
TPHOLs 2005, - p. 1

α-Structural Recursion and Induction

Andrew Pitts

University of Cambridge

Computer Laboratory

TPHOLs 2005, - p. 2

Overview

TPHOLs 2005, - p. 2

Overview

TPHOLs 2005, - p. 1

α-Structural Recursion and Induction

Andrew Pitts

University of Cambridge

Computer Laboratory

TPHOLs 2005, - p. 2

Mathematics of syntax

How best to reconcile

syntactical issues to do with name-binding and
α-conversion

with a structural approach to semantics?

Specifically: improved forms of structural recursion
and structural induction for syntactical structures.

TPHOLs 2005, - p. 3

Structural recursion and induction

position

TPHOLs 2005, - p. 3

Structural recursion and induction

positionality

TPHOLs 2005, - p. 3

Structural recursion and induction

Compositionality

TPHOLs 2005, - p. 3

Structural recursion and induction

Compositionality
is crucial in [programming language] semantics

—it’s preferable to give meaning to
program constructions rather than just to
whole programs.

TPHOLs 2005, - p. 3

Structural recursion and induction

In particular, for semantics, concrete syntax

letfun f x = if x > 100 then x − 10

else f (f (x + 11)) in f (x + 100)

is unimportant compared to abstract syntax (ASTs):

letfun

f x if

>

x 100

−

x 10

@

f @

f +

x 11

@

f +

x 101

TPHOLs 2005, - p. 4

Running example

Concrete syntax:

t ::= x | t t | λx.t | letfunx x = t in t

ASTs:

Λ , µS.(V + (S × S) + (V × S) + (V × V × S × S))

where V is some fixed, countably infinite set (of
names x of variables).

TPHOLs 2005, - p. 5

letfun f x = ifx > 100 thenx − 10

else f(f(x + 11))

in f(x + 101)

letrec

f x if

>

x 100

−

x 10

@

f @

f +

x 11

@

f +

x 101

TPHOLs 2005, - p. 6

Structural recursion for Λ
, µS.(V + (S × S) + (V × S) + (V × V × S × S))

Given a set S

and functions



















fV : V → S

fA : S × S → S

fL : V × S → S

fF : V × V × S × S → S,

there is a unique function f̂ : Λ → S satisfying

f̂ x1 = fV x1

f̂(t1 t2) = fA(f̂ t1, f̂ t2)

f̂(λx1.t1) = fL(x1, f̂ t1)

f̂(letfunx1 x2 = t1 in t2) = fF(x1, x2, f̂ t1, f̂ t2)

for all x1, x2 ∈ V and t1, t2 ∈ Λ.

TPHOLs 2005, - p. 6

Structural recursion for Λ
, µS.(V + (S × S) + (V × S) + (V × V × S × S))

Given a set S

and functions



















fV : V → S

fA : S × S → S

fL : V × S → S

fF : V × V × S × S → S,

there is a unique function f̂ : Λ → S satisfying

f̂ x1 = fV x1

f̂(t1 t2) = fA(f̂ t1, f̂ t2)

f̂(λx1.t1) = fL(x1, f̂ t1)

f̂(letfunx1 x2 = t1 in t2) = fF(x1, x2, f̂ t1, f̂ t2)

for all x1, x2 ∈ V and t1, t2 ∈ Λ.Do
esn
’t t
ake
bin
din
g i
nto
acc
ou
nt!

TPHOLs 2005, - p. 7

letfun f x = ifx > 100 thenx − 10

else f(f(x + 11))

in f(x + 101)

letfun

f x if

>

x 100

−

x 10

@

f @

f +

x 11

@

f +

x 101

TPHOLs 2005, - p. 7

letfun f x = ifx > 100 thenx − 10

else f(f(x + 11))

in f(x + 101)

letfun

f x if

>

x 100

−

x 10

@

f @

f +

x 11

@

f +

x 101

TPHOLs 2005, - p. 7

letfun f x = ifx > 100 thenx − 10

else f(f(x + 11))

in f(x + 101)

letfun

f x if

>

x 100

−

x 10

@

f @

f +

x 11

@

f +

x 101

free

TPHOLs 2005, - p. 8

Abstract syntax / α

Dealing with issues to do with binders and
α-conversion is
■ irritating (want to get on with more interesting
aspects of semantics!)

■ pervasive (very many languages involve binding
operations; cf. POPLMark Challenge [TPHOLs ’05])

■ difficult to formalise/mechanise without loosing
sight of common informal practice:

TPHOLs 2005, - p. 8

Abstract syntax / α

Dealing with issues to do with binders and
α-conversion is
■ irritating (want to get on with more interesting
aspects of semantics!)

■ pervasive (very many languages involve binding
operations; cf. POPLMark Challenge [TPHOLs ’05])

■ difficult to formalise/mechanise without loosing
sight of common informal practice:
“We identify expressions up to α-equivalence”. . .

TPHOLs 2005, - p. 8

Abstract syntax / α

Dealing with issues to do with binders and
α-conversion is
■ irritating (want to get on with more interesting
aspects of semantics!)

■ pervasive (very many languages involve binding
operations; cf. POPLMark Challenge [TPHOLs ’05])

■ difficult to formalise/mechanise without loosing
sight of common informal practice:
“We identify expressions up to α-equivalence”. . .
. . . and then forget about it, referring to α-equi-
valence classes e = [t]α only via representatives, t.

For example. . .
TPHOLs 2005, - p. 9

E.g. – capture-avoiding substitution

■ (x := e)x1 , if x1 = x then e else x1

■ (x := e)(e1 e2) , ((x := e)e1)((x := e)e2)

■ (x := e)(λx1.e1) ,

if x1 /∈ fv(x, e) then λx1.(x := e)e1

else don’t care!
■ (x := t)(letfunx1 x2 = e1 in e2) , ?

TPHOLs 2005, - p. 9

E.g. – capture-avoiding substitution

■ (x := e)x1 , if x1 = x then e else x1

■ (x := e)(e1 e2) , ((x := e)e1)((x := e)e2)

■ (x := e)(λx1.e1) ,

if x1 /∈ fv(x, e) then λx1.(x := e)e1

else don’t care!
■ (x := t)(letfunx1 x2 = e1 in e2) ,

if x1, x2 /∈ fv(x, t) & x2 /∈ fv(x1, e2)

then letfunx1 x2 = (x := t)e1 in (x := t)e2

else don’t care!

