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Abstract. This paper investigates the suitability of state-of-the-art natural lan-
guage processing (NLP) tools for parsing the spoken language of second language
learners of English. The task of parsing spoken learner-language is important
to the domains of automated language assessment (ALA) and computer-assisted
language learning (CALL). Due to the non-canonical nature of spoken language
(containing filled pauses, non-standard grammatical variations, hesitations and
other disfluencies) and compounded by a lack of available training data, spoken
language parsing has been a challenge for standard NLP tools. Recently the Red-
shift parser (Honnibal et al. In: Proceedings of CoNLL (2013)) has been shown
to be successful in identifying grammatical relations and certain disfluencies in
native speaker spoken language, returning unlabelled dependency accuracy of
90.5% and a disfluency F-measure of 84.1% (Honnibal & Johnson: TACL 2, 131-
142 (2014)). We investigate how this parser handles spoken data from learners of
English at various proficiency levels. Firstly, we find that Redshift’s parsing ac-
curacy on non-native speech data is comparable to Honnibal & Johnson’s results,
with 91.1% of dependency relations correctly identified. However, disfluency de-
tection is markedly down, with an F-measure of just 47.8%. We attempt to explain
why this should be, and investigate the effect of proficiency level on parsing ac-
curacy. We relate our findings to the use of NLP technology for CALL and ALA
applications.
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1 Introduction

Most natural language processing (NLP) experiments are carried out with tools trained
on (mainly written) native speaker data. Two corpora in particular, Brown and the Wall
Street Journal, have been widely used for the evaluation of NLP technology [24], with
the WSJ being near-ubiquitous in parser testing [5, 19].

There have been various efforts to extend the range of domains on which NLP tools
are trained and evaluated, including, for example, biomedical literature [21, 28], Twitter
posts [12, 17], and spoken language [8, 16]. Each new domain presents its own chal-
lenges in terms of NLP: spoken language, for instance, differs from canonical written
data in multiple ways [2, 3, 9]. Disfluencies are an especially characteristic feature of
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speech, and have been the object of interest for several NLP studies, as their presence
is disruptive to parsing, with knock-on effects for any applications that follow.

The convention set by Shriberg [29], and applied to a portion of the Switchboard
Corpus (SWB; [14]), is to differentiate between filled pauses (FP), the ‘reparandum’
(RM), ‘interregnum’ (IM) and repair (RP) in disfluent sections of text. This annotation
scheme is exemplified in Figure 1.

A flight to um︸︷︷︸
FP

Berlin︸ ︷︷ ︸
RM

I mean︸ ︷︷ ︸
IM

Munich︸ ︷︷ ︸
RP

on Tuesday

Fig. 1. Disfluency example, annotated in the Switchboard Corpus style.

The goal then of automated disfluency detection is to identify FPs, RMs and IMs – i.e.
here ‘um Berlin I mean’ – so that the resultant string is understood to actually be ‘A
flight to Munich on Tuesday’. Several recent papers have reported various approaches
achieving upwards of four-in-five accuracy in this task [16, 26, 27]. For instance, Hon-
nibal & Johnson (H&J) report how well an incremental dependency parsing model,
‘Redshift’ [15], was able to identify dependency relations and speech repairs in hand-
annotated sections of SWB, with an unlabelled attachment score (UAS)1 of 90.5% and
84% F-measure for disfluency detection [16].

All previous efforts in disfluency detection have targeted the transcribed speech
of native speakers of English. We apply the Redshift parser to non-native speaker (or,
‘learner’) English, transcribed from business English oral examinations. The texts come
from learners of different proficiency levels: we asked firstly whether Redshift would
be able to handle non-native speaker data as accurately as that of native speakers, and
secondly whether speaker proficiency would affect parsing accuracies.

We hypothesise that Redshift should be able to parse the language of higher profi-
ciency learners more accurately, as this is presumed to more closely approximate the
language of native speakers, on which Redshift is trained. Such an outcome would be
in line with previous work showing that the RASP System [5] was better able to parse
higher proficiency texts [8].

We indeed found that Redshift could analyse our non-native speaker data remark-
ably well, with a UAS of 91.1%. However, disfluency detection was less successful,
with an F-measure of just 47.8%. We propose that this is due to learner disfluencies
being more extended and less orderly than those of native speakers. As for learner pro-
ficiency, there is a general upward trend in UAS and disfluency detection as the level
moves from CEFR2 B1 ‘intermediate’, to B2 ‘upper intermediate’, to C1 ‘advanced’
[11]. This finding has implications both as a diagnostic tool for learner proficiency, in

1 The percentage of tokens with a correctly-identified head word (labelled attachment is another
commonly-reported metric (LAS); this is the percentage of tokens with correctly-identified
head word and dependency relation) [20].

