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Structural recursion and induction
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is crucial in [programming language) semantics

—its preferable to give meaning to
program constructions rather than just to
Whdle programs.
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Mathematics of syntax

How best to reconcile

syntactical issues to do with name-binding and
a-conversion

with a structural approach to semantics?

Specifically: improved forms of structural recursion
and structural induction for syntactical structures.
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Structural recursion and induction

Compositionality

is crucial in [programming language] semantics

—it’s preferable to give meaning to
program constructions rather than just to

whole programs.




Structural recursion and induction

In particular, as far as semantics is concerned,
concrete syntax

letfun £f x = 1f x > 100 then x — 10
else £ (£ ( x + 11 ) ) in £ ( x + 100 )
is unimportant compared to abstract syntax (ASTs):

letfun
f X 1f @



Structural recursion and induction

ASTs enable two fundamental (and inter-linked) tools
iIn programming language semantics:

Definition of functions on syntax
by recursion on its structure.

Proof of properties of syntax
by induction on its structure.



Running example

Concrete syntax:

ti=x|tt| Axe.t | letfunxax =t int
ASTs:
AZ2puS.(VH(SXS)+ (VXS +(VXVxS8xS))

where V is some fixed, countably infinite set (of
names x of variables).



letfun fx = ifx > 100 thenax — 10

in f(z + 101)

else f(f(x + 11))
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Structural recursion for A

ZpuS. (V4 (SXxS)+(Vx8)+(VXVxXSxS))

Given a set S fo:V o S

fA:S XS — S
foL:Vx§— 5§
fFP: VXV XSXS—S,

A

there is a unique function f : A — S satisfying

and functions

fwl = fva
f(tits) = fa(fta, fta)
f()\$1-t1) = fu(x1, ft1)
f(letfun rq1 o = 1 1n tz) — fF(azl, 2, ftl, ftg)

for all 1, T2 € VY and t1, 1o € A.



Structural recursion for A
2 uS.(V4+(SxS)+ (VxS +(VxVxSxS))

Given a set S

fv:V—>§

fA:S XS — S
fL: VX 8§ — 8§
JF: N

and functions

= fr(z1, ftl)A )
ti1 inty) = fr(x1,x2, f i1, ft2)

xrs €V and t1, 1o € A.

w]o



letfun fx = ifx > 100 thenax — 10

in f(z + 101)

else f(f(x + 11))

if
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letfun fx = ifx > 100 thenax — 10

else f(f(x 4+ 11))
in f(z + 101)

letfun
fe_x if Q@
> — @ —f
r 100 x f @ x 101
fo+
r 11

00000000000000



letfun fx = ifx > 100 thenax — 10

in f(z + 101)

else f(f(x + 11))

letfun

101




Abstract syntax / o

Dealing with issues to do with binders and
a-conversion Is

irritating (want to get on with more interesting
aspects of semantics!)

pervasive (very many languages involve binding
operations; cf POPLMark Challenge [TPHOLs ’05])

difficult to formalise/mechanise without loosing
sight of common informal practice:
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Abstract syntax / «

Dealing with issues to do with binders and
a-conversion Is

irritating (want to get on with more interesting
aspects of semantics!)

pervasive (very many languages involve binding
operations; cf POPLMark Challenge [TPHOLs ’05])

difficult to formalise/mechanise without loosing
sight of common informal practice:

“We identify expressions up to a-equivalence”. ..
... and then forget about it, referring to a-equi-
valence classes e = [t], only via representatives, t.

For example. ..



E.g. — capture-avoiding substitution

(x := e)ey| = substitute e for all free occurrences

of x in e;, avoiding capture of free variables in e
by binders in e;.



