
Bitter Harvest: 
Systematically Fingerprinting Low- and Medium-

interaction Honeypots at Internet Scale

Alexander Vetterl and Richard Clayton
University of Cambridge

12th USENIX Workshop on Offensive Technologies – August 13-14, 2018



Introduction

2

Honeypots: 
A resource whose value is being attacked or compromised

— Honeypots have been focused for years 
on the monitoring of human activity 

— Adversaries attempt to distinguish 
honeypots by executing commands 

— Honeypots continuously fix 
commands to be “more like bash”

Cowrie – commands implemented



How we currently build (SSH) honeypots

3

1. Find a library that implements the desired protocol 
(e.g. TwistedConch for SSH)

2. Write the Python program to be “just like bash” 
3. Fix identity strings, error messages etc. to be “just like OpenSSH”

Problem: 
There are lot of subtle differences between TwistedConch and OpenSSH!

RFCs
OpenSSH TwistedConch

Cowrie
sshd

bash



Honeypots in this study

4



Methodology – Overview

5

We send probes to 40 different implementations

— 9 Honeypots
— OpenSSH, TwistedConch
— Busybox, Ubuntu/FreeBSD telnetd
— Apache, nginx

We find probes that result in distinctive responses 

We find ‘the’ probe that results in the most 
distinctive response across all implementations and 
perform Internet wide scans

 Triggered 158 million responses



Methodology – Cosine similarity

6

— We represent our responses as a vector of 
features appropriate to the network protocol 

— The higher the cosine similarity coefficient, the 
more similar the two items under comparison 

x1

x2

Item 1

Item 2

Cosine distance



Probe generation – Telnet and HTTP 

7

25 440 Telnet negotiation sequences (RFC854)

47 600 HTTP requests (RFC2616 and RFC2518)

IAC escape character

IAC WILL BINARY IAC WILL LOGOUT

4 option codes (WILL, WON’T, DO, DON’T) 

40 Telnet options

123 non-printable, non-
alphanumeric characters

GET /. HTTP/0.0.\r\n\r\n

43 different request methods 

9 different HTTP versions 
(HTTP/0.0 to HTTP/2.2)



Probe generation – SSH

8

Packet
Length

Padding
Length Payload Random 

Padding MAC

4 bytes 1 byte variable 4-255 
bytes

192 SSH version strings (RFC4253) 
— [SSH, ssh]-[0.0 – 3.2]-[OpenSSH, ""] SP [FreeBSD, ""][\r\n, ""]

58 752 KEX_INIT packets (RFC4250) 
— 16 key-exchange algorithms, 2 host key algorithms 
— 15 encryption algorithms, 5 MAC algorithms,
— 3 compression algorithms

Three variants of (malformed) packets



Results – Similarity across implementations

9

SSH
n=157 925 376 

Telnet
n=356 160

HTTP
n=571 212



Results – Reasons for distinctive responses 

10

Packet
Length

Padding
Length Payload Random 

Padding MAC

4 bytes 1 byte variable 4-255 
bytes

— (Random) padding of SSH packets

— Servers close the connection as a result of bad packets
— Not supported or ignored HTTP methods 
— Not supported or ignored Telnet negotiation options
— Different error messages returned 
— and more…



Results Telnet – Internet wide scans (1/3)

11

— First study to give an estimate 
of Telnet implementations

— Most implementations are 
similar to Busybox 1.6-2.4

— Not many servers respond in 
the same way as honeypots



Results SSH/HTTP – Internet wide scans (2/3)

12

Most implementations are similar 
to OpenSSH 6.6 and OpenSSH 7.2

Most implementations are similar to nginx
1.12.1, Apache 2.2.34 and Apache 2.4.27



Results Honeypots – Internet wide scans (3/3)

13



Random padding of packets does not allow for exact matches

Validation and Accuracy (1/2)

14

Use second-best distinguishing probeRemoving the random parts



Validation and Accuracy (2/2)

15

Equal Error Rate (ERR) of 0.0183 

— We falsely accept and at the 
same time fail to identify 51 
honeypots 

— 2,779 honeypots as ‘ground 
truth’



Results – Mass Deployment

16

— 724 IPs run both an SSH and Web honeypot
— Many honeypots are hosted at well-known cloud providers



Results (SSH) – Configuration

17

— Only 79% of SSH honeypots have an unique host key
— SSH Honeypot operators rarely update their honeypots



Impact and Countermeasures

18

We can detect your honeypots without even trying to send any credentials 
— It is hard to tell from the logging that you've been detected!
— It is easy to add scripts using these techniques into tools such as Metasploit!

Closely monitor and update your honeypots 
— Honeypot operators are as bad as anyone with patching

Patching against the specific distinguishers we report in the paper is not
a solution as there are thousands more

— We developed a modified version of the OpenSSH daemon (sshd) which can front-end 
a Cowrie instance so that the protocol layer distinguishers will no longer work



Ethical Considerations

19

— We followed our institution’s ethical research policy
— with appropriate authorisation at every stage

— We used the exclusion list maintained by DNS-OARC

— We notified all local CERTs of our scans

— We respected requests to be excluded from further scanning

— We notified the relevant honeypot and library developers of our findings



Conclusion

20

Presented a generic approach for fingerprinting honeypots (“class break”)
— With a TCP handshake and usually one further packet we identify if you are 

running Kippo, Cowrie, Glastopf or various other (we believe all) 
low- and medium-interaction honeypots

Performed Internet wide scans for 9 different honeypots 
— Found 7,605 honeypots residing on 6,125 IPv4 addresses

— Majority are hosted at well known cloud providers

— Only 39% of SSH honeypots were updated within the previous 7 months

We need a new architecture for low- and medium-interaction honeypots
— The “bad guys” can easily reproduce and implement our techniques



21

Q & A
Alexander Vetterl

alexander.vetterl@cl.cam.ac.uk
https://github.com/amv42/sshd-honeypot

https://github.com/amv42/sshd-honeypot

	Bitter Harvest: �Systematically Fingerprinting Low- and Medium-interaction Honeypots at Internet Scale�
	Introduction
	How we currently build (SSH) honeypots
	Honeypots in this study
	Methodology – Overview
	Methodology – Cosine similarity
	Probe generation – Telnet and HTTP 
	Probe generation – SSH
	Results – Similarity across implementations
	Results – Reasons for distinctive responses 
	Results Telnet – Internet wide scans (1/3)
	Results SSH/HTTP – Internet wide scans (2/3)
	Results Honeypots – Internet wide scans (3/3)
	Validation and Accuracy (1/2)
	Validation and Accuracy (2/2)
	Results – Mass Deployment
	Results (SSH) – Configuration
	Impact and Countermeasures
	Ethical Considerations
	Conclusion
	Foliennummer 21

