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ABSTRACT
Adaptive learning systems aim to learn the relationship be-
tween curriculum content and students in order to optimise
a student’s learning process. One form of such a system
is content recommendation in which the system attempts
to predict the most suitable content to next present to the
student. In order to develop such a system, we must learn
reliable representations of the curriculum content and the
student. We consider this in the context of foreign language
learning and present a novel neural network architecture to
learn such representations. We also show that by incorpo-
rating grammatical error distributions as a feature in our
neural architecture, we can substantially improve the qual-
ity of our representations. Different types of grammatical
errors are automatically detected in essays submitted by
students to an online learning platform. We evaluate our
model and representations by predicting student scores and
grammatical error distributions on unseen language tasks.

1. INTRODUCTION
In general the adaptive learning approach has been shown
to lead to improved learning outcomes for student users of
educational platforms [4, 8, 10]. However, there remains a
question of what is the best methodology to construct rep-
resentations for students and tasks. Previous approaches
manually engineer features to construct representations [7].
These features are usually tuples of a knowledge component
(e.g. differentiation, fractions in the case of maths) and stu-
dent outcome (i.e. whether or not the student demonstrated
understanding for that knowledge component through com-
pleting the task). A task may contain multiple knowledge
components. Whilst this approach is highly interpretable,
in the domain of language learning, it is difficult to clearly

divide the tasks into knowledge components. Furthermore,
in the recently popular paradigm of deep learning, we have
seen that training representations through neural networks
have yielded state-of-the-art results in the space of image
recognition, and various natural language tasks.

Motivated by this, we propose a methodology of automati-
cally developing high quality representations of students and
tasks in a language learning context. Having reliable student
and task representations in place facilitates work on down-
stream tasks such as curriculum learning and recommender
systems for language learning.

Representations are derived from a novel neural architecture
and real student data collected through the Write & Im-
prove1 (W&I) assessment and feedback platform for learners
of the English language. [13].

Our best-performing model incorporates grammatical error
distributions detected by ERRANT [3] as a feature and
achieves mean squared error (MSE) of 1.195 on score pre-
diction, an absolute value of 1.093 on a scoring scale of 0-13.

2. WRITE & IMPROVE
On W&I, students are prompted to input a short text of at
least 25 words in response to a given question. Once they
have completed the task, the W&I automarker assigns each
text an integer score s between 0 and 13. The system also
automatically provides a grade on the CEFR scale2 along
with feedback on grammatical errors detected in the text.
Table 1 outlines how integer scores are mapped to the CEFR
scale. Currently all users of W&I move through the curricu-

Table 1: Student scores mapped to CEFR levels

A1 A2 B1 B2 C1 C2

1-2 3-4 5-6 7-8 9-10 11-13

1https://writeandimprove.com
2The Common European Framework of Reference for Lan-
guages

https://writeandimprove.com


Figure 1: Task score prediction system architecture.
Dotted lines and boxes are optional features and net-
work connections.

lum in an unguided and independent fashion. An intelligent
tutoring system would instead guide students from task to
task in order to personalise their learning experience and
improve their level of performance. In order to do that we
must learn reliable student and task representations.

We obtained application logs of user activity from the past
two years – a total of 3+ million essay submissions by 300k
account holders. We filtered the data for users who had
submitted at least 10 submissions. We also had a record of
the questions (‘prompts’) users responded to and the scores
assigned to their texts by W&I’s auto-marker.

3. LEARNING STUDENT AND TASK REP-
RESENTATIONS

Our primary goal was to predict student scores on a given
language learning task based on our representations of stu-
dents and tasks in W&I. Secondary to that, we check the
quality of our student representations by predicting the gram-
mar error distribution of a given student-task tuple. In what
follows we describe the data, evaluation metrics and models
used in this work.

3.1 Model Architecture
The architecture of our neural system can be seen in Figure
1. The neural network takes as an input a user id u and
task id t which are taken as indices in the user embedding
layer U and task embedding layer T respectively. u ∈ Nu
where Nu is the number of unique users in the W&I dataset.
t ∈ Nt where Nt is the number of unique tasks in the W&I
dataset.

