
Skills Embeddings: a Neural Approach to Multicomponent
Representations of Students and Tasks

Russell Moore∗, Andrew Caines∗, Mark Elliott∗†, Ahmed Zaidi∗, Andrew Rice∗ and Paula Buttery∗
ALTA Institute

∗Computer Laboratory †Cambridge Assessment
University of Cambridge

{rjm49 | apc38 | mwe24 | ahz22 | acr31 | pjb48}@cam.ac.uk

ABSTRACT
Educational systems use models of student skill to inform
decision-making processes. Defining such models manually
is challenging due to the large number of relevant factors.
We propose learning multidimensional representations (em-
beddings) from student activity data – these are fixed-length
real vectors with three desirable characteristics: co-location
of similar students and items in a vector space; magnitude
increases with skill, and that absence of a skill can be rep-
resented. Based on the Multicomponent Latent Trait Model,
we use a neural network with complementary trainable weights
to learn these embeddings by backpropagation. We evaluate
using synthetic student activity data that provides a ground-
truth of student skills in order to understand the impact of
number of students, question items and knowledge compo-
nents in the domain. We find that our data-mined parameter
values can recreate the synthetic datasets up to the accuracy
of the model that generated them, for domains with up to
10 simultaneously active knowledge components, which can
be effectively mined using relatively small quantities of data
(1000 students, 100 items). We describe a procedure to es-
timate the number of components in a domain, and propose
a component-masking logic mechanism that improves per-
formance on high-dimensional datasets.

Keywords
knowledge representation, skills embeddings, multicompo-
nent latent trait model

1. INTRODUCTION
Intelligent tutoring systems (ITS) are required to make deci-
sions about which tasks to present to which students. Thus
they should be equipped with objective, accurate models
of student skillsets, to inform these choices. Student activ-
ity logs are a source of information for such models, which
could be built by hand-crafted feature extraction, or us-
ing data mining methods. We explore the latter, using
machine-learning of fixed-width multidimensional represen-

tations. We call these skills embeddings, after word em-
beddings – vector representations of words and language con-
structs that have allowed dramatic advances in the natural
language processing field [6, 8].

With word embeddings, semantically similar words are po-
sitioned near each other in a latent vector space: e.g, ‘boat’
should be nearer to ‘car’ than ‘politics’, based on natural
language data. We transfer the vector space idea to skills.
For the ITS scenario, we seek specific desirable traits:

• Skills embeddings are co-proximal in the vector space
if they represent entities comprising similar skills.

• Embedding magnitude grows with skill – specifically,
a higher skill level should entail a larger value within
the embedding. This lets us track skill gain intuitively.

• It should be possible to represent the special case where
a skill is absent. We will refer to this characteristic as
skill masking.

We would also ideally like to be able to detect dimension-
ality: the number and dependency structure of skills within
the domain should not need to be specified in advance.

In this work, we propose an artificial neural network – based
on the Multicomponent Latent Trait Model [12] – to learn
skills embeddings. We train it using synthetic student activ-
ity datasets, with a varying number of skills in the domain.
We show that the embeddings exhibit our three desired char-
acteristics, and present a procedure to cater to the fourth.

2. BACKGROUND
Our work relies on some core principles about the nature of
knowledge domains, the way that student ability and item
difficulty interact, and the idea that knowledge acquisition
can be traced in student activity logs [5].

2.1 Knowledge components
For any given educational domain, such as physics, mathe-
matics or language learning, we can break domain-specific
knowledge down into atomistic units known as knowledge
components (KCs), as described by Koedinger et al. [4].
We treat these as synonymous with ‘skill’ where the skill is
irreducible – if skill C comprises irreducible subskills A and
B, we do not represent C, but treat co-occurrence of A and
B as the pattern for C. We think of a subject domain as a

set K of KCs to be acquired. In our datasets, domain size
|K| ∈ [1, 100].

