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Abstract. We explore the extent to which we can address three issues
with passwords today: the weakness of user-chosen passwords, reuse of
passwords across security domains, and the revocation of credentials. We
do so while restricting ourselves to changing the password verification
function on the server, introducing the use of existing key-servers, and
providing users with a password management tool. Our aim is to improve
the security and revocation of authentication actions with devices and
end-points, while minimising changes which reduce ease of use and ease of
deployment. We achieve this using one time tokens derived using public-
key cryptography and propose two protocols for use with and without
an online rendezvous point.
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1 Introduction

Text-based passwords, passphrases or PINs are the dominant method of authen-
ticating users today. They are used to establish the identity of an individual to
an end-point, by which we mean either: a local physical device controlled by the
user, or software running locally on it (local end-point); or a service available
over a network (remote end-point). With the rise of the Internet, and partic-
ularly the Web, the number of remote end-points has risen dramatically with
the average user managing 25 web accounts in 2007 [13]. Similarly, as ubiqui-
tous computing takes hold, the number of devices individuals carry or use has
increased along with the number of local end-points. Rather than sharing access
to one home PC, many users now have multiple desktops as well as a laptop,
tablet and smartphone. These all need lots of credentials – shared secrets – not
just to access apps on the device or remote services but networks too. For ex-
ample Figure 1 shows the distribution of non-open WiFi credentials we found
on 8622 devices in the Device Analyzer project. Many users have more than 5
sets of wireless credentials and some have more than 40.

Passwords or PINs are popular because they are easy to use (incorrectly)
and easy to deploy [7]. They are also popular because they are the incumbent
technology: application developers believe they know how to deploy password
authentication securely, and users know what a password is and do not need
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Fig. 1. Number of WiFi credentials (WEP, WPA etc.) used while Device Analyzer [32]
was installed on 8622 devices (only counting if they participated for at least a week)
devices which never connected to any wireless networks not counted. Data collected
between 2011 and 2014.

any new hardware as almost all devices requiring authentication today have a
(soft) keyboard to enter numeric or textual data. It has also been speculated that
authentication by passwords is popular because it conveys a sense of exclusivity
and membership, and is therefore attractive to businesses which otherwise do
not need to authenticate individuals [6].

We cannot remember strong passwords without strong incentives and good
technical understanding [1]; attributes which the vast majority of users (quite
reasonably) lack. As a result, the use of passwords for authentication has al-
ways been problematic because individuals choose weak passwords and reuse
passwords across security domains. These two weaknesses mean that brute-force
attacks are possible, and the compromise of one end-point or device compromises
another end-point or device. More recently, as the number of passwords and de-
vices has increased, the revocation of passwords in the event of loss is becoming
both increasing difficult and increasingly important. Since passwords represent
a shared secret, the loss of a device means that many passwords across many
end-points and devices need to be reset. Can you remember all the passwords
you would need to reset if you lost your smartphone? What would be the effect
on your access to your remaining devices and end-points if you did so?



Whilst the use of passwords for authentication has remained largely un-
changed for 40 years, there have been two important changes which have been
widely adopted and deployed. Firstly, on the end-point and device side, different
password verification functions have been used from DES Crypt [21] through
MD5 to SHA512 and scrypt [24]. Secondly, on the user side, the automation of
password management, in the form of keychains, browser features and general
password managers, has become popular. In a survey of password behaviour [26],
28% of respondents said they always use a “remember my password” function,
and 70% have made use of such a feature. Unfortunately popular password man-
agers do not address important security issues: they allow users to input weak
passwords which can also be shared across multiple domains (though many offer
the facility to generate them), and they do not address the issue of revocation.
Some also do not deal with backup and frequently do not encrypt the password
database making it vulnerable to theft (for example if the user does not select a
master password).

