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Abstract-Human inactivity has been associated with the 
incidence of a number of health conditions and chronic 
diseases, while our increasing energy consumption is a well
documented problem. A Personal Energy Meter might help 
identify areas for improvement in our lifestyles that would 
benefit both our personal health and the global environment. 
As one strand of this, we explore the possibility of estimating 
our own energy expenditure from movement traces provided by 
location systems. This technique offers a number of advantages 
over accepted accelerometer-based devices. We validate a model 
which we then apply to analyse the physical activity and 
working patterns of a total of 60 individuals spread across 
two separate offices. 
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I. INTRODUCTION 

Modem society is making increasingly unsustainable 

demands on our environment. Meanwhile, our sedentary 

lifestyles are creating health problems. There is a clear reci

procity between personal and planetary wellbeing-those 

actions which improve our own health often also have a posi

tive environmental impact-and comprehensive and accurate 

sensor data will be very useful in ameliorating problems 

with both of these. Pervasive computing technologies could 

help provide users with valuable information on their health, 

physical activity and carbon footprint. 

As part of the wider Computing for the Future of the 

Planet research theme [1], which seeks in part to explore 

how computers and sensors can allow us to optimise our 

daily activities and lives, we envisage a Personal Energy 

Meter (PEM) which can record and apportion an individual's 

energy usage in order to provide baseline information and 

incentives for reducing our environmental impact [2]. This 

encompasses 'energy' in all its forms, from transportation to 

human effort. It is often difficult to identify potential areas 

for improvement in our lifestyles, and to assess the effect 

of any changes we make; we hope that a PEM will help 

address these problems. 

A PEM is a pervasive computing device, since it needs 

to collect, store, process and share sensor data in order 

to function. We believe that the same sensor data used to 

measure the sustainability of our lifestyle can often also 
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be used to assess the personal healthiness of our daily 

routine. For example, cycling to work has both planetary 

and personal health benefits. 

Consequently, an important use of the PEM is to measure 

and interpret the energy we expend ourselves through phys

ical activity. A sedentary lifestyle has been linked to obesity 

[3] and a range of long-term ailments including respiratory 

deficiencies, coronary heart disease, type IT diabetes, colon 

cancer and osteoporosis [4], [5]. It has been shown that 

increased physical activity is associated with a lower risk of 

mortality, and "promoting the potential benefits of physical 

activity undertaken at home and during exercise may be an 

important public health message for ageing populations" [6]. 

Pervasive healthcare seeks to apply the technologies and 

principles of ubiquitous computing to improve an individ

ual's health. Location data is arguably the most frequently 

collected piece of contextual information in pervasive com

puting, and can be used in the PEM to provide a variety 

of healthcare applications. In this paper we explore what 

fine-grained location data can tell us about the energy 

expenditure, and consequently, the health of an individual. 

This technique offers a number of improvements over the 

accepted method, which involves dedicated accelerometer

based devices worn on the hip: 

• an individual does not suffer the financial cost and 

physical inconvenience of wearing a specialised activity 

monitoring device; 

• it is possible to determine where and with whom the 

most energy is expended, helping to identify locations 

and social groups that encourage physical activity; and 

• working hours and patterns are represented in the data, 

providing an insight into important factors in physical 

and mental health. 

We make three main contributions: 

• drawing on prior work, we refine a model to convert 

fine-grained location data into an estimate of human 

energy expenditure; 

• we validate this model by comparing our location

based energy estimates to measurements taken from 15 

individuals wearing an activity monitor frequently used 



in the medical community for one week; and 

• we apply our energy model to provide estimates of 

the energy expenditure, over one working week, from 

a total of 60 individuals spread across two separate 

offices. 

We visualise the activity of all the office users to highlight 

trends and outliers, and discuss the potential of this tech

nique for future pervasive healthcare applications as well as 

the wider implications for personal energy metering. 

II. ENERGY CONSUMPTION MODEL 

In previous work, we developed a model for estimating 

energy expenditure based only on location information and 

derived velocity [7]. For clarity, we summarise the main 

components. 

Ralston showed that, during level walking, the energy 

expenditure is a linear function of the square of the speed 

[8]; converting his empirically derived formula to SI units, 

we obtain: 

(1) 

where P w is power in W, v is velocity in mls and m is 

mass in kg. 