2.2 Rasch model
The Rasch item response model [11] is a well-known formula-
tion for the success probability of student s attempting item
(question) i, derived by transforming the difference between
student ability θs and item difficulty βi through a sigmoid
function. That is, the probability of success is given by:

Pr(Xsi = 1 | θs, βi) = σ(θs, βi) (1)

where σ is the standard logistic sigmoid function:

σ(θs, βi) =
1

1 + exp (−(θs − βi))
(2)

Note that an evenly-matched student-item pair has θ = β
and a pass-rate of 0.5. The Rasch model assumes a single
dimension of proficiency and embodies invariant comparison
– this means the student parameter θ can be eliminated
algebraically during estimation of the item parameters β,
and vice versa [9, 14]. This principle allows Rasch items (and
by extension our embeddings) to stand alone as objective
representations, independent of the conditions in which they
were measured.

2.3 Multicomponent Latent Trait Model
The Rasch model can be extended to the multicomponent
latent trait model (MLTM) of Whitely [12]. Here, the
scalars θ and β are replaced by vectors, and the result is a
product of sigmoids. The formulation is as follows:

Pr(Xsi = 1 | θs,βi) =
∏

k∈skills(i)

σ(θsk, βik) (3)

Hence the act of student s successfully passing item i is
modelled as the conjunction of successes at each of the item’s
problem-solving steps (denoted k). The probability is given
by the product of the probabilities of completing the steps
and each step behaves as a Rasch model whose parameters
are the corresponding elements of θs and βi.

2.4 Item calibration
Traditionally, item calibration with Rasch-type models is
carried out using the Birnbaum iteration [2]. However, the
Birnbaum algorithm is one-dimensional and to the best of
our knowledge has not been extended to multiple dimen-
sions. Moreover, the Rasch approach does not readily allow
for the absence of skills: parameters would have to be set
to -∞, which is impractical for data mining, particularly
in cases where the skill is absent both from a question and
student’s representations1

2.5 Q-Matrix
The q-matrix [10, 1] is a binary- or probability-valued ma-
trix that describes which skills are required for particular
tasks. This has been used previously, for instance, in the
Linear Logic Test Model [13]. Each column of Q represents
a task/item i, and each row a component k ∈ K.

1Even assuming infinite arithmetic is allowable, if θ and β
are both -∞ then (θ− β) = 0 and the probability of success
is calculated as 0.5; in fact, for an unrequired skill, it should
always be 1, since an unrequired step is always ‘passed’.

Figure 1: Neural network architecture

The (binary) Q-matrix for a curriculum of items is as follows:

qik =

{
1 if k ∈ skills(i),
0 else;

(4)

The Q-matrix for students is similar, with element qsk rep-
resenting the ability of student s at skill k.

3. DATA
Our datasets follow a summative assessment scenario: the
item bank is a static test, to be attempted by many students.
Each student attempts all items only once. Each response
is dichotomous: either right (X=1) or wrong (X=0).

Student activity data is synthesised using a statistical model
whose probability mass function (pmf) is just equation (3).
The response xsi (of student s on item i) is determined by
ground-truth values of the MLTM parameters, θ∗s and β∗

i .
These are the targets we hope to recover from the dichoto-
mous outcome data: we want our embeddings to converge
on these values.

The elements of θ∗s and β∗
i themselves are generated uni-

formly randomly for each student and item – their minimum
and maximum values are chosen by an earlier randomised
search process, that looks for suitable bounds to generate a
balanced dataset given a specific dimensionality |K|.

We generated datasets with dimensionalities |K| ∈ {1, 2, 5,
10, 100}. We also created datasets where only a subset of
components are active – for these datasets, the active com-
ponents are chosen at random. We use |I|=100 items and
|S|=1000 students.

4. IMPLEMENTATION
In this section we describe the neural network, including its
design features, software used, and training approach.

4.1 Neural network architecture
The neural network in this work is a binary classifier. In a
normal supervised learning task, a classifier takes an input
set of features Φ(x) and class label C and learns the probabil-
ity that a datapoint x is in a given class: Pr(x ∈ C | Φ(x)).

In the embedding generation task there is no feature map-
ping Φ. Instead we have datapoints of form (s, i, pass ∈
{T, F}), describing whether student s passed item i. Inputs
to the neural network are s and i, and class label pass.

The ‘features’ themselves are learned internally, with two
distinct sets of trainable weights. One set of weights (Θ ∈
IR|S|×|K|) represents the students, the other (B ∈ IR|I|×|K|)
the items. Whenever s occurs in a datapoint, the weights
for s (synonymous with θs) are selected from the table, and
the same happens for βi when i occurs.