In this paper we explore the extent to which we can address three issues
with passwords today: the weakness of user-chosen passwords, reuse of pass-
words across security domains, and the revocation of credentials. We do so while
restricting ourselves to (i) changing the password verification function on the
server, (ii) introducing the use of existing key-servers, and (iii) providing users
with a password management tool. Our aim is to improve the security and revo-
cation of authentication actions with devices and end-points, while minimising
changes which reduce ease of use and ease of deployment and so make this a
practical system.

2 Design overview

Our approach is similar to Monkeysphere [§ 4.1] in that we intend to replace
password-based shared secrets with public-key cryptography. Our design oper-
ates in a similar manner to a password management tool, which are widely
deployed and familiar to many users. This has the advantage that existing soft-
ware stacks, which assume the existence of a secret encoded as a string, continue
to function provided the underlying verification function is modified.

Our design makes use of three components: key-servers, devices and end-
points. Key-servers maintain an append-only log of public-keys and associated
fingerprints (hashes), revocation certificates and signatures. Personal devices
each have a public/private key pair for every identity and publish their public-
keys on key-servers.

Users authenticate themselves to end-points by using a device they control.
Authentication between the device and the end-point takes place over an es-
tablished secure channel (e.g. physical proximity or TLS) and requires a single
message generated by the device to be delivered to the end-point (e.g. by typing).



2.1 Threat model

Informally our adversary has the following abilities. Information sent and re-
ceived from the key-servers can be observed, tampered with or dropped. Informa-
tion sent over the channel between the device and end-point cannot be observed
or tampered with. End-points in multiple security domains can be compromised
by the adversary. Under those constraints an adversary should not be able to
authenticate to any end-points in domains without compromised end-points. A
compromised end-point should only be able to authenticate as the user to other
end-points in that domain if the user attempts to authenticate to it (unlike with
shared secrets where end-points can pretend to be any user to other end-points).

2.2 Key distribution
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Fig. 2. Each user has a device(s) with a keypair(s). The public-keys, signatures and
revocation certificates are published to the key-server(s) which maintain an append-
only log, which is audited by the auditor(s). The key fingerprints are registered with
the security domain(s) which can then subscribe to the key-server(s) and authenticate
users using a one time token.



A diagram showing the different actors in the key distribution is given in
Figure 2.

A user is a person who has personal computing devices, such as a smartphone,
a tablet, a laptop, a desktop or a smartwatch.

A user may have multiple unlinked identities, perhaps one for their legal
identity ‘Joe Bloggs’ another for when anonymous ‘A. N. Other’ and another
for secret activity ‘James Bond’. For each identity on each device the user can
generate a public / private key pair to use for authenticating that identity using
that device.

These public-keys are distributed to key-servers. Key-servers do not need
to be trusted to provide integrity or authenticity as all their actions can be
audited as all the data they store is public and signed. For example a Certificate
Transparency [19] style system could be used.

Users need to authenticate within many different security domains. At home
they need to authenticate to their own systems, with others at work, online
they need to authenticate to many mutually untrusting online providers such as
identify providers, banks and governments. These security domains have many
end-points at which authentication can be required.

Key generation For each identity on each device the user generates a key-
pair associated with that identity with a creation timestamp. This metadata is
then signed using the private key. A revocation certificate should be generated
and stored somewhere safe against future key compromise. The public key and
associated metadata are published to the key-servers.

Adding new keys Users need to link the public-keys for the same identity on
different devices:

1. Input the fingerprint of the public-key for that identity on device A into
device B

2. Request device B sign the public-key input
3. Publish the signature to the key-servers

Then repeat reversing A and B. All the keys with fingerprints signed by one key
are treated as being equivalent by the verifying end-point.

Registration At registration for this scheme at an end-point in a security
domain:

1. The user provides the key fingerprint for one of their keys for the relevant
identity.

2. The end-point requests that public-key and the transitive closure of all the
public-keys signed by the corresponding private key as being equivalent keys.

3. The end-point stores the fingerprints of all these public keys as being those
supplied at registration by the user after confirming this with the user.

4. The security domain registers with the key-servers to be told about any
relevant new signatures or revocations on these keys.