2 The ‘Common European Framework of Reference for Languages’: a schema for grading an
individual learner’s language level. For further information go to http://www.coe.int/
lang-CEFR
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the context of automated language assessment (ALA), as well as the automated pro-
vision of feedback to learners on ways to improve, of the kind required by computer-
assisted language learning (CALL) systems.

2 Transition-based dependency parsing

H&J’s Redshift parser [16] is a transition-based dependency parser modelled on Zhang
& Clark’s design with a structured average perceptron for training and beam search
for decoding [31]. Syntactic structure is predicted incrementally, based on a series of
classification decisions as to which parsing action to take with regard to tokens on the
‘stack’ and in the ‘buffer’, two disjoint sets of word indices to the right and left of the
current token.

Redshift adopts the four actions defined in Nivre’s arc-eager transition system [25]
– SHIFT, LEFT-ARC, RIGHT-ARC, REDUCE – and adds a novel non-monotonic EDIT
transition to repair disfluencies during parsing [15]. SHIFT moves the first item of the
buffer onto the stack. RIGHT-ARC does the same, adding an arc so that items 1 and 2
on the stack are connected. LEFT-ARC and REDUCE both pop the stack, with the former
first adding an arc from word 1 in the buffer to word 1 on the stack. Like [1], Redshift
posits a dummy ROOT token to govern the head-word of each utterance; with the ROOT
token at the top of the buffer and an empty stack, the parsing of this utterance ends.

The novel EDIT transition marks the token on top of the stack as disfluent along
with any rightward descendents to the start of the buffer. The stack is then popped
and any dependencies to or from the deleted tokens are erased. The transition is ‘non-
monotonic’: previously-created dependencies may be deleted and previously-popped
tokens are returned to the stack (for further detail and worked examples see [15, 16]).

3 Experiments

3.1 Datasets

Switchboard Corpus The Switchboard Corpus (SWB) is a collection of transcribed
two-way telephone conversations among a network of hundreds of unacquainted En-
glish speaking volunteers from across the U.S.A. [14]. The calls were computer-operated,
such that no two speakers spoke together more than once, and so that no single speaker
was given the same topic prompt (of which there were about 70) more than once [13].
The entire corpus contains 2320 conversations of approximately 5 minutes each, to-
talling about 3 million words of transcribed text.

Our focus is on a subset of SWB that was hand-annotated with both syntactic brack-
eting and disfluency labels as part of the Penn Treebank project [30]. The project, now
discontinued, produced approximately 1.5 million words from the SWB transcripts an-
notated for disfluencies. But as hand-labelled syntactic bracketing is more expensive to
produce, only 0.6 million tokens from the disfluency layer have corresponding syntac-
tic annotations. Following H&J [16], we require the smaller dataset with both syntactic
and disfluency annotations (SWB-SYN-DISF), using this as training data, which we
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note gives us less than half the training data used in other state-of-the-art disfluency
detection systems [26, 27].

We obtained SWB-SYN-DISF in CoNLL-X treebank format [6]: the same dataset
that featured in [16] and which we use here to train Redshift3. This dataset was pre-
processed in the following ways: removal of filled pauses such as ‘uh’ and ‘um’, one-
token sentences and partial words, all text to lower-case, punctuation stripped, and ‘you
know’ ‘i mean’ bigrams merged to single-token ‘you know’ and ‘i mean’.

BULATS Corpus Our non-native speaker data is provided by Cambridge English,
University of Cambridge4. The corpus is a collection of transcribed recordings from
their Business Language Testing Service (BULATS) speaking tests. We produced a
gold-standard BULATS treebank of 5667 tokens, annotated for the same features and
in the same format as SWB-SYN-DISF.

The dataset features speakers from Pakistan, India and Brazil, with Gujarati, Urdu,
Sindhi, Hindi, Portuguese and Panjanbi as their first languages. The BULATS corpus
was pre-processed in the same way as SWB-SYN-DISF, described above, with the re-
moval of filled pauses, etc. It contains transcripts from 16 different learners and is di-
vided into approximately 1900 tokens from each of three CEFR levels: B1, B2 and C1.
We refer to these data subsets as BULATS:B1, BULATS:B2, BULATS:C1.

3.2 Procedure

System Setup Redshift is an open-source parser so we were able to obtain the same
code-base that was used in [16]. We also trained the parser in a similar manner5: the
training data comprises the 600k token SWB-SYN-DISF dataset. The feature set, disfl,
is an extended version of 73 templates from [32] mostly pertaining to local context as
represented by twelve context tokens, plus extra features to detect ‘rough copy’ edits
[18] and contiguous bursts of disfluency. The EDIT transition was enabled, allowing the
parser to erase disfluent tokens from the utterance. Random seed training was disabled,
since we only trained the parser once (whereas H&J averaged over 20 random seeds).