TPHOLs 2005, - p. 9

E.g. – capture-avoiding substitution

■ (x := e)x1 , if x1 = x then e else x1

■ (x := e)(e1 e2) , ((x := e)e1)((x := e)e2)

■ (x := e)(λx1.e1) ,

if x1 /∈ fv(x, e) then λx1.(x := e)e1

else don’t care!
■ (x := t)(letfunx1 x2 = e1 in e2) ,

if x1, x2 /∈ fv(x, t) & x2 /∈ fv(x1, e2)

then letfunx1 x2 = (x := t)e1 in (x := t)e2

else don’t care!
Does uniquely specify a well-defined function on α-equivalence classes,

(x := e)(−) : Λ/α → Λ/α, but not via an obvious, structurally recursive definition

of a function f̂ : Λ → Λ respecting α-equivalence.

TPHOLs 2005, - p. 10

E.g. – denotational semantics

of Λ/α in some suitable domain D:
■ Jx1Kρ , ρ(x1)

■ Je1 e2Kρ , app(Je1Kρ, Je2Kρ)

■ Jλx1.e1Kρ , fun(λd ∈ D. Je1K(ρ[x1 7→ d]))

■ Jletfunx1 x2 = e1 in e2Kρ , fix(· · ·)

(ρ ranges over environments mapping variables to
elements of D)

TPHOLs 2005, - p. 10

E.g. – denotational semantics

of Λ/α in some suitable domain D:
■ Jx1Kρ , ρ(x1)

■ Je1 e2Kρ , app(Je1Kρ, Je2Kρ)

■ Jλx1.e1Kρ , fun(λd ∈ D. Je1K(ρ[x1 7→ d]))

■ Jletfunx1 x2 = e1 in e2Kρ , fix(· · ·)

Why is this (very standard)
definition independent of the
choice of bound variable x1?

TPHOLs 2005, - p. 10

E.g. – denotational semantics

of Λ/α in some suitable domain D:
■ Jx1Kρ , ρ(x1)

■ Je1 e2Kρ , app(Je1Kρ, Je2Kρ)

■ Jλx1.e1Kρ , fun(λd ∈ D. Je1K(ρ[x1 7→ d]))

■ Jletfunx1 x2 = e1 in e2Kρ , fix(· · ·)

In this case we can use ordinary structural recursion
to first define denotations of ASTs and then prove
that they respect α-equivalence.

But is there a quicker way, working directly with
ASTs/α?

TPHOLs 2005, - p. 11

α-Structural recursion

Is there a recursion principle for Λ/α that legitimises
these “definitions” of (x := e)(−) : Λ/α → Λ/α and
J−K : Λ/α → D?

TPHOLs 2005, - p. 11

α-Structural recursion

Is there a recursion principle for Λ/α that legitimises
these “definitions” of (x := e)(−) : Λ/α → Λ/α and
J−K : Λ/α → D?

Yes! — α-structural recursion
(and induction too—see lecture notes).

TPHOLs 2005, - p. 11

α-Structural recursion

Is there a recursion principle for Λ/α that legitimises
these “definitions” of (x := e)(−) : Λ/α → Λ/α and
J−K : Λ/α → D?

Yes! — α-structural recursion
(and induction too—see lecture notes).

What about other languages with binders?

TPHOLs 2005, - p. 11

α-Structural recursion

Is there a recursion principle for Λ/α that legitimises
these “definitions” of (x := e)(−) : Λ/α → Λ/α and
J−K : Λ/α → D?

Yes! — α-structural recursion
(and induction too—see lecture notes).

What about other languages with binders?

Yes! — available for any nominal signature.

TPHOLs 2005, - p. 11

α-Structural recursion

Is there a recursion principle for Λ/α that legitimises
these “definitions” of (x := e)(−) : Λ/α → Λ/α and
J−K : Λ/α → D?

Yes! — α-structural recursion
(and induction too—see lecture notes).

What about other languages with binders?

Yes! — available for any nominal signature.

Great. What’s the catch?

TPHOLs 2005, - p. 11

α-Structural recursion

Is there a recursion principle for Λ/α that legitimises
these “definitions” of (x := e)(−) : Λ/α → Λ/α and
J−K : Λ/α → D?

Yes! — α-structural recursion
(and induction too—see lecture notes).

What about other languages with binders?

Yes! — available for any nominal signature.

Great. What’s the catch?

Need to learn a bit of possibly unfamiliar math, to do
with permutations and support.

TPHOLs 2005, - p. 12

α-Structural recursion for Λ/α

Given a nominal set S

and functions



















fV : V → S

fA : S × S → S

fL : V × S → S

fF : V × V × S × S → S,

all supported by a finite subset A ⊆ V,

there is a unique function f̂ : Λ/α → S

such that. . .

TPHOLs 2005, - p. 12

α-Structural recursion for Λ/α

. . . ∃! function f̂ : Λ/α → S such that:

f̂ x1 = fV x1

f̂(e1 e2) = fA(f̂ e1, f̂ e2)

x1 /∈ A ⇒ f̂(λx1.e1) = fL(x1, f̂ e1)

x1, x2 /∈ A & x1 6= x2 & x2 /∈ fv(e2) ⇒

f̂(letfunx1 x2 = e1 in e2) = fF(x1, x2, f̂ e1, f̂ e2)

for all x1, x2 ∈ V & e1, e2 ∈ Λ/α,

TPHOLs 2005, - p. 12

α-Structural recursion for Λ/α

. . . ∃! function f̂ : Λ/α → S such that:

f̂ x1 = fV x1

f̂(e1 e2) = fA(f̂ e1, f̂ e2)

x1 /∈ A ⇒ f̂(λx1.e1) = fL(x1, f̂ e1)

x1, x2 /∈ A & x1 6= x2 & x2 /∈ fv(e2) ⇒

f̂(letfunx1 x2 = e1 in e2) = fF(x1, x2, f̂ e1, f̂ e2)

provided freshness condition for binders (FCB) holds
for fL: (∃x1 /∈ A)(∀s ∈ S) x1 # fL(x1, s)

for fF : (∃x1, x2 /∈ A) x1 6= x2 &

(∀s1, s2 ∈ S) x2 # s1 ⇒

x1, x2 # fF (x1, x2, s1, s2)

TPHOLs 2005, - p. 12

α-Structural recursion for Λ/α

. . . ∃! function f̂ : Λ/α → S such that:

f̂ x1 = fV x1

f̂(e1 e2) = fA(f̂ e1, f̂ e2)

x1 /∈ A ⇒ f̂(λx1.e1) = fL(x1, f̂ e1)

x1, x2 /∈ A & x1 6= x2 & x2 /∈ fv(e2) ⇒

f̂(letfunx1 x2 = e1 in e2) = fF(x1, x2, f̂ e1, f̂ e2)

provided freshness condition for binders (FCB) holds
for fL: (∃x1 /∈ A)(∀s ∈ S) x1 # fL(x1, s)

for fF : (∃x1, x2 /∈ A) x1 6= x2 &

(∀s1, s2 ∈ S) x2 # s1 ⇒

x1, x2 # fF (x1, x2, s1, s2)

The freshness relation (−) # (−) between names
and elements of nominal sets generalises the
(−) /∈ fv(−) relation between variables and ASTs.