Revocation When a key-pair needs to be revoked then the adversary may have
the key-pair and the legitimate user may not have it. If the legitimate user still
has the key-pair then they can issue a new revocation certificate specifying the
date when the key-pair was compromised. Then any signatures or authentication
attempts made using that key-pair after that date are invalid. Otherwise they can
publish the revocation certificate generated originally invalidating all signatures
made with that key (hence the importance of following the transitive closure
of signatures at registration time, this prevents the user losing all access when
revoking a key). Additionally a valid uncompromised key-pair can be used to
sign a modification to the revocation certificate specifying a later date when this
should apply, however this key must still be valid even in the case of the original
revocation date so that an adversary cannot publish a modification which moves
the revocation date later after compromising the key.

Since the public-keys and signatures are published to an auditable append-
only log with timestamps, the adversary who has compromised a key cannot
produce signatures with dates in the past as they will only appear in the log
after their real creation date.

Thus an adversary can only push the revocation time earlier, invalidating
valid signatures and so while they could perform a denial of service, they could
not authenticate as the user. They also cannot cause key-pairs which they have
not compromised and which were valid at registration to be invalidated.

2.3 Simple one time token authentication protocol (SOTTA)

We assume that the end-point is already authenticated to the user, e.g. by phys-
ical proximity or Transport Layer Security (TLS) (for all the flaws of the CA
hierarchy [9]). We also assume that they are communicating over a secure chan-
nel resistant to man in the middle (MITM) attacks.

To ensure that tokens valid for one domain are not valid for use at other
domains we include the domain’s name (such as a DNS domain name) D in the
token. To ensure that tokens are fresh without having specific shared state we
incorporate a timestamp.

Notation (in the style of the BAN logic [8]):

– KX is the public-key associated with the identity X and K−1X is the private
key for X.

– I is the time interval in which a token is valid.
– t is the current epoch time on Alice’s (A) device’s clock, t′ is end-point’s

(server, S) time.
– The floor function btc quantises a time to the system’s quantum Q (e.g. one

minute).
– The || operator concatenates of the octets of its arguments each preceded by

its own length represented as 4 bytes, bigendian.
– {y}K−1

X
denotes the signature of y with X’s private key.

The initial state for authentication is:



– Alice (A) has a device with KA, K−1A and a clock synchronised to within ∆t
of UTC.

– The end-point (server, S) in domain with name D has KA and a clock within
∆t′ of UTC.

– |∆t−∆t′|+ transmissiondelay < I

– A has a secure connection (provides confidentiality and integrity) to S which
authenticates S

Then A can authenticate to S in one step by sending a token:

A→ S : A, {D||btc}K−1
A

(1)

S knows D and assumes its time t′ is within I of t (even after the transmission
delay) and has received the one time token o from A. It can then check whether:

∃tc.t′ −
I

2
≤ tc ≤ t′ +

I

2

∧
tc mod Q = 0

∧
verify(D||tc, o,KA) (2)

That is, is there a candidate time tc within I
2 of S’s clock t′ which causes the one

time token o to verify. If I is 5 system quanta then S must perform at most 5
verifications before rejecting an authentication attempt. Hopefully usually only
one verification would be required if S picks the order to verify tc’s in carefully
(most likely first). It does not require much storage for S to check that it has
not seen this token before, since tokens expire quickly.

While in many circumstances a password-manager style application could be
used to input o, in some cases the user must still type the password. Hence the
size |{D||btc}K−1

A
| is important as this may have to be typed in by the user. This

size is determined by the signature algorithm used.