We optimise our system and learn a user embedding matrix
U and task embedding matrix T by minimising the mean
squared error (MSE) of our predicted score s and the target
score ŝ.

We introduce an auxiliary objective to predict the difficulty
β of each task t, referenced as tβ . The ground-truth labels
for task difficulty (beginner, intermediate, advanced) are ob-
tained from the meta-data of each task in the W&I dataset.

3.2 Feature Set
In addition to the score s, the W&I dataset contains prompts
and answers in natural language as well as metrics on whether

submission k is the highest scoring submission by user u. We
incorporate these additional features into the architecture of
the model in order to evaluate their impact on the quality
of user and task embeddings.

3.2.1 Answer and Question Embedding
We obtain a vectorised form of each student response and
question using 300-dimension word2vec embeddings3 pre-
trained on the Google News corpus [5]. Our embeddings are
an additive compositional model where the final embedding
is a sum of every word in the question or answer. Whilst
this model is not state-of-the-art for distributional seman-
tics, Mitchell & Lapata [6] show that the additive model can
yield results comparable to more sophisticated models.

3.2.2 Metric embedding
The metric embedding is a 2-dimensional vector. The first
dimension is a binary value for whether the score for the
submission was the highest score on task t for user u. The
second dimension is a binary value for whether the score for
the submission was the highest score across all W&I tasks
for user u.

3.2.3 Grammar error embedding
A student’s grammatical proficiency plays a vital role in de-
termining how well they perform on a particular task. As
we do not know of any system that identifies appropriate use
of grammar, we focused on understanding what grammat-
ical structures the student struggles with. This was done
by running ERRANT [3], an automated error detection and
correction system, in order to identify grammatical errors in
the student’s essay.

For each submission k, we constructed a 47-dimensional vec-
tor, one dimension for each of the error types observed in the
W&I dataset. Each dimension stored the number of times
that error type appeared in the student’s essay submission.

< ek >=< f1
k , f

2
k , . . . , f

47
k > (1)

– where ek is the grammar error embedding e for submis-
sion k, and fnk is the frequency of errors for error type n in
submission k.

3.3 Mean score baseline
Our baseline system for predicting s for user u on task t is
to calculate the mean of observed scores by all users for that
task. We refer to this baseline as mean score.

3.4 Evaluation
We identify two approaches to evaluating our system and
the quality of our learned user and task representations: 1)
score prediction; and 2) grammar error prediction.

3A word2vec embedding is a 1×x dimensional dense vector
that represents a word semantically.



Table 2: Score prediction (MSE) and grammar em-
bedding prediction (cosine) results for the top 8 best
performing feature combinations (error: grammar
error embedding; ques: question embedding; ans:
answer embedding; metric: metric embedding).

Model MSE Cosine

mean score (baseline) 1.913 -
error+ques+ans+metric 2.254 -0.385

ques+metric 1.942 -0.402
ans+metric 1.951 -0.414

error+metric 1.350 -0.426
ques 2.028 -0.403
ans 2.014 -0.412

error 1.761 -0.410
metric 1.907 -0.393

3.4.1 Evaluation of score predictions
To evaluate the performance of score prediction we use mean
squared error (MSE) in common with other works in this
field, using global computation where all data points are
treated equally [9].

3.4.2 Evaluation of grammar embedding predictions
In order to further evaluate the quality of the learned user
and task representations, we also introduce an additional
evaluation task of predicting the distribution of grammar
errors for a user u on a task t.

This was done by building a network that takes as an input
the user ~u and task ~t from the pre-trained embedding U and
T and predicts the grammar embedding ~g. Our dataset for
grammar error prediction was created by extracting the last
submission k of every user u. This was to ensure that the
system is predicting the distribution of errors for the users
at their most recent knowledge state.

We optimise our system by minimising the cosine proximity
of the predicted grammar vector ~g and the target grammar

vector ~̂g.

4. RESULTS
Table 2 summarises the results of our system. We compare
the effectiveness of various features in the prediction of a
user’s score s on a task t which is evaluated by MSE. We
include the top 8 MSE values on the score prediction system
and their corresponding cosine value from the grammar error
prediction model.