E.g. for the capture-avoiding substitution example,
fL(x1, e) , λx1.e and (FCB) holds trivially because
x1 /∈ fv(λx1.e) (and similarly for fF).

TPHOLs 2005, - p. 13

To be explained:

■ Nominal sets, support and the freshness relation,
(−) # (−).

■ How to generalise α-structural recursion from the
example language Λ to general languages with
binders?

■ How is α-structural recursion proved?
■ What’s involved with applying α-structural recursion
in any particular case?

■ Mechanisation?

TPHOLs 2005, - p. 14

Actions of permutations

■ G , group of all finite permutations of V.
■ An action of G on a set S is a function

G × S → S written (π, s) 7→ π · s

satisfying ι · s = s and π · (π′ · s) = (ππ′) · s

■ G-set , set S + action of G on S.

TPHOLs 2005, - p. 15

Finite support and freshness

Definition. A finite subset A ⊆ V supports an
element s ∈ S of a G-set S if

(∀x, x′ ∈ V − A) (x x′) · s = s

TPHOLs 2005, - p. 15

Finite support and freshness

Definition. A finite subset A ⊆ V supports an
element s ∈ S of a G-set S if

(∀x, x′ ∈ V − A) (x x′)

the permutation that swaps x and x′

· s = s

TPHOLs 2005, - p. 15

Finite support and freshness

Definition. A finite subset A ⊆ V supports an
element s ∈ S of a G-set S if

(∀x, x′ ∈ V − A) (x x′) · s = s

A nominal set is a G-set all of whose elements have
a finite support.

TPHOLs 2005, - p. 15

Finite support and freshness

Definition. A finite subset A ⊆ V supports an
element s ∈ S of a G-set S if

(∀x, x′ ∈ V − A) (x x′) · s = s

A nominal set is a G-set all of whose elements have
a finite support.

Lemma. If s ∈ S has a finite support, then it has a
smallest one, written supp(s) .

Notation. If x /∈ supp(s), we write x # s and say

“x is fresh for s.”

TPHOLs 2005, - p. 16

Languages/α form nominal sets

For example, natural G-action on Λ/α is given by:

π · x , π(x)

π · (e1 e2) , (π · e1)(π · e2)

π · (λx.e) , λπ(x).(π · e)

π · (letfunx1 x2 = e1 in e2) ,

letfunπ(x1) π(x2) = π · e1 in π · e2

TPHOLs 2005, - p. 16

Languages/α form nominal sets

For example, natural G-action on Λ/α is given by:

π · x , π(x)

π · (e1 e2) , (π · e1)(π · e2)

π · (λx.e) , λπ(x).(π · e)

π · (letfunx1 x2 = e1 in e2) ,

letfunπ(x1) π(x2) = π · e1 in π · e2

N.B. binding and non-binding constructs are treated just the same

TPHOLs 2005, - p. 16

Languages/α form nominal sets

For example, natural G-action on Λ/α is given by:

π · x , π(x)

π · (e1 e2) , (π · e1)(π · e2)

π · (λx.e) , λπ(x).(π · e)

π · (letfunx1 x2 = e1 in e2) ,

letfunπ(x1) π(x2) = π · e1 in π · e2

For this action, it is not hard to see that e ∈ Λ/α is
supported by any finite set of variables containing all
those occurring free in e and hence

x # e iff x /∈ fv(e).

TPHOLs 2005, - p. 17

Nominal function sets

The exponential of S and S′ in the category of
G-sets is the set of all functions f : S → S′ equipped
with the G-action:

π · f : S → S′

s 7→ π · (f(π−1 · s))

Even if S and S′ are nominal, not every function
from S to S′ is necessarily finitely supported
w.r.t. this action.

(e.g. any surjection N → V can’t have finite support)

TPHOLs 2005, - p. 17

Nominal function sets

The exponential of S and S′ in the category of
G-sets is the set of all functions f : S → S′ equipped
with the G-action:

π · f : S → S′

s 7→ π · (f(π−1 · s))

The set S→fsS
′ of finitely supported functions from

a nominal set S to a nominal set S′ is, by
construction, a nominal set.

TPHOLs 2005, - p. 18

To be explained:

■ Nominal sets, support and the freshness relation,
(−) # (−).

■ How to generalise α-structural recursion from the
example language Λ to general languages with
binders?

■ How is α-structural recursion proved?
■ What’s involved with applying α-structural recursion
in any particular case?

■ Mechanisation?

TPHOLs 2005, - p. 19

α-Structural recursion for Λ/α

. . . ∃! function f̂ : Λ/α → S such that:

f̂ x1 = fV x1

f̂(e1 e2) = fA(f̂ e1, f̂ e2)

x1 /∈ A ⇒ f̂(λx1.e1) = fL(x1, f̂ e1)

x1, x2 /∈ A & x1 6= x2 & x2 /∈ fv(e2) ⇒

f̂(letfunx1 x2 = e1 in e2) = fF(x1, x2, f̂ e1, f̂ e2)

provided freshness condition for binders (FCB) holds
for fL: (∃x1 /∈ A)(∀s ∈ S) x1 # fL(x1, s)

for fF : (∃x1, x2 /∈ A) x1 6= x2 &

(∀s1, s2 ∈ S) x2 # s1 ⇒

x1, x2 # fF (x1, x2, s1, s2)
TPHOLs 2005, - p. 19

α-Structural recursion for Λ/α

. . . ∃! function f̂ : Λ/α → S such that:

f̂ x1 = fV x1

f̂(e1 e2) = fA(f̂ e1, f̂ e2)

x1 /∈ A ⇒ f̂(λx1.e1) = fL(x1, f̂ e1)

x1, x2 /∈ A & x1 6= x2 & x2 /∈ fv(e2) ⇒

f̂(letfunx1 x2 = e1 in e2) = fF(x1, x2, f̂ e1, f̂ e2)

provided freshness condition for binders (FCB) holds
for fL: (∃x1 /∈ A)(∀s ∈ S) x1 # fL(x1, s)

for fF : (∃x1, x2 /∈ A) x1 6= x2 &

(∀s1, s2 ∈ S) x2 # s1 ⇒

x1, x2 # fF (x1, x2, s1, s2)

Using nominal signatures, these
conditions can be determined
automatically from the pattern
of bindings in a constructor’s
arity. . .