(x
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E.g. — capture-avoiding substitution

= e)x, = if x1 = = then e else x;

= e)(e1e2) = ((x :=e)e1)((x := e)ey)
= e)(Axq.e1) =
if ©1 € fo(x,e) then Axq.(x := e)e;
else don’t carel
.= e)(letfun; T2 = e; in ey) = ?
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E.g. — capture-avoiding substitution

= e)x, = if x1 = = then e else x;

= e)(e1e2) = ((x :=e)e1)((x := e)ey)

= e)(Axq.e1) =

if ©1 € fo(x,e) then Axq.(x := e)e;

else don’t carel

:= e)(letfunT; T2 = e; in e3) =

if ©1, 22 & fo(x,e) & x2 & fo(xy,es)

then letfun L1 T2
else don’t carel

(x :=e)ey in (x := e)ey



E.g. — capture-avoiding substitution

(r:=e)x, = if z; = x then e else x;

(z:=¢e)(e1e2) = ((x :=e)er)((z := e)es)
(z := e)(Az1.e1) =
if ©1 € fo(x,e) then Axq.(x := e)e;
else don’t carel
( := e)(letfunx; T2 = e; in ey) =
if ©1, 22 & fo(x,e) & x2 & fo(xy,es)
then letfunax; 2 = (x := e)e; in (x := e)es
else don’t carel

Does uniquely specify a well-defined function on a-equivalence classes,
(x:=e)(—): A/Ja — A/a, but not via an obvious, structurally recursive definition
of a function f : A — A respecting a-equivalence.

OOOOOOOOOOOOOOO



E.g. — denotational semantics

of A/a in some suitable domain D:

[1]p = p(z1)

[e1 e2]p = app([ei]p, [e2]p)

Azi.ei]p = fun(Ad € D. [ei](p[z, — d]))

[letfunx; x2 = e; in ex]p 2 fix(---)

where
- p ranges over environments mapping variables to elements of D

- D comes equipped with continuous functions app : D x D — D and
fun : (D — D) — D.

OOOOOOOOOOOOOOO



E.g. — denotational semantics

of A/a in some suitable domain D:
- [z1]p = p(z1)
- [e1 e2]p = app([ei]p, [e2]p)

« [Az1.ei]p = fun(Ad € D. [er] (p[z1 — d]))
- [letfunz, &2 = e in ex]lp = fix(---) 7
Why is this (very standard)

definition independent of the
choice of bound variable x?




E.g. — denotational semantics

of A/a in some suitable domain D:

[1]p = p(x1)

[e1 e2]p = app([ei]p, [e2]p)

Azi.ei]p = fun(Ad € D. [ei](p[z, — d]))

[letfunx; x2 = e; in ex]p 2 fix(---)

In this case we can use ordinary structural recursion
to first define denotations of ASTs and then prove
that they respect a-equivalence.

But is there a quicker way, working directly with
ASTs/a?
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these “definitions” of (x :=e)(—) : A/Ja — A/a and
[—] : A/ — D (and many other e.g.s)?
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o-Structural recursion

Is there a recursion principle for A/a that legitimises
these “definitions” of (x :=e)(—) : A/Ja — A/a and
[—] : A/ — D (and many other e.g.s)?

Yes| — «o-structural recursion
(and induction too—see paper).

What about other languages with binders?
Yes!l — available for any nominal signature.

Great. What’s the catch?

Need to learn a bit of possibly unfamiliar math, to do
with permutations and support.



a-Structural recursion for A/«

Given a nominal set S

fv:V—-> 8§
faA:SXS—S

fL: VX §—>S8

fFP: VXV XSXS—S,

and functions

all supported by a finite subset A C V,

there is a unique function f: A/a — S
such that. ..



a-Structural recursion for A/«

... 3! function f: A/a — S such that:

JE331 v
fleres) = fa(feu, fen)
r1 &€ A = f()\ml.el) = fL(ml,fel)
r1, L2 & A & x1 #£ 2 & 2 &€ fv(ez) =

f(letfun 1 Xy — €1 1n 62) — fF(wla L2, fela fez)

for all z1, 2, €V & e1,e5 € A/,



a-Structural recursion for A/«

... 3! function f: A/a — S such that:

JE331 A
flerea) = fa(fer, fer)
L1 ¢ A — f()\ml.el) — fL(ml,fel)
r1, L2 & A & x1 #£ 2 & 2 &€ fv(ez) =

f(letfun 1 Xy — €1 1n 62) — fF(wla L2, fela fez)

provided freshness condition for binders (FCB) holds
for fr: (o, & A)(Vs € S) 1 # fr(x1,8)
for fr: (Axi,x0 & A) 1 # 3 &

(Vs1,820 € S) 2 # 81 =

L1y L2 # fF(wla L24 S15 82)



a-Structural recursion for A/«

~

The freshness relation (—) # (—) between names
and elements of nominal sets generalises the
(—) & fu(—) relation between variables and ASTs.