2.4 Signature algorithm

User text entry of random strings is a low-bandwidth channel with a high error
rate and so we want the signature size to be as small as possible. Table 1 gives the
number of characters required for different bit lengths with different encodings.
With symmetric key-based signatures a client can provide a truncated signature
to a server and the server can still verify it by computing the signature and trun-
cating it. With public-key cryptography the server cannot generate a signature,
only verify signatures and so the client must send the full signature. For 128
security bits a 3072 bit RSA [27] key is required [2] and even for 80 security-bits
a 1024 bit RSA key is required (and that could be brute forced). With RSA the
signature length is the same as the key length and 1024 bits takes 172 Alphanu-
meric1 characters to represent, which a user will not be willing to type in. DSA2

(and ECDSA) [12] need signature lengths four times the security-bits size and
so need 320 bits for 80 security-bits or 512 bits for 128 security-bits which takes
54 and 86 Alphanumeric characters respectively.



Table 1. Encoding sizes for different bit lengths

Bits Bytes numeric alphabetical Alphanumeric Algorithm
[0-9] [a-z] [A-Za-z0-9]

32 4 10 7 6
64 8 20 14 11
80 10 25 18 14
128 16 39 28 22
160 20 49 35 27
256 32 78 55 43 Minimum
320 40 97 69 54 BSL?
512 64 155 109 86 DSA
1024 128 309 218 172
3072 384 925 654 516 RSA

Table 2. Bits required for different signature schemes for different numbers of security-
bits

Scheme 80 112 128 256

RSA 1024 2048 3072 15360
DSA 320 112 512 1024
BSL 171 [5], 160 [3] 224 [3] 256 [3] 640 [17]
Minimum 160 224 256 512

There are shortened signature schemes for DSA [22, 25, 23] but they seem
to use message recovery which does not help as the message is implicit and so
only the signature needs transmission. We are also suspicious of such schemes
as the DSS clearly states that the ephemeral key k used in the signing process
must be cryptographically random and secret [12], indeed leaking any bits of it
progressively compromises the private key [15].

The BSL signature scheme [5] provides signature lengths approaching the
theoretical minimum of twice the number of security-bits but is not widely de-
ployed. The theoretical limit for a hash function is double the number of security-
bits because of the birthday problem. A comparison of the signature lengths of
different schemes is given in Table 2.

There are other schemes: NTRUSign was broken in 2012 [11]. Lamport sig-
natures [18] could be used but would need a different scheme with one public-key
chain per domain which would make scalability harder. Schnoor signatures [29]
have similar properties to DSA but are less widely used.

Ideally we would like a public-key signing scheme with a signature size provid-
ing at least 112 security-bits3 using fewer than 256 bits in total (43 Alphanumeric
characters) but there is no widely used scheme with this property – BSL might

1 [A-Za-z0-9]
2 DSA is broken if the random number used for nonces is biased which is problematic as

frequently devices have bad random number generators that would leak the private
key [15].

3 NIST minimum number of security-bits to 2030 [2].



be a suitable candidate. The user can type the signature in but we can also input
it either by automatically inputting it [§2.5] or by using online assistance [§2.6].

2.5 Automatic entry (AOTTA)

If the device containing the keys is the same device as the one where the token
needs to be input (e.g. if the keys are on a smartphone and authentication to
a website through the mobile browser is being attempted) then the token can
simply be copied – as with passwords and password-managers. If the device
containing the keys emulates a keyboard (e.g. using Bluetooth) to the machine
into which the token needs to be input, then when the user pushes a button on
the device the token can be automatically typed. If the device containing the
keys has a screen and the device where the token needs to be input has a camera
then a QR code could be used. Alternatively audio networking could be used if
the device has a speaker and the end-point has a microphone [20].

2.6 Online assisted one time token protocol (OOTTA)
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Fig. 3. Architecture of OOTTA: the existing channel is labelled ‘e’ and communication
via the relay is set up using J-PAKE ‘J’

When both the device with the keys and the end-point are online then they
can rendezvous and authenticate with a short token s transmitted locally, this
is shown in Figure 3. Data about a device’s preferred rendezvous point can be
associated with the public-key and so does not need to be input. All that needs
to be input is the identity of the user A and a random token s which can be
low entropy. Then Password Authenticated Key Exchange (PAKE) protocols



[§4.2] such as J-PAKE [14] or SPEKE [16] can be used to generate a shared key
between the device with the keys and the end-point. Since this shared key is
authenticated by s the device with the keys can perform the simple one time
token authentication protocol (SOTTA) [§2.3] over a connection encrypted and
authenticated with the shared key with the same result as before.