TPHOLs 2005, - p. 20

Nominal signatures

Generalisation of many-sorted, algebraic signatures
that includes info about how constructors bind
names.

Not as general as some schemes for expressing
binding patterns (cf. Pottier’s Cαml), but a good
compromise between expressiveness and simplicity.

TPHOLs 2005, - p. 20

Nominal signatures

■ Sorts partitioned into atom-sorts ν & data-sorts δ.
■ Constructors K : σ → δ have arities σ built using
pairing σ1 ∗ σ2 and atom-binding 〈〈ν〉〉σ

TPHOLs 2005, - p. 20

Nominal signatures

■ Sorts partitioned into atom-sorts ν & data-sorts δ.
■ Constructors K : σ → δ have arities σ built using
pairing σ1 ∗ σ2 and atom-binding 〈〈ν〉〉σ

E.g. nominal signature for
Λ = {t ::= x | t t | λx.t | letfunx x = t in t} has
atom-sort var, data-sort term and constructors:
V : var → term

A : term ∗ term → term

L : 〈〈var〉〉term → term

F : 〈〈var〉〉((〈〈var〉〉term) ∗ term) → term

TPHOLs 2005, - p. 20

Nominal signatures

■ Sorts partitioned into atom-sorts ν & data-sorts δ.
■ Constructors K : σ → δ have arities σ built using
pairing σ1 ∗ σ2 and atom-binding 〈〈ν〉〉σ that
automatically determine:
◆ appropriate notion of α-equivalence between ASTs
◆ the (FCB) in α-structural recursion

TPHOLs 2005, - p. 21

To be explained:

■ Nominal sets, support and the freshness relation,
(−) # (−).

■ How to generalise α-structural recursion from the
example language Λ to general languages with
binders?

■ How is α-structural recursion proved?
■ What’s involved with applying α-structural recursion
in any particular case?

■ Mechanisation?

TPHOLs 2005, - p. 22

Proof

α-Structural recursion reduces to ordinary structural
recursion for ASTs within higher-order logic: roughly
speaking, one makes a definition for all permutations
simultaneously, i.e. uses G → S where you might
expect to use a set S.

TPHOLs 2005, - p. 22

Proof

α-Structural recursion reduces to ordinary structural
recursion for ASTs within higher-order logic: roughly
speaking, one makes a definition for all permutations
simultaneously, i.e. uses G → S where you might
expect to use a set S.

Rôle of the (FCB): if x # fL & (∀s) x # fL(x, s),
then for any x′ # (fL, x, s)

fL(x, s) = (x x′) · fL(x, s)

= fL(x′, (x x′) · s)

so fL(−, −) respects α-conversion of its argument.

TPHOLs 2005, - p. 23

To be explained:

■ Nominal sets, support and the freshness relation,
(−) # (−).

■ How to generalise α-structural recursion from the
example language Λ to general languages with
binders?

■ How is α-structural recursion proved?
■ What’s involved with applying α-structural recursion
in any particular case?

■ Mechanisation?

TPHOLs 2005, - p. 24

Given an informal recursive definition on ASTs/α for
a nominal signature, to show that it is an instance of
α-structural recursion:

1. find which sets (S) and functions (fV , fA, fL, fF)
are involved;

2. give S a nominal-set structure and then prove the
f(−) are finitely supported;

3. verify the (FCB) for f(−).

TPHOLs 2005, - p. 24

Given an informal recursive definition on ASTs/α for
a nominal signature, to show that it is an instance of
α-structural recursion:

1. find which sets (S) and functions (fV , fA, fL, fF)
are involved;

2. give S a nominal-set structure and then prove the
f(−) are finitely supported;

3. verify the (FCB) for f(−).

For step 2 we can use:
Fact The standard set-theoretic model of HOL
(without choice) restricts to finitely supported
elements; e.g. if we apply a construction of HOL-ε
to finitely supported functions we get another such.

TPHOLs 2005, - p. 24

Given an informal recursive definition on ASTs/α for
a nominal signature, to show that it is an instance of
α-structural recursion:

1. find which sets (S) and functions (fV , fA, fL, fF)
are involved;

2. give S a nominal-set structure and then prove the
f(−) are finitely supported;

3. verify the (FCB) for f(−).

Step 3 is sometimes trivial, sometimes not.

TPHOLs 2005, - p. 25

To be explained:

■ Nominal sets, support and the freshness relation,
(−) # (−).

■ How to generalise α-structural recursion from the
example language Λ to general languages with
binders?

■ How is α-structural recursion proved?
■ What’s involved with applying α-structural recursion
in any particular case?

■ Mechanisation?

TPHOLs 2005, - p. 26

Mechanisation?

■ Norrish’s HOL4 development. [TPHOLs ’04]
■ Urban & Tasson’s Isabelle/HOL theory of nominal
sets (“p-sets”) and α-structural induction for
λ-calculus. [CADE-20, 2005].
Isabelle’s axiomatic type classes are helpful.

Wanted: full implementation of α-structural
recursion/induction theorems parameterised by a
user-declared nominal signature
(in either HOL4, or Isabelle/HOL, or both).

TPHOLs 2005, - p. 26

Mechanisation?

■ Gabbay’s FM-HOL [35yrs of Automath, 2002].

Wanted: a new machine-assisted higher-order logic
to support reasoning about ordinary sets and
nominal sets simultaneously.
◆ Should incorporate a reflection principle to exploit
Fact The standard set-theoretic model of
HOL (without choice) restricts to finitely
supported elements; e.g. if we apply a
construction of HOL-ε to finitely supported
functions we get another such.

◆ Also needs some (lightweight!) treatment of
partial functions.

