
We know where you live 
Systematically Fingerprinting 
Low- and Medium-interaction 
Honeypots at Internet Scale

Alexander Vetterl
University of Cambridge

✉ alexander.vetterl@cl.cam.ac.uk



Introduction
Honeypots: 
A resource whose value is being attacked or compromised

— Honeypots have been focused for years 
on the monitoring of human activity 

— Adversaries attempt to distinguish 
honeypots by executing commands 

— Honeypots continuously fix 
commands to be “more like bash”

Cowrie – commands implemented



How we currently build (SSH) honeypots
1. Find a library that implements the desired protocol 

(e.g. TwistedConch for SSH)
2. Write the Python program to be “just like bash” 
3. Fix identity strings, error messages etc. to be “just like OpenSSH”

Problem: 
There are lot of subtle differences between TwistedConch and OpenSSH!

RFCs
OpenSSH TwistedConch

Cowrie
sshd

bash



Popular Honeypots



Methodology – Overview
We send probes to 40 different implementations

— 9 Honeypots
— OpenSSH, TwistedConch
— Busybox, Ubuntu/FreeBSD telnetd
— Apache, nginx

We find probes that result in distinctive responses 

We find ‘the’ probe that results in the most 
distinctive response across all implementations and 
perform Internet wide scans

 Triggered 158 million responses



Methodology – Cosine similarity
— We represent our responses as a vector of 

features appropriate to the network protocol 

— The higher the cosine similarity coefficient, 
the more similar the two items under comparison 

x1

x2

Item 1

Item 2

Cosine distance



Probe generation – Telnet and HTTP 
25 440 Telnet negotiation sequences (RFC854)

47 600 HTTP requests (RFC2616 and RFC2518)

IAC escape character

IAC WILL BINARY IAC WILL LOGOUT
4 option codes (WILL, WON’T, DO, DON’T) 

40 Telnet options

123 non-printable, non-
alphanumeric characters

GET /. HTTP/0.0.\r\n\r\n
43 different request methods 

9 different HTTP versions 
(HTTP/0.0 to HTTP/2.2)



Probe generation – SSH
192 SSH version strings (RFC4253) 

— [SSH, ssh]-[0.0 – 3.2]-[OpenSSH, ""] SP [FreeBSD, ""][\r\n, ""]

58 752 KEX_INIT packets (RFC4250) 
— 16 key-exchange algorithms, 2 host key algorithms 
— 15 encryption algorithms, 5 MAC algorithms,
— 3 compression algorithms

Three variants of (malformed) packets

Packet
Length

Padding
Length Payload Random 

Padding MAC

4 bytes 1 byte variable 4-255 
bytes



Results – Similarity across implementations

SSH
n=157 925 376 

Telnet
n=356 160

HTTP
n=571 212



— (Random) padding of SSH packets

— Servers close the connection as a result of bad packets
— Not supported or ignored HTTP methods 
— Not supported or ignored Telnet negotiation options
— Different error messages returned 
— and more…

Results – Reasons for distinctive responses 

Packet
Length

Padding
Length Payload Random 

Padding MAC

4 bytes 1 byte variable 4-255 
bytes



Results – Internet wide scans (Honeypots)



Results – Mass Deployment
— 724 IPs run both an SSH and Web honeypot
— Many honeypots are hosted at well-known cloud providers



Revision history for command selection

13

— We looked for commands in the revision history (uname -a, tftp)

Cowrie ≥ 2016-11-02 

Cowrie < 2016-11-02 



Results (SSH) – Updating Honeypots
— SSH Honeypot operators rarely update their honeypots



Results (SSH) – Set up options
Only 79% of SSH honeypots have an unique host key

SSH Version strings

— 61 different version strings

— 72% use the default – SSH-2.0-OpenSSH_6.0p1 Debian-4+deb7u2

Hostname (uname –a)

— debnfwmgmt-02 is used for 296 honeypots (14.6%)
— This is the default hostname for Cowrie when it is used in T-Pot (Deutsche Telekom)

— T-Pot is a popular docker container and combines 16 honeypots



Legislation in the context of honeypots

16

In general much authorisation is implicit

— Devices and services intentionally connected 
to the Internet 

— Web servers/ftp servers with the username 
‘anonymous’ and email address as password

Our access was not unauthorised because the controller 
of the honeypot has –

— intentionally made available a (vulnerable) system and

— implicitly permits the access of the ‘kind of question’



Impact and Countermeasures
We can detect your honeypots without even trying to send any credentials 

— It is hard to tell from the logging that you've been detected!

— It is easy to add scripts using these techniques into tools such as Metasploit!

Closely monitor and update your honeypots 

— Honeypot operators are as bad as anyone with patching

Patching against the specific distinguishers is not a solution

— We developed a modified version of the OpenSSH daemon (sshd) which can front-end 
a Cowrie instance so that the protocol layer distinguishers will no longer work



Conclusion
Presented a generic approach for fingerprinting honeypots (“class break”)

— With a TCP handshake and usually one further packet we identify if you are running Kippo, 
Cowrie, Glastopf or various other (we believe all) low- and medium-interaction honeypots

Performed Internet wide scans for 9 different honeypots 
— Found 7,605 honeypots residing on 6,125 IPv4 addresses

— Majority are hosted at well known cloud providers

— Only 39% of SSH honeypots were updated within the previous 7 months

We need a new architecture for low- and medium-interaction honeypots
— The “bad guys” can easily reproduce and implement our techniques



Q & A
Alexander Vetterl

alexander.vetterl@cl.cam.ac.uk
https://github.com/amv42/sshd-honeypot

https://github.com/amv42/sshd-honeypot

	������������We know where you live �Systematically Fingerprinting �Low- and Medium-interaction �Honeypots at Internet Scale�
	Introduction
	How we currently build (SSH) honeypots
	Popular Honeypots
	Methodology – Overview
	Methodology – Cosine similarity
	Probe generation – Telnet and HTTP 
	Probe generation – SSH
	Results – Similarity across implementations
	Results – Reasons for distinctive responses 
	Results – Internet wide scans (Honeypots)
	Results – Mass Deployment
	Revision history for command selection
	Results (SSH) – Updating Honeypots
	Results (SSH) – Set up options
	Legislation in the context of honeypots
	Impact and Countermeasures
	Conclusion
	
Q & A

Alexander Vetterl
alexander.vetterl@cl.cam.ac.uk
https://github.com/amv42/sshd-honeypot 