Our first study location did not include stairs, but these 

represent a very significant fraction of an individual's indoor 

energy expenditure. When a person climbs stairs, they must 

gain gravitational potential energy. This can be expressed as: 

Eg = m . 9 . !:1h (2) 

where Eg is energy expenditure in J, m is mass in 

kg, 9 is the acceleration due to gravity (9.81 mls2) and 

!:1h is the change in height in m. The same formula also 

captures standing up. Note that we do not take into account 

energy required to accelerate vertically at this stage and only 

consider positive changes in height; empirical analysis of the 

data correlated with Actigraph readings show that these have 

minimal impact on energy expenditure and they are omitted 

for the sake of simplicity. 

When a person accelerates, they must gain kinetic energy. 

This can be expressed as: 

1 2 Ek = -
. m· (!:1v) 

2 
(3) 

where Ek is energy expenditure in J, m is mass in kg and 

!:1v is the change in velocity in mls. 

III. VALIDATION 

To validate this model, eighteen participants in a study 

wore both a location device and a GTIM Actigraph for a 

week. The use of these monitors received ethical approval 

and the participants' consent. Figure 1 shows a floor plan 

of the section of the William Gates Building where the par

ticipants work, which is fitted with the Bat system [9]. This 

provides location information in three dimensions accurate 
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Figure I. Portion of second floor, William Gates Building 

to within 3 cm 95% of the time [10], while the Actigraph is a 

triaxial accelerometer-based device which previous medical 

studies have shown provides a reliable record of energy 

expenditure [11], [12]. 

The Actigraph records counts which are a dimensionless 

unit, but Freedson et al. suggest a popular empirically

derived equation to derive energy expenditure estimates [13]. 

Converting to SI units for comparison with our model, we 

obtain: 

P = 

(0.00094(60c) + 0.1346m - 7.737418)·4184 
60 

(4) 

where P is power in W, c is counts/s and m is mass in 

kg. 

The Actigraph manual recommends using the Freedson 

equation only when c exceeds a certain threshold since it not 

capture the Basal Metabolic Rate (BMR). The Ralston equa

tion used to derive energy expenditure from movement gives 

a stationary power consumption of approximately 2.02m 

(where m is mass in kg). Accordingly, where c is small we 

interpolate linearly between an estimate of stationary power 

consumption taken from the Ralston equation and the value 
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Figure 2. Bat system data correlates closely with Actigraph counts 

given by the Freedson equation at the threshold; see [7] for 

full details. 

Figure 2 shows the close correlation between the data that 

prompted the development of our energy model, while the 

'S-curves' in Figure 3 summarise the differences between 

the energy expenditures recorded by the Actigraph and the 

estimates from our movement model for each person along 

with a mean error curve. The y axis shows the percentage of 

minute-long time periods for which our estimate of energy 

expenditure differed from that of the Actigraph by less than 

the value on the x axis. The curves are clustered reasonably 

tightly, and reveal that, on average, over the course of a 

week, 90% of the energy expenditure estimates from the 

movement model differ from Actigraph data by less than 340 

J per minute, while the mean error was 198 J per minute. 

For comparison, a person using 2000 calories a day would 

expend on average around 5811 J per minute. Of course, 

it is not known which set of figures are actually closer to 

the truth; there is some dissatisfaction with the accuracy 

of the current methods of accelerometer-based monitoring 

[14], and we believe that our model's output is sufficiently 

accurate that it can usefully be applied to other studies. 

IV. AT&T LA BORATORIES STUDY 

Having validated our model, we can use it to obtain 

activity estimates from datasets where users did not wear 

specialised medical devices. The Bat system was originally 

developed at AT&T Laboratories Cambridge and all staff 

(and many visitors) wore the devices continuously for sev

eral months, using them to drive a plethora of location-based 

services, including access to secure areas and have their 

computer desktops 'follow' them automatically from ma

chine to machine. The movement traces were all recorded, 

and this dataset therefore provides an excellent opportunity 

to put our activity estimation model into practice. Figure 

4 shows the plan of one floor of Keynes House, where the 
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Figure 3. Distributions of differences between energy expenditure es
timates from the Actigraph and Bat system data for the William Gates 
Building over minute-long samples 

Figure 4. Third Hoor, Keynes House 

laboratories were located; one important difference with this 

site is that it is split over three floors, and ascending stairs 

has a significant impact on energy expenditure. 