TPHOLs 2005, - p. 27

Assessment

■ Results apply directly to standard notions of AST &
α-equivalence within ordinary HOL
—like Gordon & Melham’s “5 Axioms” work [TPHOLs ’96], except closer to

informal practice regarding freshness of bound names (more applicable).

■ Crucial finite support property is automatically
preserved by constructions in HOL
(if we avoid choice principles).

■ Mathematical treatment of “fresh names” afforded
by nominal sets is proving useful in other contexts
(e.g. Abramsky et al [LICS ’04], Winskel & Turner [200?]).

TPHOLs 2005, - p. 27

Assessment

Claim: dealing with issues of bound names and
α-equivalence on ASTs is made easier through use
of permutations (rather than traditional use of
non-bijective renamings).

Is the use of name-permutations & support simple
enough to become part of standard practice?
(It’s now part of mine!)

TPHOLs 2005, - p. 3

Mathematics of syntax

How best to reconcile

syntactical issues to do with name-binding and
α-conversion

with a structural approach to semantics?

Specifically: improved forms of structural recursion
and structural induction for syntactical structures.

TPHOLs 2005, - p. 4

Structural recursion and induction

TPHOLs 2005, - p. 4

Structural recursion and induction

position

TPHOLs 2005, - p. 4

Structural recursion and induction

positionality

TPHOLs 2005, - p. 4

Structural recursion and induction

Compositionality

TPHOLs 2005, - p. 4

Structural recursion and induction

Compositionality
is crucial in [programming language] semantics

—it’s preferable to give meaning to
program constructions rather than just to
whole programs.

TPHOLs 2005, - p. 4

Structural recursion and induction

In particular, as far as semantics is concerned,
concrete syntax

letfun f x = if x > 100 then x − 10

else f (f (x + 11)) in f (x + 100)

is unimportant compared to abstract syntax (ASTs):

letfun

f x if

>

x 100

−

x 10

@

f @

f +

x 11

@

f +

x 101

TPHOLs 2005, - p. 4

Structural recursion and induction

ASTs enable two fundamental (and inter-linked) tools
in programming language semantics:

■ Definition of functions on syntax

by recursion on its structure.

■ Proof of properties of syntax

by induction on its structure.

TPHOLs 2005, - p. 5

Running example

Concrete syntax:

t ::= x | t t | λx.t | letfunx x = t in t

ASTs:

Λ , µS.(V + (S × S) + (V × S) + (V × V × S × S))

where V is some fixed, countably infinite set (of
names x of variables).

TPHOLs 2005, - p. 6

letfun f x = ifx > 100 thenx − 10

else f(f(x + 11))

in f(x + 101)

letrec

f x if

>

x 100

−

x 10

@

f @

f +

x 11

@

f +

x 101

TPHOLs 2005, - p. 7

Structural recursion for Λ
, µS.(V + (S × S) + (V × S) + (V × V × S × S))

Given a set S

and functions



















fV : V → S

fA : S × S → S

fL : V × S → S

fF : V × V × S × S → S,

there is a unique function f̂ : Λ → S satisfying

f̂ x1 = fV x1

f̂(t1 t2) = fA(f̂ t1, f̂ t2)

f̂(λx1.t1) = fL(x1, f̂ t1)

f̂(letfunx1 x2 = t1 in t2) = fF(x1, x2, f̂ t1, f̂ t2)

for all x1, x2 ∈ V and t1, t2 ∈ Λ.

TPHOLs 2005, - p. 7

Structural recursion for Λ
, µS.(V + (S × S) + (V × S) + (V × V × S × S))

Given a set S

and functions



















fV : V → S

fA : S × S → S

fL : V × S → S

fF : V × V × S × S → S,

there is a unique function f̂ : Λ → S satisfying

f̂ x1 = fV x1

f̂(t1 t2) = fA(f̂ t1, f̂ t2)

f̂(λx1.t1) = fL(x1, f̂ t1)

f̂(letfunx1 x2 = t1 in t2) = fF(x1, x2, f̂ t1, f̂ t2)

for all x1, x2 ∈ V and t1, t2 ∈ Λ.Do
esn
’t t
ake
bin
din
g i
nto
acc
ou
nt!

TPHOLs 2005, - p. 8

letfun f x = ifx > 100 thenx − 10

else f(f(x + 11))

in f(x + 101)

letfun

f x if

>

x 100

−

x 10

@

f @

f +

x 11

@

f +

x 101

TPHOLs 2005, - p. 8

letfun f x = ifx > 100 thenx − 10

else f(f(x + 11))

in f(x + 101)

letfun

f x if

>

x 100

−

x 10

@

f @

f +

x 11

@

f +

x 101

TPHOLs 2005, - p. 8

letfun f x = ifx > 100 thenx − 10

else f(f(x + 11))

in f(x + 101)

letfun

f x if

>

x 100

−

x 10

@

f @

f +

x 11

@

f +

x 101

free

TPHOLs 2005, - p. 9

Abstract syntax / α

Dealing with issues to do with binders and
α-conversion is
■ irritating (want to get on with more interesting
aspects of semantics!)

■ pervasive (very many languages involve binding
operations; cf. POPLMark Challenge [TPHOLs ’05])

■ difficult to formalise/mechanise without loosing
sight of common informal practice:

TPHOLs 2005, - p. 9

Abstract syntax / α

Dealing with issues to do with binders and
α-conversion is
■ irritating (want to get on with more interesting
aspects of semantics!)

■ pervasive (very many languages involve binding
operations; cf. POPLMark Challenge [TPHOLs ’05])

■ difficult to formalise/mechanise without loosing
sight of common informal practice:
“We identify expressions up to α-equivalence”. . .

TPHOLs 2005, - p. 9

Abstract syntax / α

Dealing with issues to do with binders and
α-conversion is
■ irritating (want to get on with more interesting
aspects of semantics!)

■ pervasive (very many languages involve binding
operations; cf. POPLMark Challenge [TPHOLs ’05])

■ difficult to formalise/mechanise without loosing
sight of common informal practice:
“We identify expressions up to α-equivalence”. . .
. . . and then forget about it, referring to α-equi-
valence classes e = [t]α only via representatives, t.

For example. . .

TPHOLs 2005, - p. 10

E.g. – capture-avoiding substitution

(x := e)e1 = substitute e for all free occurrences

of x in e1, avoiding capture of free variables in e
by binders in e1.