We used 15 iterations to train the perceptron, and set the beam width to 32 so that
the 32 best-scoring transition candidates were kept in the beam with each iteration.
Redshift utilises its own part-of-speech tagger – also guided by averaged perceptron
and beam search decoding – which was set to be trained in unison with the parser.

Task 1: Dependency relations As noted in [16], Redshift makes use of the Stanford
Basic Dependencies scheme (SD), which makes strictly projective representations of
grammatical relations. The dependencies indicate the binary relations between tokens

3 Our profound thanks to Matthew Honnibal for sharing this data, and for his help in setting up
Redshift.

4 The data is currently not publicly available, though researchers may apply to Cambridge En-
glish for access to the Cambridge Learner Corpus, a collection of written essays.

5 Note that full installation instructions for Redshift are provided at http://russellmoo.
re/cs/redshift.
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within a sentence. This method of representing grammatical relations is now widely-
used in the NLP community for parser evaluation and owes much to the framework of
Lexical-Functional Grammar [4].

In brief, each dependency is a triple (t, h, r): t is a token in the sentence, h is a token
that is the ‘head’ or ‘governor’ of t, and r is a relation label showing how t modifies h
(e.g. nsubj for nominal subject, aux for auxiliary). It is common to represent this as a
directed labelled arc joining the two tokens: h→r t.

Each token must have a single head, and the relations are constrained to form a
projective tree headed by a single word, which itself is headed by a special ROOT token.
To mark tokens that have been removed from the sentence by an EDIT transition, H&J
added the erased relation to the SD set (see also [22, 23]). In these cases, the token is
self-governing: t→erased t.

The task, then, is to correctly identify any non-erased token’s head: the unlabelled
attachment score (UAS) is a measure of success in this respect6.

Task 2: Disfluency detection We follow the evaluation defined by Charniak & Johnson
[10], according to which, out of all the disfluency types, only the reparandum (RM) is
the target for automatic detection. The reasoning behind this is that the filled pause
(FP) and interregnum (IM) are said to be straightforwardly identified with a rule-based
approach7, whereas the RM is what needs to be edited out for a successful parse of the
repaired string (RP). The task, then, is to successfully apply an EDIT transition to RM
tokens, and results are presented as the disfluency F -measure (Disfl.F) – a computation
over precision (p) and recall (r) as follows: F = 2× p×r

p+r

4 Results

The performance of the Redshift parser in the two tasks described in section 3 is given
in Table 1. UAS is a measure of parse accuracy, indicating the percentage of correctly-
identified dependency-head relations. Disfl.F represents accuracy at disfluency detec-
tion, being the harmonic mean of precision Disfl.P and recall Disfl.R on this task.

Results are reported for various test-sets as follows: SWB-SYN-DISF:TEST8 rep-
resents the averaged results from [16], with Redshift trained on the 600k token SWB-
SYN-DISF dataset (90.5% UAS, 84.1% Disfl.F).

6 Following [16] we do not report the labelled attachment score (LAS) though acknowledge that
this would be an interesting direction for future work.

7 To our knowledge these rules have not been codified, presumably because it is assumed a trivial
task. We assume FP detection would rely heavily on UH POS tags, which are often accurately
applied – though not always, an issue briefly discussed by Caines & Buttery [8]. We assume
that a bigram rule would account for the IM, or ‘parenthetical’, which is usually exemplified
as either ‘you know’ or ‘I mean’; but we have similar concerns here, as it is not clear that
distinguishing IMs from subordinating uses of these chunks (e.g. ‘I mean what I say’; ‘you
know what I mean’) is as straightforward as it is presumed to be.

8 Following standard practice in the disfluency detection literature, the train/dev/test splits are
those described in [10].
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Treebank Sentences Tokens UAS Disfl.P/R Disfl.F

native SWB-SYN-DISF:TEST 3900 45,405 90.5 n/a 84.1
SWB-SYN-DISF:DEV 3833 45,381 90.9 92.3/76.5 83.7

non-native BULATS:ALL 381 5667 91.1 82.6/33.6 47.8
BULATS:B1 121 1895 88.9 85.3/31.4 45.9
BULATS:B2 136 1879 91.2 79.2/33.2 46.8
BULATS:C1 124 1893 93.0 83.8/37.3 51.6

Table 1. Redshift parse (UAS) and disfluency (Disfl.P/R, Disfl.F) accuracies on the Switchboard
and BULATS test-sets.

To verify Redshift’s performance figures versus other parsers, H&J averaged results
across twenty randomly-seeded training runs. To compare datasets, we chose to keep the
parsing model constant, using a single training run with the default perceptron seeding.
We benchmarked the parser on SWB-SYN-DISF:DEV and observed a near-identical
score to H&J (90.9% UAS, 83.7% Disfl.F).