V. ENERGY EXPENDITURE 

To better understand and compare the data obtained, we 

devised a 'heat map' visualisation that allows us to represent 

each user's activity graphically. Figure 5 shows the energy 

consumption of the users in the Computer Laboratory during 

our validation study, while Figure 6 shows the top 40 

users at AT&T Laboratories over the course of a typical 

working week. Each participant has one row, while the x 

axes represents time, covering Monday morning to Friday 

evening. Darker colours indicate more intense activity; note 

that the figure is plotted using a logarithmic scale. Signif

icant variations in the intensity of activity become readily 

apparent. 



This representation has a number of advantages compared 

to standard graphs: 

• both trends and outliers are highlighted; 

• it can be 'zoomed' arbitrarily, providing an at-a-glance 

overview while also allowing individual analysis; 

• it facilitates comparisons amongst a population since 

its compact form allows a relatively large number of 

users to be plotted on common axes 

• periods with no data, when users are out of the office, 

also stand out, enabling an analysis of working hours 

in addition to exploring patterns of physical activity. 

VI. DISCUSSION 

The depictions of activity in Figures 5 and 6 reveal a 

number of traits of interest about the lifestyles of the building 

occupants. Apart from the total physical activity, which has 

obvious ramifications enumerated in countless articles of 

medical research, they show each individual's working hours 

and patterns. Users working late into the night, or skipping 

lunch, stand out clearly from their neighbours. How long 

people work, how regularly they take breaks and their degree 

of interaction with colleagues all have a demonstrated impact 

on physical and mental wellbeing. 

The rows in Figure 6 are sorted by total activity, so 

adjacent users have comparable levels of overall energy 

expenditure-but often show quite different patterns, with 

some consisting of short bursts of intense activity inter

spersed with long periods of inactivity while others maintain 

a more-or-Iess constant level. Several rows show isolated 

vertical deep red lines breaking up the normal level of 

activity; cross referencing these to the original location data 

show they often represent climbing a flight stairs. 

VII. RELATED WORK 

The state of the art in physical activity monitoring is 

generally based on accelerometers or heart rate sensing [15]. 

Corder et al. provide a review that examines recent literature 

on the validation of movement sensors to assess habitual 

activity [16]. In general, there has been little research on es

timating physical activity through movement traces, though 

the ubiquitous computing field has invested significant effort 

in mechanisms for obtaining these traces [17]. 

The Personal Environmental Impact Report is an interest

ing parallel to the Personal Energy Meter concept that uses 

location data sampled from mobile phones to calculate per

sonalised estimates of environmental impact and exposure 

[18]. It is unusual in considering the effect of travel on the 

individual's health, assessing the user's exposure to smog 

and even fast food restaurants en route, but does not make 

an attempt to calculate personal energy expenditure. 

VIII. FUTURE WORK AND CONCLUSIONS 

Although the location data in these studies was obtained 

using a highly accurate indoor tracking system, clearly the 
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majority of buildings are not equipped with such technology. 

It would be interesting to investigate the effect on accuracy 

of using less fine-grained data, such as might be provided by 

the sorts of coarse tracking systems that can be deployed by 

repurposing existing infrastructure [19] or by GPS traces 

outdoors. This would allow us to extend the model to 

incorporate additional means of transport, such as cycling. 

In this paper, we have outlined a model for estimating 

physical activity using location data, validated our model 

against equivalent data from current accepted medical de

vices and used it to present results from two separate 

studies of office populations. Pervasive computing systems 

can provide users with valuable information about their 

energy expenditure and consumption on both a personal and 

planetary scale: walking to work instead of driving reduces 

your overall energy consumption but increases your personal 

energy expenditure, both of which have a beneficial effect. 

Our steps here towards one strand of energy information 

can form a component of a Personal Energy Meter [20], 

which we hope might motivate lifestyle changes, identify 

opportunities for improvements and demonstrate the impact 

that alternatives can have not only on public health but also 

on the sustainability of our environment. 
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Figure 6. Visualisation of energy expenditure of top 40 occupants of Keynes House over a typical working week. 
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