E.g. for the capture-avoiding substitution example,
fr(zi,e) = Axzq.e and (FCB) holds trivially because
r1 & fu(Axq.e) (and similarly for fr).

J

'provided freshness conditio‘h\Fa{ binders (FCB) holds
for fr: (o, & A)(Vs € S) 1 # fr(x1,8)
for fr: (Axi,x0 & A) 1 # 3 &

(Vs1,820 € S) 2 # 81 =

L1y L2 # fF(:Bla L24 S15 32)



To be explained:

Nominal sets, support
and the freshness relation, (—) # (—)-
(Simplified version of [Gabbay-Pitts, 2002].)

How is a-structural recursion proved?

How to generalise a-structural recursion from the
example language A to general languages with
binders?

What’s involved with applying «-structural recursion
in any particular case?

Mechanisation?




Actions of permutations

G £ group of all finite permutations of V.
An action of G on a set S is a function

GxS—S written (w,s)+— m-s

satisfying [t - s =s|and |w - (7' -s) = (77’) - s

G-set £ set S + action of G on S.



Finite support and freshness

Definition. A finite subset A C V supports an
element s € S of a G-set S if

(Ve, ' € V—A) (xx')-s5=s




Finite support and freshness

Definition. A finite subset A C V supports an
element s € S of a G-set S if

(Ve, 2’ € V—A) (xx')-s5=s

|

the permutation that swaps = and z’




Finite support and freshness

Definition. A finite subset A C V supports an
element s € S of a G-set S if

(Ve, ' € V—A) (xx')-s5=s

A nominal set is a G-set all of whose elements have
a finite support.



Finite support and freshness

Definition. A finite subset A C V supports an
element s € S of a G-set S if

(Ve, ' € V—A) (xx')-s5=s

A nominal set is a G-set all of whose elements have
a finite support.

Lemma. If s € S has a finite support, then it has a
smallest one, written | supp(s) |-

Notation. If © € supp(s), we write |x # s| and say
“x 1s fresh for s.”




Languagestx form nominal sets

For example, natural G-action on A/« is given by:

cx = m(x)

- (e1ez) = (m-e1)(m - e2)
. (Az.e) = Amw(x).(7 - e)

(letfun &1 o — €1 1n 62) il

>l=l=l>l

letfunm(xy) w(x2) = 7T+ €1 in - ey



Languagestx form nominal sets

For example, natural G-action on A/« is given by:

cx = m(x)

- (e1ez) = (m-e1)(m - e2)
. (Az.e) = Amw(x).(7 - e)

(letfun &1 o — €1 1n 62) il

>l=l=l>l

letfunm(xy) w(x2) = 7T+ €1 in - ey

N.B. binding and non-binding constructs are treated just the same



Languagestx form nominal sets

For example, natural G-action on A/« is given by:

cx = m(x)
- (erez) = (- e1)(m - e2)
- (Az.e) = Am(x).(7 - e)

. (letfun &1 o — €1 1n 62) il

53 3 3 9

letfunm(xy) w(x2) = 7T+ €1 in - ey

For this action, it is not hard to see that e € A/a is
supported by any finite set of variables containing all
those occurring free in e and hence

x # e iff x & fu(e).



Nominal function sets

The exponential of S and S’ in the category of
G-sets is the set of all functions f : S — S’ equipped
with the G-action:

w-f:8 — 8
s = m-(f(m1-9))

With this definition, = - (—) preserves function
application:

(m-f)(mw-s) = w-(f(w" - (7 3)))
w- (f(e-s))

- (f s)



Nominal function sets

The exponential of S and S’ in the category of
G-sets is the set of all functions f : S — S’ equipped

with the G-action:
w-f:8 — 8

s — - (f(m™"-s))

Even if S and S’ are nominal, not every function
from S to S’ is necessarily finitely supported
w.r.t. this action.