From our BULATS non-native speaker corpus, we have results for the CEFR level
subcorpora – BULATS:B1, BULATS:B2, BULATS:C1 – as well as for the com-
bined BULATS treebank, BULATS:ALL. For the combined data, UAS is similar to the
scores obtained on the SWB corpora (91.1%) but Disfl.F is markedly reduced (47.8%).
In section 5 we discuss this result, but the major factor seems to be a far lower recall rate
– many disfluencies in the BULATS data are simply being missed. As for the outcome
by learner proficiency, both UAS and Disf.F improve with increasing CEFR level. This
indicates that the learners’ speech approximates something like native speech as profi-
ciency increases, thus both dependency relations and disfluencies are more accurately
identified. We suggest that this trend makes parsing a useful diagnostic in ALA and
CALL applications.

5 Discussion

Any CALL or ALA applications rely upon an accurate understanding of natural lan-
guage, within which analysis of language relations in the who did what to whom sense
are a crucial component. Spoken language is inherently disfluent and presents an acute
challenge in attempts to identify these relations. As discussed here and in earlier work
[16, 26, 27], a disfluent utterance may yet be appropriately parsed if the disfluent sec-
tions can be detected and removed. We have shown that the models of disfluency detec-
tion developed for native speaker data enjoy less success with learner data, at least of
the kind presented here (business exam monologues). This means that our automated
understanding of what the learner meant to say is impaired, with negative implications
for CALL and ALA models.

We observe both a lower precision and a notably lower recall rate than is attained
when parsing native speech. The implication is that in BULATS the errors are slightly
harder to correct, but much harder to detect, than in SWB.

In comparison to the native speaker’s FP-RM-IM-RR sequence given in Figure 1,
our non-native speaker disfluencies are rarely so orderly. Filled pauses (FP) were omit-
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ted from the datasets used here, and interestingly the BULATS corpus has no clear
interregna (IM) structures. ‘Rough copy’ edits (exact repetition, or repetition with in-
sertion, deletion or substitution of one or more words [18]) are common in BULATS
(131 of 207 disfluent sections – 63.3% – have exact repetition of at least one token
between reparandum and repair) and are accommodated in Redshift with specific con-
textual devices that search the buffer and stack for nearby POS or word matches [16].

The remainder of the BULATS disfluencies are characterised by errors: incorrect
lexical choices that are intitiated but subsequently abandoned – so-called ‘false starts’.
Of the 207 disfluent sections, 55 (26.6%) are speech errors of this kind. Many false starts
are single token mispronunciations – e.g. ‘health’ followed by the corrective ‘help’, ‘far’
then ‘fast’, ‘ship’ then ‘sitting’. These ‘soundalikes’ represent a challenge for disfluency
detection systems that, without audio, cannot recognise them as a kind of repetition.

Many of the uncorrected reparanda in BULATS are long and not obviously related
to the repair - often resembling complete grammatical structures. Some examples are
given in Figure 2:

And the people from twenty five to fifteen years old they have︸ ︷︷ ︸
RM

the percentage of them...︸ ︷︷ ︸
RP

My colleagues will advise me for the working stra they will guide for︸ ︷︷ ︸
RM

how to behave︸ ︷︷ ︸
RP

in [the office]

that I want they maybe they maybe help for my︸ ︷︷ ︸
RM

they maybe took my︸ ︷︷ ︸
RP

advice

Fig. 2. Undetected or partially detected disfluency examples from the BULATS corpus.

Our future work involves further investigation of these errors and how they might au-
tomatically be recognised. We propose that these errors distinguish non-native speaker
data (e.g. BULATS) from native speaker data (e.g. SWB) and that they are harder for
language models to detect than rough copy, as reflected in the Disfl.F disparity.

Moreover, if disfluencies such as these can be detected more successfully in learner
data, we envisage that a measure of the quantity of linguistic material edited out of the
utterance will provide some measure of distance to canonical language, or the learner’s
‘target’, whatever that is taken to be (‘correct’ standard English, as a first approxima-
tion). This, along with a measure of error correction, fits in with the ideas expressed in
[8], in which increasing (normalised) parse tree probabilities from the RASP System
were taken as a proxy for distance to the native speaker data on which the parser had
been trained. The next step in this line of work is to develop a more appropriate model
of disfluencies for non-native speaker data, that can accommodate the type of disfluency
exemplified in Figure 2.

We acknowledge that at 5667 tokens in total, our BULATS dataset is dwarfed by the
SWB corpus and its 45k dev/test-sets. However, preparation of a gold-standard treebank
is a laborious task and has already taken many hours of work. However, new techniques
– such as crowdsourcing as in [7] – are becoming available, and we intend to continue
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expanding the BULATS treebank, in particular with speakers of other first languages
and CEFR levels. We will also collect new data for speech topics other than business,
for spontaneous dialogues as well as monologues, and for tasks other than oral exami-
nations.
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