TPHOLs 2005, - p. 10

E.g. – capture-avoiding substitution

■ (x := e)x1 , if x1 = x then e else x1

■ (x := e)(e1 e2) , ((x := e)e1)((x := e)e2)

■ (x := e)(λx1.e1) ,

if x1 /∈ fv(x, e) then λx1.(x := e)e1

else don’t care!
■ (x := e)(letfunx1 x2 = e1 in e2) , ?

TPHOLs 2005, - p. 10

E.g. – capture-avoiding substitution

■ (x := e)x1 , if x1 = x then e else x1

■ (x := e)(e1 e2) , ((x := e)e1)((x := e)e2)

■ (x := e)(λx1.e1) ,

if x1 /∈ fv(x, e) then λx1.(x := e)e1

else don’t care!
■ (x := e)(letfunx1 x2 = e1 in e2) ,

if x1, x2 /∈ fv(x, e) & x2 /∈ fv(x1, e2)

then letfunx1 x2 = (x := e)e1 in (x := e)e2

else don’t care!

TPHOLs 2005, - p. 10

E.g. – capture-avoiding substitution

■ (x := e)x1 , if x1 = x then e else x1

■ (x := e)(e1 e2) , ((x := e)e1)((x := e)e2)

■ (x := e)(λx1.e1) ,

if x1 /∈ fv(x, e) then λx1.(x := e)e1

else don’t care!
■ (x := e)(letfunx1 x2 = e1 in e2) ,

if x1, x2 /∈ fv(x, e) & x2 /∈ fv(x1, e2)

then letfunx1 x2 = (x := e)e1 in (x := e)e2

else don’t care!
Does uniquely specify a well-defined function on α-equivalence classes,

(x := e)(−) : Λ/α → Λ/α, but not via an obvious, structurally recursive definition

of a function f̂ : Λ → Λ respecting α-equivalence.

TPHOLs 2005, - p. 11

E.g. – denotational semantics

of Λ/α in some suitable domain D:
■ Jx1Kρ , ρ(x1)

■ Je1 e2Kρ , app(Je1Kρ, Je2Kρ)

■ Jλx1.e1Kρ , fun(λd ∈ D. Je1K(ρ[x1 7→ d]))

■ Jletfunx1 x2 = e1 in e2Kρ , fix(· · ·)

where

- ρ ranges over environments mapping variables to elements of D

- D comes equipped with continuous functions app : D × D → D and

fun : (D → D) → D.

TPHOLs 2005, - p. 11

E.g. – denotational semantics

of Λ/α in some suitable domain D:
■ Jx1Kρ , ρ(x1)

■ Je1 e2Kρ , app(Je1Kρ, Je2Kρ)

■ Jλx1.e1Kρ , fun(λd ∈ D. Je1K(ρ[x1 7→ d]))

■ Jletfunx1 x2 = e1 in e2Kρ , fix(· · ·)

Why is this (very standard)
definition independent of the
choice of bound variable x1?

TPHOLs 2005, - p. 11

E.g. – denotational semantics

of Λ/α in some suitable domain D:
■ Jx1Kρ , ρ(x1)

■ Je1 e2Kρ , app(Je1Kρ, Je2Kρ)

■ Jλx1.e1Kρ , fun(λd ∈ D. Je1K(ρ[x1 7→ d]))

■ Jletfunx1 x2 = e1 in e2Kρ , fix(· · ·)

In this case we can use ordinary structural recursion
to first define denotations of ASTs and then prove
that they respect α-equivalence.

But is there a quicker way, working directly with
ASTs/α?

TPHOLs 2005, - p. 12

α-Structural recursion

Is there a recursion principle for Λ/α that legitimises
these “definitions” of (x := e)(−) : Λ/α → Λ/α and
J−K : Λ/α → D (and many other e.g.s)?

TPHOLs 2005, - p. 12

α-Structural recursion

Is there a recursion principle for Λ/α that legitimises
these “definitions” of (x := e)(−) : Λ/α → Λ/α and
J−K : Λ/α → D (and many other e.g.s)?

Yes! — α-structural recursion
(and induction too—see paper).

TPHOLs 2005, - p. 12

α-Structural recursion

Is there a recursion principle for Λ/α that legitimises
these “definitions” of (x := e)(−) : Λ/α → Λ/α and
J−K : Λ/α → D (and many other e.g.s)?

Yes! — α-structural recursion
(and induction too—see paper).

What about other languages with binders?

TPHOLs 2005, - p. 12

α-Structural recursion

Is there a recursion principle for Λ/α that legitimises
these “definitions” of (x := e)(−) : Λ/α → Λ/α and
J−K : Λ/α → D (and many other e.g.s)?

Yes! — α-structural recursion
(and induction too—see paper).

What about other languages with binders?

Yes! — available for any nominal signature.

TPHOLs 2005, - p. 12

α-Structural recursion

Is there a recursion principle for Λ/α that legitimises
these “definitions” of (x := e)(−) : Λ/α → Λ/α and
J−K : Λ/α → D (and many other e.g.s)?

Yes! — α-structural recursion
(and induction too—see paper).

What about other languages with binders?

Yes! — available for any nominal signature.

Great. What’s the catch?

TPHOLs 2005, - p. 12

α-Structural recursion

Is there a recursion principle for Λ/α that legitimises
these “definitions” of (x := e)(−) : Λ/α → Λ/α and
J−K : Λ/α → D (and many other e.g.s)?

Yes! — α-structural recursion
(and induction too—see paper).

What about other languages with binders?

Yes! — available for any nominal signature.

Great. What’s the catch?

Need to learn a bit of possibly unfamiliar math, to do
with permutations and support.

TPHOLs 2005, - p. 13

α-Structural recursion for Λ/α

Given a nominal set S

and functions



















fV : V → S

fA : S × S → S

fL : V × S → S

fF : V × V × S × S → S,

all supported by a finite subset A ⊆ V,

there is a unique function f̂ : Λ/α → S

such that. . .