The weights are fed into a locally connected layer that rep-
resents the components of the MLTM. Each unit in the
layer applies a sigmoid function to generate a per-component
probability. The component probabilities are then multi-
plied to get the overall output probability. This is scored
against the true pass value using a loss function, and the er-
ror is backpropagated to the weights tables. The weights are
re-used whenever s or i appear in a datapoint, so they are
forced towards values which best fit all observations. The
trained rows of weights serve as our fixed-width embeddings.

The architecture is illustrated in Figure 1. For clarity, the
connections are shown only for a single component, but all
components function in parallel in the same way. The di-
amonds on the diagram represent Q-gates, trainable logic
components which we will now describe.

4.2 Q-gates – logic for absent components
In high-dimensional domains, items usually do not exercise
all skill components simultaneously. For instance, in both
assessment and instruction, questions are usually designed
to focus on a subset of skills. Rather than model the subset
of skills explicitly, we iterate across the whole domain K and
let a logic layer selectively deactivate components:

Pr(Xsi = 1 | θs,βi) =
∏
k∈K

Gq(qsk, qik, σ(θsk, βik)) (5)

Gq is a Q-gate, a ternary logic gate related to logical impli-
cation, with the following truth table for each component
per student, qsk, and per item, qik:

qik qsk Gq

1 1 σ(θsk, βik)
1 0 0
0 1 1
0 0 1

Q-gates are implemented as part of the neural network, and
modify the component-level sigmoid outputs:

Gq(qsk, qik, σ(θsk, βik)) = σ(θsk, βik)qikqsk + (1− qik) (6)

The correct values for qik and qsk are learned during train-
ing. These q-values can either be stored in their own set of
weights, or represented by special values in θ and β. We use
the latter technique with weight clipping, explained next.

4.3 Weight clipping
We employ weight clipping for two reasons: to ensure com-
ponent positivity (so that vector magnitude must grow with
skill), and to implement Q-gates. To ensure components
take only positive values, weights are clipped to [1,W], with
large W to allow for changes in value during training. The
range [0, 1) is reserved to switch the component’s Q-gate.

4.4 Training
The network was trained with a categorical cross-entropy
loss function and the Adam optimiser [3]. Generally, train-
ing is fast, and a learning rate α ∈ [0.01, 0.1] is stable.
Weight initialisation is significant for convergence speed and
fit: a uniform random initialisation over [θmin, θmax] for stu-
dents and [βmin, βmax] for items was found to work well.
From all instances in the training set, 10% were randomly
chosen for validation and to trigger early-stopping on lossval
with patience = 10 (i.e. we wait for a better value for ten
more epochs before quitting, keeping our best weights). This
work was implemented in Python 3.6 using Keras with a
TensorFlow back-end, and scikit-learn.

5. EVALUATION
In this section we describe how the embeddings were evalu-
ated vis-à-vis our desired characteristics.

5.1 Prediction agreement
We attempt to recreate the original datasets by using our
embeddings θ̂ and β̂ to seed our statistical MLTM model.
We then score correlation and agreement between the out-
puts of the original process (seeded with targets θ∗ and β∗)
and the embedding-seeded process.

Since our dataset is synthetic, we can directly access the
probabilities that determine the outcomes, and thus can
measure the Pearson’s correlation between these and the
predicted probabilities from the embeddings. This is:

ρX,Y =
cov(P ∗, P̂)

sd(P ∗), sd(P̂)
(7)

where P ∗ and P̂ are the true and predicted probabilities of
a pass, cov(·, ·) is covariance and sd(·) is standard deviation.

Because the generator process is stochastic, there will al-
ways be some element of chance in the observed outcomes.
Cohen’s Kappa gives a measure of the agreement beyond
chance. For N datapoints, where nagreed is the observed
agreement between both runs, and n(k;seed) is the number
classed as category k by the model seeded with seed:

κ =
po − pe
1− pe

where

po = nagreed/N

pe = 1
N2

∑
k={T,F}

n(k;θ∗β∗)n(k;θ̂β̂)

(8)

5.2 Co-proximity & Magnitude
To assess our co-proximity requirement, we measure Eu-
clidean distance from the aligned embedding θ̂ (or β̂) to its
target, θ∗ (or β∗). We compare this to the mean distance
from other vectors in the space, and test for significance to
show that co-proximity to target is not merely by chance.