We find that incorporating question and answer embeddings
do not provide any performance improvement in terms of
MSE beyond the baseline model. The metric embedding
provides marginally better results than the baseline with an
MSE of 1.907. The grammatical error embedding provides
substantial improvements beyond both the baseline and the
metric embedding with an error of 1.761. The best perform-
ing system incorporates both grammatical error embedding
and metric embedding, reducing the MSE to 1.350.

Table 3: Performance across various student and
task representations sizes (Nh)

Model Nh MSE Cosine

error+metric 3 1.350 -0.426
error+metric 5 1.297 -0.431
error+metric 16 1.245 -0.415
error+metric 32 1.195 -0.433

Figure 2: t-SNE of 300 randomly sampled student
representations classified by different levels of profi-
ciency

Table 3 shows the model that provides the lowest cosine
proximity to the target grammatical error vector (i.e. best
system) was error+metric, which is consistent with the low-
est MSE for the score prediction system.

In order to interpret the relevance of cosine proximity we
conducted a Pearson’s correlation test between the MSE val-
ues from the score prediction system and the cosine proxim-
ity scores from the grammar error prediction system. The
results show a 0.7883 Pearson’s correlation with a p-value of
0.0201 which is statistically significant at α < 0.05.

Figure 2 shows a t-SNE [12] of 300 randomly sampled stu-
dent representations learned by our best performing score
prediction system. The students are classified by their pro-
ficiency which has been determined by observing the most
frequent task level attempted in their five most recent sub-
missions. Qualitatively, the results from the plot are promis-
ing as the advanced and intermediate users, whilst present
throughout the plot, are more concentrated towards the top
right (higher level of language proficiency). Beginner stu-
dents, on the other hand, are more concentrated in the bot-
tom left. This suggests that the embeddings constructed
from our model provide context on the language abilities of
the student.

5. DISCUSSION
The results in Table 2 show that incorporating grammar
error embeddings provides a reliable signal to learn well-



formed student and task representations. Furthermore, Ta-
ble 3 identifies the optimal size for student and task repre-
sentations by training the system using various configura-
tions and evaluating both the MSE and cosine. Larger em-
bedding size performed better than the smaller embedding
sizes up to our experimental maximum of 32 dimensions.
However, making the embedding size too large would result
in what is known as ‘overcomplete’ which in turn causes the
model to simply memorise the correct response instead of
learning discriminative features [2].

In real terms, an MSE of 1.195 represents a root mean
squared error of 1.093 on a scale of 0 to 13. This means
that on average we stay within the bounds of a CEFR level
when predicting student proficiency which seems sufficiently
robust for real world application.

Grammar errors highlight the weaknesses of the student as
opposed to their strengths. Therefore, instead of learning
the upper-bound of a student’s ability, we are learning the
features for the lower-bound. The results of the model also
suggest that there is a correlation between the types of er-
rors students make on task t and the score they achieve on
said task. This enables the model to learn latent features
within the student and task representations which in turn
can be used to reliably predict the student’s score on a future
unseen task.

The importance and value of the signal provided by gram-
mar errors in determining student ability and thus creating
quality representations can be further highlighted by Fig-
ure 3. The bar-chart shows a comparison between beginner
and intermediate students, where the values in x-axis are
the various error types in ERRANT and the values for the
y-axis are the normalised difference of the frequency for each
error type between the two groups of students (positive bars
indicate greater frequency of that error type for interme-
diate students). We can observe that certain errors such
as M:VERB:TENSE (highlighted in orange) are more frequent
with intermediate students. This is not surprising as begin-
ner students tend not to experiment with verb tenses but
rather focus on using verb tenses that they are comfortable
with. Intermediate students are more likely to learn verb
conjugation rules and over-regularise to introduce variation
in sentence structure. However, over-regularisation usually
results in increased number of verb tense errors [11, 1]. This
is then corrected once students reach an advanced level of
proficiency where they can account for the irregular verb
tenses.
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