To analyse the latency and steps in this protocol more precisely we will use
J-PAKE and assume that messages must be forwarded via a relay (R)4 as the
user device and the end-point may not be able to communicate directly due to
network address translation.

First A must send the random short secret to the end-point (S) over the
existing channel e (e.g. keyboard).

A−→e S : s (3)

Then concurrently A and S each send a message and a response to each other
via the relay according to the J-PAKE protocol [14]. From which they can both
compute session key K and confirm it with another request and response.

At this point A and S share a session key K which they can use for au-
thenticated encryption (denoted EK(x)) and which has the same properties as
the original secure channel e (such as physical proximity) in terms of integrity,
confidentiality and the authenticity of S to A. It remains to authenticate A to
S which we can do using the SOTTA protocol encrypted with K.

A→ S : EK({D||btc}K−1
A

) (4)

Since the first two pairs of messages are sent concurrently, the total time
spent transmitting messages over the network is five times the time it takes to
send a message from A to S via the relay R or 2.5 RTTs which equates to about
1 second in the worst case.5

2.7 Deployment

In practice we would expect large technology companies and perhaps internet
infrastructure organisations such as ICANN to run key-servers (Google has al-
ready indicated a willingness to run a Certificate Transparency server which
is a similar service). Relays could be self hosted or run by technology com-
panies interested in increasing lock-in for their users. End-points range from
desktops, laptops and other local devices through to servers running websites of
all descriptions. Devices containing private-keys could be dedicated hardware,
or commodity smartphones, desktops or laptops.

4 We are going to ignore TCP handshakes here and retransmissions as these are im-
plementation details (we could implement with UDP).

5 A and S adjacent and R on the opposite side of the world



3 Evaluation

Many different authentication schemes have been proposed to replace pass-
words. Bonneau et. al. [7] have conducted an exhaustive survey of authentication
schemes which we will not repeat here. It proposes the UDS framework criteria
for evaluating authentication schemes which we use to evaluate our proposal and
defines the terms in italics which follow.

In the following we will use OTTA for our proposal in general, SOTTA for
the simple manual input case, AOTTA for the automatic entry case and OOTTA
for the online assisted case.

Usability: OTTA is Memorywise-Effortless as users do not need to remember
any secrets. It is Scalable-for-Users as it can be used for hundreds or thousands
of domains without an additional burden on the user (they might need to input
the domain name into their device once per domain but this still scales). It
is not Nothing-to-Carry as the user must carry a device with keys. It is not
Physically-Effortless as the user must type something in. It is hard to evaluate
Easy-to-Learn without a real system to test against. It could be Efficient-to-
Use for AOTTA and OOTTA. It should be Infrequent-Errors for OOTTA and
for AOTTA. It is Easy-Recovery-from-Loss as multiple working devices with
independent keys are supported and so backups can be taken.

Deployability: OTTA is at least as Accessible as passwords. It is Negligible-
Cost-per-User as we assume users will already have a ‘suitable’ device such as a
smartphone or laptop. A dedicated device might provide better security but is
not necessary. It is not Server-Compatible as some changes would be required
at the server end to support it. However it would be compatible with existing
users still using passwords as it just requires different treatment of the received
token. It is Browser-Compatible as the browser only sees a text password input,
protocol logic is at the end-point and in the device. It is not Mature as it has not
been implemented. It is Non-Proprietary using known algorithms and protocols
not encumbered with patents.