Figure 2: t-SNE visualisation of embeddings in a
10-dimensional space, all active, with 1000 students
and 100 items (orange=embedding, blue=target).

To assess magnitude growth with skill, we use Pearson cor-
relation (equation 7) at the component level between the

elements of θ̂ (or β̂) and of target θ∗ (or β∗). A strong cor-
relation shows that these values grow together as desired.

5.3 Aligning the components
Embeddings are identifiable only up to the ordering of the
components due to conjunctive commutivity: columns in the
Θ-Table will be aligned with the B-Table, since they were
trained together, but they may be permutated differently to
the columns in the original target vectors. To visualise the
data, or calculate deviations from the true parameters, we
must first align the predicted components. A hill-climbing
algorithm can find the order needed to minimise the per-
column squared error between the predicted and true val-
ues. While not guaranteed to find the global optimum, it is
nonetheless reliable. Once the components are aligned, the
embeddings can be plotted (after dimensionality reduction
such as PCA or t-SNE for |K| > 2). The mean absolute pa-
rameter errors are given as θMAE and βMAE in Table 1(b).

Figure 3 shows the mined values for a 2 KC domain, with
1-2 active components: Q-gates allow components to be
switched on/off. Dotted lines show the thresholds below
which the Q-gate treats a component as inactive. Figure 4
shows the mined values for a 10 KC domain, with 1-3 active
components. Here the clustering of target points (blue) are
more pronounced than in the all-active data (Figure 2). The
embeddings (orange) cluster close to their targets due to the
Q-gate mechanism.

Figure 3: Direct plot of Q-gated embeddings in a
2-dimensional space, 1000 students and 100 mixed
items (50×2-components, 50×1-component). Dot-
ted lines show the Q-gate activation regions.

6. RESULTS & DISCUSSION
Table 1 gives summary statistics for all-active (upper sec-
tion) and Q-gated (lower section) datasets.

Tabke 1(a) gives raw accuracy and Cohen’s κ measure agree-
ment between true and predicted outcomes, and Pearson’s
ρ measures correlation between the underlying probabilities.
The reproduction (repro) scores for Acc and κ show how well
the original model can reproduce its own data – this indi-
cates the level of stochastic noise in the target dataset.

Reproduction accuracy drops from 0.844 to 0.651 as domain
size increases, but this is more pronounced (0.684 to 0.310)
for κ, implying that much of the accuracy score is down to
chance, and κ is a more useful measure. At low to moderate
dimensions (1a to 10a), mined κ values approach the model’s
own agreement, but for the high dimension (100a) they do
not even achieve half of this limit, although still better than
chance (κ = 0). For Q-gated data (2q2, 10q3, 10q5, 100q5)
the embeddings produce higher accuracy and κ throughout
than their non-Q-gated counterparts.

Pearson’s correlation on the underlying probabilities (unaf-
fected by stochastic noise) is very good (>0.9) for all lower
|K| data (with or without Q-gates), but for (100a) this drops
to 0.442 - the Q-gated version (100q5) scores 0.754, an im-
provement of over 70%.

6.1 Co-proximity & Magnitude
Table 1(c) gives mean Euclidean distances of embedding to
target, alongside the mean distance to other points in the
dataset. Mean and standard deviations are given along with
Welch’s t-test results. In all cases the mined vectors have sig-
nificantly (p<0.01) smaller mean distances to target than to
other vectors in the space, indicating co-proximity between

Table 1: (a) Accuracy, Cohen’s κ agreement, Pearson’s correlation (ρ). The repro scores show how well the
original dataset generator agrees with itself between runs, giving an upper limit to the score. (b) Parameter
level error scores for students and items. (c) Mean Euclidean distance to target (Dtarget) and to other vectors
(Dothers), with t-test scores.