(e.g. any surjection N — V can’t have finite support)



Nominal function sets

The exponential of S and S’ in the category of
G-sets is the set of all functions f : S — S’ equipped

with the G-action:
w-f:8 — 8

The set

s — - (f(m™"-s))

S_>fSS,

of finitely supported functions from

a nominal set S to a nominal set S’ is, by
construction, a nominal set.



To be explained:

« Nominal sets, support and the freshness relation,
(=) # (—)-
(Simplified version of [Gabbay-Pitts, 2002].)

« How is a-structural recursion proved?

- How to generalise a-structural recursion from the
example language A to general languages with
binders?

« What'’s involved with applying a-structural recursion
in any particular case?

« Mechanisation?
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Proof

a-Structural recursion reduces to ordinary structural
recursion for ASTs within higher-order logic: roughly
speaking, one makes a definition for all permutations
simultaneously, i.e. uses G — S where you might
expect to use a set S.



Proof

a-Structural recursion reduces to ordinary structural
recursion for ASTs within higher-order logic: roughly
speaking, one makes a definition for all permutations
simultaneously, i.e. uses G — S where you might
expect to use a set S.

Role of the (FCB): if = # f1 & (Vs) x # fr(x, s),
then for any x’ # (fr,x, s)

fr(z, s) (xx') - fr(z, s)
fr(x'y (xx’) - s)

so fr(—,—) respects a-conversion of its argument.




To be explained:

« Nominal sets, support and the freshness relation,
(=) # (—)-
(Simplified version of [Gabbay-Pitts, 2002).)

» How is a-structural recursion proved?

- How to generalise a-structural recursion from the
example language A to general languages with
binders?

« What’s involved with applying a-structural recursion
in any particular case?

« Mechanisation?

ssssssssssssssss



a-Structural recursion for A/«

... 3! function f: A/a — S such that:

fwl A
flerea) = fa(fer, fer)
L1 ¢ A — f()\ml.el) — fL(ml,fel)
r1, L2 & A & x1 # 2 & 2 & fv(ez) =

f(letfun 1Ty — €1 1n 62) — fF(wla L2, fela fez)

provided freshness condition for binders (FCB) holds
for fr: (o, & A)(Vs € S) 1 # fr(x1,8)
for fr: (Axi,x0 & A) 1 # 3 &

(Vs1,820 € S) 2 # 81 =

L1y L2 # fF(:Bla L24 S15 32)



a-Structural recursion for A/«

Using nominal signatures, these

conditions can be determined
automatically from the pattern

f(|of bindings in a constructor’s

1 ¢ A= f(A: arity. . .

... 3! function f: A/

T1, L2 & A & 1 #£ 2 & 2 &€ fv(ez) = )
19f€2)

f(letfun 1 o — €1 1n 62) — fF(Zli‘l, 2, f

provided freshness condition for binders (FCB) holds
for fr: (o, & A)(Vs € S) 1 # fr(x1,8)
for fr: (Axi,x0 & A) 1 # 3 &

(Vs1,820 € S) 2 # 81 =

L1y L2 # fF(:Bla L24 S15 32)



Nominal signatures

Generalisation of many-sorted, algebraic signatures
that includes info about how constructors bind
names.

Not as general as some schemes for expressing
binding patterns (cf. Pottier’s Caml), but a good
compromise between expressiveness and simplicity.



Nominal signatures

« Sorts partitioned into atom-sorts v & data-sorts 9.

- Constructors K : o0 — d have arities o built using
pairing o * oy and atom-binding (v))o



Nominal signatures

Sorts partitioned into atom-sorts v & data-sorts 9.