TPHOLs 2005, - p. 13

α-Structural recursion for Λ/α

. . . ∃! function f̂ : Λ/α → S such that:

f̂ x1 = fV x1

f̂(e1 e2) = fA(f̂ e1, f̂ e2)

x1 /∈ A ⇒ f̂(λx1.e1) = fL(x1, f̂ e1)

x1, x2 /∈ A & x1 6= x2 & x2 /∈ fv(e2) ⇒

f̂(letfunx1 x2 = e1 in e2) = fF(x1, x2, f̂ e1, f̂ e2)

for all x1, x2 ∈ V & e1, e2 ∈ Λ/α,

TPHOLs 2005, - p. 13

α-Structural recursion for Λ/α

. . . ∃! function f̂ : Λ/α → S such that:

f̂ x1 = fV x1

f̂(e1 e2) = fA(f̂ e1, f̂ e2)

x1 /∈ A ⇒ f̂(λx1.e1) = fL(x1, f̂ e1)

x1, x2 /∈ A & x1 6= x2 & x2 /∈ fv(e2) ⇒

f̂(letfunx1 x2 = e1 in e2) = fF(x1, x2, f̂ e1, f̂ e2)

provided freshness condition for binders (FCB) holds
for fL: (∃x1 /∈ A)(∀s ∈ S) x1 # fL(x1, s)

for fF : (∃x1, x2 /∈ A) x1 6= x2 &

(∀s1, s2 ∈ S) x2 # s1 ⇒

x1, x2 # fF (x1, x2, s1, s2)

TPHOLs 2005, - p. 13

α-Structural recursion for Λ/α

. . . ∃! function f̂ : Λ/α → S such that:

f̂ x1 = fV x1

f̂(e1 e2) = fA(f̂ e1, f̂ e2)

x1 /∈ A ⇒ f̂(λx1.e1) = fL(x1, f̂ e1)

x1, x2 /∈ A & x1 6= x2 & x2 /∈ fv(e2) ⇒

f̂(letfunx1 x2 = e1 in e2) = fF(x1, x2, f̂ e1, f̂ e2)

provided freshness condition for binders (FCB) holds
for fL: (∃x1 /∈ A)(∀s ∈ S) x1 # fL(x1, s)

for fF : (∃x1, x2 /∈ A) x1 6= x2 &

(∀s1, s2 ∈ S) x2 # s1 ⇒

x1, x2 # fF (x1, x2, s1, s2)

The freshness relation (−) # (−) between names
and elements of nominal sets generalises the
(−) /∈ fv(−) relation between variables and ASTs.

E.g. for the capture-avoiding substitution example,
fL(x1, e) , λx1.e and (FCB) holds trivially because
x1 /∈ fv(λx1.e) (and similarly for fF).

TPHOLs 2005, - p. 14

To be explained:

■ Nominal sets, support
and the freshness relation, (−) # (−).
(Simplified version of [Gabbay-Pitts, 2002].)

■ How is α-structural recursion proved?
■ How to generalise α-structural recursion from the
example language Λ to general languages with
binders?

■ What’s involved with applying α-structural recursion
in any particular case?

■ Mechanisation?

TPHOLs 2005, - p. 15

Actions of permutations

■ G , group of all finite permutations of V.
■ An action of G on a set S is a function

G × S → S written (π, s) 7→ π · s

satisfying ι · s = s and π · (π′ · s) = (ππ′) · s

■ G-set , set S + action of G on S.

TPHOLs 2005, - p. 16

Finite support and freshness

Definition. A finite subset A ⊆ V supports an
element s ∈ S of a G-set S if

(∀x, x′ ∈ V − A) (x x′) · s = s

TPHOLs 2005, - p. 16

Finite support and freshness

Definition. A finite subset A ⊆ V supports an
element s ∈ S of a G-set S if

(∀x, x′ ∈ V − A) (x x′)

the permutation that swaps x and x′

· s = s

TPHOLs 2005, - p. 16

Finite support and freshness

Definition. A finite subset A ⊆ V supports an
element s ∈ S of a G-set S if

(∀x, x′ ∈ V − A) (x x′) · s = s

A nominal set is a G-set all of whose elements have
a finite support.

TPHOLs 2005, - p. 16

Finite support and freshness

Definition. A finite subset A ⊆ V supports an
element s ∈ S of a G-set S if

(∀x, x′ ∈ V − A) (x x′) · s = s

A nominal set is a G-set all of whose elements have
a finite support.

Lemma. If s ∈ S has a finite support, then it has a
smallest one, written supp(s) .

Notation. If x /∈ supp(s), we write x # s and say

“x is fresh for s.”

TPHOLs 2005, - p. 17

Languages/α form nominal sets

For example, natural G-action on Λ/α is given by:

π · x , π(x)

π · (e1 e2) , (π · e1)(π · e2)

π · (λx.e) , λπ(x).(π · e)

π · (letfunx1 x2 = e1 in e2) ,

letfunπ(x1) π(x2) = π · e1 in π · e2

TPHOLs 2005, - p. 17

Languages/α form nominal sets

For example, natural G-action on Λ/α is given by:

π · x , π(x)

π · (e1 e2) , (π · e1)(π · e2)

π · (λx.e) , λπ(x).(π · e)

π · (letfunx1 x2 = e1 in e2) ,

letfunπ(x1) π(x2) = π · e1 in π · e2

N.B. binding and non-binding constructs are treated just the same

TPHOLs 2005, - p. 17

Languages/α form nominal sets

For example, natural G-action on Λ/α is given by:

π · x , π(x)

π · (e1 e2) , (π · e1)(π · e2)

π · (λx.e) , λπ(x).(π · e)

π · (letfunx1 x2 = e1 in e2) ,

letfunπ(x1) π(x2) = π · e1 in π · e2

For this action, it is not hard to see that e ∈ Λ/α is
supported by any finite set of variables containing all
those occurring free in e and hence

x # e iff x /∈ fv(e).

TPHOLs 2005, - p. 18

Nominal function sets

The exponential of S and S′ in the category of
G-sets is the set of all functions f : S → S′ equipped
with the G-action:

π · f : S → S′

s 7→ π · (f(π−1 · s))

With this definition, π · (−) preserves function
application:

(π · f)(π · s) = π · (f(π−1 · (π · s)))

= π · (f(ι · s))

= π · (f s)

TPHOLs 2005, - p. 18

Nominal function sets

The exponential of S and S′ in the category of
G-sets is the set of all functions f : S → S′ equipped
with the G-action:

π · f : S → S′

s 7→ π · (f(π−1 · s))

Even if S and S′ are nominal, not every function
from S to S′ is necessarily finitely supported
w.r.t. this action.

(e.g. any surjection N → V can’t have finite support)

TPHOLs 2005, - p. 18

Nominal function sets

The exponential of S and S′ in the category of
G-sets is the set of all functions f : S → S′ equipped
with the G-action:

π · f : S → S′

s 7→ π · (f(π−1 · s))

The set S→fsS
′ of finitely supported functions from

a nominal set S to a nominal set S′ is, by
construction, a nominal set.