Security: OTTA is Resilient-to-Physical-Observation as tokens are only valid
once and for a short period. An attacker could observe a token and type it
in faster than the user but this would only be valid once. Domains should en-
sure that they request a new token when an authenticated client attempts to
add a new key (as with passwords). It is Resilient-to-Targeted-Impersonation as
it relies on randomly generated keys. It is Resilient-to-Throttled-Guessing and
Resilient-to-Unthrottled-Guessing as the keys would need to be brute forced and
that should require 2128 work (depending on the security parameter). It is not
Resilient-to-Internal-Observation at least not if the device with the keys is not
a dedicated device that cannot acquire malware. It is Resilient-to-Leaks-from-
Other-Verifiers as the verifier has nothing that can be used to impersonate a
user to a different verifier. It is Resilient-to-Phishing as a phising site can only
obtain a one time token which would have to be used in real time (the definition



of Resilient-to-Phishing excludes this and we assume a secure connection to the
end-point which authenticates it). It is not Resilient-to-Theft in general as we
place no restriction on the devices that could be used. If users use strong secu-
rity to protect their device such that data on it cannot be accessed then they
would have this benefit. There is No-Trusted-Third-Party since bad key-servers
can only compromise availability and many key-servers can be used safely and
audited. It is Requiring-Explicit-Consent as a user must select which domain
they want to authenticate to and then type something/press a button. It is very
much not Unlinkable as one (set of) public-key(s) is used for all domains, the
tokens themselves cannot be used for linking.

4 Related work

Password managers exist that generate unique passwords for each site, but so far
they have not been popular. For example, PwdHash [28] automatically generates
secure passwords by hashing a user-supplied master password with the domain
name of a website and has been downloaded over 100,000 times since 2009.

If end-points supported multiple passwords then a different password could
be specified for every (device, end-point) pair but this would not scale with
hundreds of end-points and many devices as each password would have to be
manually configured. A single dedicated hardware token such as a Pico [30]
could be used but this could still be compromised and hence a revocation and
resetting of credentials protocol would be required. Additionally someone would
need to pay for this new hardware token. A password manager could be used
to store one strong password per security domain (e.g. identity provider, work,
home) but then this needs to synchronise the secrets between several devices.
The compromise of any one device would result in the passwords needing to be
reset for all domains. Secure synchronisation is not trivial though there is work
on plausible solutions [31].

There are shared secret schemes with better resistance to brute force attacks
and weak choice of passwords such as the one time password scheme used by
Google’s Authenticator [7, p. IV.I.5] or RSA tokens [7, IV.H.1] – but they have
the same scalability problems.

SSH can use public-key cryptography to authenticate users to the server and
the public-key can be distributed to many end-points. Monkeysphere solves the
difficulty of revocation and distribution of new keys in that situation.

4.1 Monkeysphere

Our original motivation for developing SOOTA was to extend our existing scal-
able distributed authentication mechanism for our servers, which use Monkey-
sphere and SSH, for the cases where networking on the VM was broken or phys-
ical connection to a server was required. Monkeysphere6 solves the key distribu-
tion and revocation problem for SSH7 by using GPG / PGP with its key-server

6 http://web.monkeysphere.info/
7 It also aims to augment/replace the CA hierarchy for TLS but that is not our focus.

http://web.monkeysphere.info/


infrastructure to perform fast revocation. The user provides the domain admin-
istrator with a user id (uid) for their keys and the administrator signs the keys
they have verified (e.g. in person) with a key trusted by the domain. Then the
machines can automatically fetch all the keys which match the uid and verify
them using a domain key. Those which verify can then be used to login. The key
pair for SSH is embedded as a GPG subkey in the main GPG key and then SSH
public-key authentication proceeds as normal with the public subkeys from the
verified GPG keys being added to the relevant authorized keys file.