Model (a) Model fit (b) Param. fit. (c) Co-proximity in vector space
Name Dims Acc (repro) κ (repro) ρ∗ θMAE βMAE Dtarget Dothers t∗∗

1a 1 0.844 (0.844) 0.680 (0.684) 0.994 0.29 0.11 0.11 (0.09) 3.66 (0.65) -36.9
2a 2 0.776 (0.777) 0.550 (0.556) 0.986 0.55 0.46 0.79 (0.38) 3.74 (0.80) -33.1
5a 5 0.732 (0.742) 0.429 (0.439) 0.961 0.94 0.79 2.51 (1.36) 8.63 (1.24) -33.0
10a 10 0.721 (0.733) 0.425 (0.463) 0.930 4.61 3.42 13.56 (3.32) 16.47 (1.06) -8.26
100a 100 0.572 (0.651) 0.151 (0.310) 0.442 7.25 6.36 79.31 (5.40) 88.30 (2.18) -15.0
2q2 2 (1-2) 0.801 (0.806) 0.576 (0.587) 0.987 0.58 0.41 0.24 (0.17) 4.76 (0.71) -61.2
10q3 10 (1-3) 0.771 (0.802) 0.561 (0.588) 0.943 1.30 0.13 0.85 (0.63) 9.18 (1.49) -51.2
10q5 10 (1-5) 0.822 (0.832) 0.503 (0.522) 0.942 1.33 0.19 1.12 (0.84) 10.53 (1.48) -54.9
100q5 100 (1-5) 0.732 (0.821) 0.509 (0.555) 0.754 3.09 0.27 1.13 (0.84) 10.53 (1.48) -54.0

*(p<0.01) **(Welch’s t-test, df=98, p<0.01)

Figure 4: t-SNE visualisation showing 100 items,
calibrated from 1000 students. Here, only 1-3 di-
mensions (from 10) are active for any item. The
other dimensions are masked using Q-gates.

mined and true vectors as desired. Again Q-gates have a
notable effect: for instance, the quotient (Dothers/Dtarget)
increases from 1.11 for 100a to 9.30 for 100q5.

Component-level correlations for true and mined parameter
values (not tabled) are strongly correlated (ρ ≥ 0.90, p =
0.01) for low to moderate |K| ∈ [1, 10] showing our sec-
ond desired characteristic of magnitude growth with skill.
As with other results, a weaker positive correlation (ρ =
0.21, p = 0.01) was measured for |K| = 100.

6.2 Skill masking
Our embeddings achieve a high correlation with target out-
come probabilities for all but |K| = 100. Similar patterns
can be seen with other scores. Overall, larger error in the

vector space (100a in Table 1(b)) seems to contribute to
markedly reduced model fit (100a in Table 1(a)).

There are at least two factors at play here: firstly, for large
|K|, the ‘curse of dimensionality’ makes distance metrics less
meaningful, and it becomes difficult to determine distance
(or similarity) between vectors. The second factor is infor-
mational: if an item has 100 active components, a student
must achieve a pass-rate of 99.3% on each component to get
50% pass-rate on the item. Very easy components carry lit-
tle information: our expectation that a student would pass
them is almost always met. This manifests as a shallow
gradient on the sigmoid in this region (x = 4.95), making
parameter values very sensitive to stochastic noise in train-
ing data. Furthermore, dichotomous results tell us nothing
about which component caused a failed attempt. These fac-
tors make for a difficult machine-learning task.

Fortunately, the Q-gated datasets show a different pattern.
They behave more like low-dimensionality data: for instance,
100 (1-5 active) dimensions – versus 100 (all active) – shows
both better probability correlation (0.75 > 0.44), and com-
ponent level error (3.09 < 7.52 for θ and 0.27 < 6.36 for β).
A similar effect is seen in the 10-dimensional data.

The ability to mask off certain components is useful. For
instance, |K| = 100 may be a reasonable domain size, but
items will often have far fewer active skills, e.g. Pardos
et al. [7] used a question-set for high-school mathematics
with |K| = 105, but a maximum of three skills per ques-
tion. Masking is vital to represent such a domain as fixed-
width vectors. Moreover, with Q-gates, the exact number
and composition of skills per question need not be known:
it can be learned during training. Hence the width of our
embeddings need not exactly match the domain: if they are
too wide, the Q-gates will trim excess components. We give
a procedure to estimate |K| next.

6.3 Dimensionality estimation
Although it is not possible to directly detect the dimension-
ality |K| of a domain, there is a simple procedure to estimate
it. Embeddings are trained across a span of candidate values
|K|cand and the mean maximum accuracy for each |K|cand

Figure 5: Dimensionality detection – candidate di-
mensions on x-axis, maximum accuracy for each fit
on y-axis; ten runs per candidate, line plot shows
mean maximum accuracy.

is calculated. Figure 5 shows the result of this process for a
dataset with |K| = 5, |S| = 1000, |I| = 100. We plot candi-
dates |K|cand ∈ {1, 3, 5, 7, 10} against the mean maximum
accuracy (over 10 repetitions) of fit to the dataset. The peak
at |K|cand = 5 reveals the true value of |K|.

