to space constraints the full archive
is not available on the device itself. Instead, it can be downloaded
from the project website. Participants can delete their data and
withdraw from the study at any time from within the application.

Accountability We provide a “quick feedback” feature inside the
application to allow participants to send feedback without revealing
their email address. We also provide a working email address on
the project website.

Proactive privacy Device Analyzer is designed with a focus on
metadata rather than personal information. For example, we do not
collect an audio recording of a phone call; we record time, dura-
tion and phone number of the call. Before any data is uploaded
to our server, we preprocess and remove direct personal identifiers
and other sensitive information using a hash function with a salt
randomly chosen during installation.

Privacy by default Participants must explicitly opt-in to reveal
particularly sensitive data items. For example, GSM cell tower
identifiers are, by default, preprocessed by a salted hash function on
the device itself, and any location data collected is, by default, only
available for use by researchers at the University of Cambridge.

Data collection experiences Low-level raw data is stored when-
ever possible, rather than interpreting data on the device and storing
the resulting high-level data. For example, we collect the number
of bytes transmitted over a network interface as the OS reports it,
including the 32bit wraparound. This allows us re-extract informa-



tion from the original raw data later if we encounter a bug in our
interpretation code.

Resource use: Users are intimately familiar with their devices
and are quick to uninstall applications that reduce battery lifetime
or consume large amounts of disk space. However, rather than
judging by absolute numbers, users evaluate apps against other
apps that are already installed. The OS provides a list of appli-
cations that use lots of disk space or power. Where an application
ranks on these lists depends therefore heavily on usage patterns.

We designed Device Analyzer to have a very low resource foot-
print, with a typical power drain reported as 2% of overall device
power consumption. We also limit the amount of disk space Device
Analyzer uses, suspending data collection if necessary.

Error handling: An early version of Device Analyzer prompted
users to intervene when uploads failed. When a provisioning issue
caused our server to be unavailable for several days, the majority
of participants uninstalled the “broken” application; some left bad
reviews on the Play store. Later versions do not prompt the user but
rather try uploading more aggressively.

Trade-off of implementation vs computation complexity Our
analysis framework has no notion of persistence of state between
runs and earlier computations are repeated when a new archive file
is added, even when that would not be strictly necessary.

Previous versions of the analysis framework persisted the inter-
nal state of plug-ins and would restore the state when new data ar-
rived to avoid re-computing older data. While this technique meant
that incoming data resulted in much reduced compute times, we
found that state persistence and the necessary heuristics to deter-
mine which data needed to be re-computed quickly became diffi-
cult to manage. This is particularly true if we account for actions
that influence earlier data, such as when the user changes the time
on the device, invalidating previously computed results.

Re-computing all data allowed us to greatly simplify plug-ins
and management code in exchange for increased compute times.

Converting event streams to state models Device Analyzer
logs events like “screen on” and “screen off” or “wifi access point
x is visible”. For most analyses we need to convert a device’s event
stream into a state model that changes in response to events as time
progresses. As we assume independent devices, our plug-in sys-
tem (Section 3) achieves this in a modular way. This allows us to
measure durations that a certain condition was satisfied for, or to
combine the state of multiple plug-ins, e.g. to capture visible wifi
access points while the screen was on.

The general case involving dependent measurements is harder
and it is unclear how the corresponding architecture might look
like: One might imagine a system that steps through all data sources
in sync with a global time frame, or an iterated solution that starts
off assuming independent measurements and then converts towards
a global solution by including changes of neighbouring devices as
they propagate through the system.

Data provenance As discussed above, we created an ad-hoc so-
lution to reduce the amount of re-computation needed when new
data arrived. Our solution leveraged the dependency graph of plug-
ins to re-compute results from the raw data. However, we found
this to be insufficient as a holistic solution would need to capture
the true provenance of each computed data item in the form of data
that this item depended on. We would like to investigate generic
provenance APIs which would allow us to capture this information
more systematically [3]. This would allow us to easily determine
when to recalculate results and also to provide better transparency
to users of the derived data.

Collaboration with other researchers We are very much in-
terested in collaborations with other researchers. We are currently
evaluating a mechanism that allows interested parties to recruit a
set of participants and gain access to their raw data stream, allowing
them to re-identify the recruited individuals in the Device Analyzer
dataset. We are also interested in questions that the research com-
munity would like to answer using our dataset. To that extent, we
are preparing to publicly release the dataset and are collaborating
with researchers to investigate questions of mutual interest. How-
ever, due to the nature of the collected raw data streams, extracting
certain types of high-level information may require significant cod-
ing effort as the common-sense understanding of a problem may
translate into non-trivial states and conditions that need to be under-
stood when looking at the data in fine detail. We would appreciate
any input that other researchers may have on this issue.

6. CONCLUSIONS
Device Analyzer is a large-scale study of over 12,500 smart-

phone users in the wild. We have described our collection and pro-
cessing architecture in terms of easurement, on-device processing,
collection, server-side soft real-time analysis, archival storage and
server-side offline analysis. Processing timestamps shows a good
example of the problems we faced in terms of information collec-
tion and recovering from faulty data. Our plug-in architecture al-
lows us to easily integrate refinement steps such as this one into
our processing system. Our experiences suggest some more gen-
eral questions which might apply to other similar projects. We are
interested in identifying these projects and investigating whether
our infrastructure can be applied more generally.
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