In our group there are two domain administrators who sign the Monkey-
sphere enabled GPG keys of users that are then used to authenticate to all our
machines.8

4.2 Password authenticated key exchange (PAKE)

Passwords are low entropy secrets, and they have no resistance against brute
force offline attacks where the number of guesses an attacker has is unlimited.
However low entropy secrets are secure against online attacks where an attacker
has a limited number of guesses. Unfortunately encryption, decryption and sign-
ing expose the key used to perform the cryptographic operation to offline brute
force attacks and so high entropy keys are required. Password Authenticated
Key Exchange (PAKE) schemes use a low entropy password to authenticate a
high entropy key which two parties have generated (e.g. by using Diffie-Hellman
(DH) key exchange [10]). A secure PAKE scheme only reveals to the two parties
whether they have the same password or not on each run of the protocol. So
each party knows how many times the protocol has been run and so how many
guesses have been had and can refuse to participate in future runs.

J-PAKE [14] is a PAKE scheme which uses DH key exchange and is the
only such scheme with a security proof and no known issues, however it is also
relatively new (2011). The first such scheme was EKE [4] (1992) but some flaws
have been found in it [14]. SPEKE [16] (1996) appears to be better but still has
flaws allowing more than one guess of the password on each run [14]. Both EKE
and SPEKE have been patent encumbered which has reduced adoption. Hence
we consider only J-PAKE for use in our protocol.

5 Discussion and conclusion

The system proposed in this paper could be implemented and make use of ex-
isting infrastructure. As with Monkeysphere we want to perform authentication
using a specific GPG subkey, perhaps with some additional associated data (the
relay information for OOTA). Then we can perform distribution of the public-
keys and associated data in the background using higher bandwidth internet links
on a periodic basis. Verification can be performed at registration by supplying
a uid (such as ‘Daniel Robert Thomas <drt24@cam.ac.uk>’) and a key fin-
gerprint (such as ‘5017 A1EC 0B29 08E3 CF64 7CCD 5514 35D5 D749 33D9’).

8 The source code is available https://github.com/ucam-cl-dtg/dtg-puppet/

https://github.com/ucam-cl-dtg/dtg-puppet/


The supplying of the key fingerprint allows the key to be automatically signed,
and subsequent keys can be verified by: (i) signature of an existing key, (ii) in-
putting the the key id within an existing login session, or by (iii) signature of
one of the domain admins. Since all the keys are synchronised via the key-server
network, it is possible to audit which keys are being circulated for different uids
and which keys have signed them. So it would be easy to offer users a service
which would tell them about new keys with one of their uids and keys that were
signed with one of their keys so that erroneous signing of malicious keys can be
detected and the keys revoked.

We have assumed that it is possible for users to have ‘password manager’ style
programs, for the verification function used to verify passwords to be changed
and that the GPG key-servers can be used in backwards compatible ways for
new purposes. We assume this since, unlike most aspects of password-based
authentication, all these things have changed before. Crucially, our proposal does
not alter the input and transmission of ‘passwords’ through the application and
therefore any change made to the server is limited to modifying the verification
function.

We described a protocol that allows users to authenticate to end-points with
a single message that can be generated on a device they already have with-
out requiring input to the device. This is backwards compatible with passwords
except for a change to the password verification function, which improves deploy-
ability. This provides good usability when the token can be input automatically
(SOTTA) or when the user’s device and the end-point both have an internet con-
nection (OOTTA). This system could realistically be used to replace passwords
in many circumstances, particularly when bootstrapping or when resolving fail-
ures. In the past, password authentication has evolved through changes in the
verification function and the introduction of password managers. We hope this
system will provide better authentication by evolving those parts of password
authentication that have been shown to evolve in the past.

Acknowledgements Nicholas Wilson, Oliver Chick, Andrew Rice, Markus
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[11] Léo Ducas and Phong Q. Nguyen. “Learning a Zonotope and More: Cryptanal-
ysis of NTRUSign Countermeasures”. In: Lecture Notes in Computer Science:
Advances in Cryptology - ASIACRYPT 7658 (2012), pp. 433–450. issn: 0302-
9743. doi: 10.1007/978-3-642-34961-4_27 (cit. on p. 8).

[12] “FIPS 186-3: Digital Signature Standard (DSS)”. In: National Institute of Stan-
dards and Technology (NIST) (2009) (cit. on pp. 7, 8).
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