7. FUTURE WORK
We are in the process of mining skills embeddings from a
major online physics-teaching platform. We believe the em-
beddings discovered will reveal more about realistic dimen-
sionality and skill composition, and help us to study changes
in student ability over time. We also intend to report on the
interpretability of embeddings by human experts.

8. CONCLUSION
This work introduces a new technique to mine skills em-
beddings – student and item vector representations based
on the Multicomponent Latent Trait Model – using a neural
network with complementary weights. This was applied to
synthesised student activity datasets, to recover the original
seed parameters. We were able to extract these parameters
in moderately high-dimension data (|K|=10) even for small
datasets (100 items, 1000 students).

We gave four desired characteristics for our embeddings: co-
proximity of similar objects in vector space, growth of mag-
nitude with skill, ability to model missing skills, and appli-
cability in domains of unknown dimension. We showed our
embeddings support all but the fourth, and gave a procedure
to mitigate this. We introduced Q-gates, a skill masking
mechanism that boosts model fit for high dimensional do-
mains with realistic contraints.

9. ACKNOWLEDGMENTS
This paper reports on research supported by Cambridge As-
sessment, University of Cambridge. We thank the Isaac
Physics team, our colleagues in the ALTA Institute, and
the three anonymous reviewers for their valuable feedback.

10. REFERENCES
[1] M. Birenbaum, A. Kelly, and K. Tatsuoka. Diagnosing

knowledge states in algebra using the rule-space
model. Journal for Research in Mathematics
Education, 24:442–459, 1993.

[2] A. Birnbaum. Some latent trait models and their use
in inferring an examinee’s ability. In F. M. Lord and
M. R. Novick, editors, Statistical Theories of Mental
Test Scores. Reading, MA: Addison-Wesley, 1968.

[3] D. P. Kingma and J. Ba. Adam: A method for
stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[4] K. R. Koedinger, A. T. Corbett, and C. Perfetti. The
knowledge-learning-instruction framework: Bridging
the science-practice chasm to enhance robust student
learning. Cognitive Science, 36(5):757–798, 2012.

[5] K. R. Koedinger, S. D’Mello, E. A. McLaughlin, Z. A.
Pardos, and C. P. Rosé. Data mining and education.
Wiley Interdisciplinary Reviews: Cognitive Science,
6(4):333–353, 2015.

[6] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and
J. Dean. Distributed representations of words and
phrases and their compositionality. In Advances in
Neural Information Processing Systems, pages
3111–3119, 2013.

[7] Z. Pardos, N. Heffernan, C. Ruiz, and J. Beck. The
composition effect: Conjuntive or compensatory? an
analysis of multi-skill math questions in its. In
Educational Data Mining 2008, 2008.

[8] J. Pennington, R. Socher, and C. Manning. Glove:
Global vectors for word representation. In Proceedings
of the 2014 Conference on Empirical Methods in
Natural Language Processing (EMNLP), pages
1532–1543, 2014.

[9] G. Rasch. Probabilistic Models for Some Intelligence
and Attainment Tests. Danmarks Paedogogiske
Institut, Copenhagen, 1960.

[10] K. Tatsuoka. Rule space: An approach for dealing with
misconceptions based on item response theory. Journal
of Educational Measurement, 20:345–354, 1983.

[11] W. J. van der Linden and R. K. Hambleton. Handbook
of Modern Item Response Theory. Springer Science &
Business Media, 2013.

[12] S. E. Whitely. Multicomponent latent trait models for
ability tests. Psychometrika, 45(4):479–494, 1980.

[13] M. Wilson and P. De Boeck. Descriptive and
explanatory item response models. In P. De Boeck and
M. Wilson, editors, Explanatory Item Response
Models: A Generalized Linear and Nonlinear
Approach. New York: Springer-Verlag, 2004.

[14] B. D. Wright and J. M. Linacre. Dichotomous rasch
model derived from specific objectivity. Rasch
Measurement Transactions, 1:5–6, 1987.