Constructors K : o — 6 have arities o built using
pairing o * oy and atom-binding (v))o

E.g. nominal signature for

A={tu=x|tt| Ax.t | letfunxax =t in t} has
atom-sort var, data-sort term and constructors:
V :var — term

A :term * term — term
L : {(var))term — term
F: {var))(({{var))term) * term) — term




Nominal signatures

Sorts partitioned into atom-sorts v & data-sorts 9.

Constructors K : o — 6 have arities o built using
pairing o, * oy and atom-binding {(v) o that
automatically determine:

appropriate notion of a-equivalence between ASTs
the (FCB) in a-structural recursion



To be explained:

« Nominal sets, support and the freshness relation,
(=) # (—)-
(Simplified version of [Gabbay-Pitts, 2002].)

« How to generalise a-structural recursion from the
example language A to general languages with
binders?

» How is a-structural recursion proved?

- What’s involved with applying a-structural recursion
in any particular case?

« Mechanisation?



Given an informal recursive definition on ASTs/a for
a nominal signature, to show that it is an instance of
o-structural recursion:

1. find which sets (S) and functions (fv, fa, fr. fr)
are involved:

2. give S a nominal-set structure and then prove the
f—) are finitely supported;

3. verify the (FCB) for f(_).



Given an informal recursive definition on ASTs/a for
a nominal signature, to show that it is an instance of
o-structural recursion:

1. find which sets (S) and functions (fv, fa, fr. fr)
are involved:

2. give S a nominal-set structure and then prove the
f(-) are finitely supported;

3. verify the (FCB) for f(_).

For step 2 we can use:

Fact The standard set-theoretic model of HOL
(without choice) restricts to finitely supported
elements; e.g. if we apply a construction of HOL-¢
to finitely supported functions we get another such.




Given an informal recursive definition on ASTs/a for
a nominal signature, to show that it is an instance of
o-structural recursion:

1. find which sets (S) and functions (fv, fa, fr. fr)
are involved:

2. give S a nominal-set structure and then prove the
f(-) are finitely supported;

3. verify the (FCB) for f_).

Step 3 is sometimes trivial, sometimes not.

2222222222222222



To be explained:

« Nominal sets, support and the freshness relation,
(=) # (—)-
(Simplified version of [Gabbay-Pitts, 2002].)

« How to generalise a-structural recursion from the
example language A to general languages with
binders?

» How is a-structural recursion proved?

« What'’s involved with applying a-structural recursion
in any particular case?

- Mechanisation?

ssssssssssssssss



Mechanisation?

Norrish’s HOL4 development. [TPHOLs ’04]

Urban & Tasson’s Isabelle/HOL theory of nominal
sets (“p-sets”) and «-structural induction for
A-calculus. [CADE-20, 2005].

Isabelle’s axiomatic type classes are helpful.

Wanted: full implementation of «o-structural
recursion/induction theorems parameterised by a
user-declared nominal signature

(in either HOLA4, or Isabelle/HOL, or both).



Mechanisation?
Gabbay’s FM-HOL [35yrs of Automath, 2002).

Wanted: a new machine-assisted higher-order logic
to support reasoning about ordinary sets and
nominal sets simultaneously.

Should incorporate a reflection principle to exploit

Fact The standard set-theoretic model of
HOL (without choice) restricts to finitely
supported elements; e.g. if we apply a
construction of HOL-¢ to finitely supported
functions we get another such.

Also needs some (lightweight!) treatment of
partial functions.



Assessment

Results apply directly to standard notions of AST &
a-equivalence within ordinary HOL
—like Gordon & Melham’s “5 Axioms” work [TPHOLs ’96), except closer to

informal practice regarding freshness of bound names (more applicable).

Crucial notion of “finite support” is automatically
preserved by constructions in HOL

(if we avoid choice principles).

Mathematical treatment of “fresh names” afforded
by nominal sets is proving useful in other contexts
(e.g. Abramsky et al [LICS '04], Winskel & Turner [2007]).

TPHOLs 2005, - p. 28



Conclusion

Claim: dealing with issues of bound names and
a-equivalence on ASTs is made easier through use
of permutations (rather than traditional use of
non-bijective renamings).

Is the use of name-permutations & support simple
enough to become part of standard practice?

(It’s now part of minel)
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