TPHOLs 2005, - p. 19

To be explained:

■ Nominal sets, support and the freshness relation,
(−) # (−).
(Simplified version of [Gabbay-Pitts, 2002].)

■ How is α-structural recursion proved?
■ How to generalise α-structural recursion from the
example language Λ to general languages with
binders?

■ What’s involved with applying α-structural recursion
in any particular case?

■ Mechanisation?

TPHOLs 2005, - p. 20

Proof

α-Structural recursion reduces to ordinary structural
recursion for ASTs within higher-order logic: roughly
speaking, one makes a definition for all permutations
simultaneously, i.e. uses G → S where you might
expect to use a set S.

TPHOLs 2005, - p. 20

Proof

α-Structural recursion reduces to ordinary structural
recursion for ASTs within higher-order logic: roughly
speaking, one makes a definition for all permutations
simultaneously, i.e. uses G → S where you might
expect to use a set S.

Rôle of the (FCB): if x # fL & (∀s) x # fL(x, s),
then for any x′ # (fL, x, s)

fL(x, s) = (x x′) · fL(x, s)

= fL(x′, (x x′) · s)

so fL(−, −) respects α-conversion of its argument.

TPHOLs 2005, - p. 21

To be explained:

■ Nominal sets, support and the freshness relation,
(−) # (−).
(Simplified version of [Gabbay-Pitts, 2002].)

■ How is α-structural recursion proved?
■ How to generalise α-structural recursion from the
example language Λ to general languages with
binders?

■ What’s involved with applying α-structural recursion
in any particular case?

■ Mechanisation?

TPHOLs 2005, - p. 22

α-Structural recursion for Λ/α

. . . ∃! function f̂ : Λ/α → S such that:

f̂ x1 = fV x1

f̂(e1 e2) = fA(f̂ e1, f̂ e2)

x1 /∈ A ⇒ f̂(λx1.e1) = fL(x1, f̂ e1)

x1, x2 /∈ A & x1 6= x2 & x2 /∈ fv(e2) ⇒

f̂(letfunx1 x2 = e1 in e2) = fF(x1, x2, f̂ e1, f̂ e2)

provided freshness condition for binders (FCB) holds
for fL: (∃x1 /∈ A)(∀s ∈ S) x1 # fL(x1, s)

for fF : (∃x1, x2 /∈ A) x1 6= x2 &

(∀s1, s2 ∈ S) x2 # s1 ⇒

x1, x2 # fF (x1, x2, s1, s2)

TPHOLs 2005, - p. 22

α-Structural recursion for Λ/α

. . . ∃! function f̂ : Λ/α → S such that:

f̂ x1 = fV x1

f̂(e1 e2) = fA(f̂ e1, f̂ e2)

x1 /∈ A ⇒ f̂(λx1.e1) = fL(x1, f̂ e1)

x1, x2 /∈ A & x1 6= x2 & x2 /∈ fv(e2) ⇒

f̂(letfunx1 x2 = e1 in e2) = fF(x1, x2, f̂ e1, f̂ e2)

provided freshness condition for binders (FCB) holds
for fL: (∃x1 /∈ A)(∀s ∈ S) x1 # fL(x1, s)

for fF : (∃x1, x2 /∈ A) x1 6= x2 &

(∀s1, s2 ∈ S) x2 # s1 ⇒

x1, x2 # fF (x1, x2, s1, s2)

Using nominal signatures, these
conditions can be determined
automatically from the pattern
of bindings in a constructor’s
arity. . .

TPHOLs 2005, - p. 23

Nominal signatures

Generalisation of many-sorted, algebraic signatures
that includes info about how constructors bind
names.

Not as general as some schemes for expressing
binding patterns (cf. Pottier’s Cαml), but a good
compromise between expressiveness and simplicity.

TPHOLs 2005, - p. 23

Nominal signatures

■ Sorts partitioned into atom-sorts ν & data-sorts δ.
■ Constructors K : σ → δ have arities σ built using
pairing σ1 ∗ σ2 and atom-binding 〈〈ν〉〉σ

TPHOLs 2005, - p. 23

Nominal signatures

■ Sorts partitioned into atom-sorts ν & data-sorts δ.
■ Constructors K : σ → δ have arities σ built using
pairing σ1 ∗ σ2 and atom-binding 〈〈ν〉〉σ

E.g. nominal signature for
Λ = {t ::= x | t t | λx.t | letfunx x = t in t} has
atom-sort var, data-sort term and constructors:
V : var → term

A : term ∗ term → term

L : 〈〈var〉〉term → term

F : 〈〈var〉〉((〈〈var〉〉term) ∗ term) → term

TPHOLs 2005, - p. 23

Nominal signatures

■ Sorts partitioned into atom-sorts ν & data-sorts δ.
■ Constructors K : σ → δ have arities σ built using
pairing σ1 ∗ σ2 and atom-binding 〈〈ν〉〉σ that
automatically determine:
◆ appropriate notion of α-equivalence between ASTs
◆ the (FCB) in α-structural recursion

TPHOLs 2005, - p. 24

To be explained:

■ Nominal sets, support and the freshness relation,
(−) # (−).
(Simplified version of [Gabbay-Pitts, 2002].)

■ How to generalise α-structural recursion from the
example language Λ to general languages with
binders?

■ How is α-structural recursion proved?
■ What’s involved with applying α-structural recursion
in any particular case?

■ Mechanisation?

TPHOLs 2005, - p. 25

Given an informal recursive definition on ASTs/α for
a nominal signature, to show that it is an instance of
α-structural recursion:

1. find which sets (S) and functions (fV , fA, fL, fF)
are involved;

2. give S a nominal-set structure and then prove the
f(−) are finitely supported;

3. verify the (FCB) for f(−).

TPHOLs 2005, - p. 25

Given an informal recursive definition on ASTs/α for
a nominal signature, to show that it is an instance of
α-structural recursion:

1. find which sets (S) and functions (fV , fA, fL, fF)
are involved;

2. give S a nominal-set structure and then prove the
f(−) are finitely supported;

3. verify the (FCB) for f(−).

For step 2 we can use:
Fact The standard set-theoretic model of HOL
(without choice) restricts to finitely supported
elements; e.g. if we apply a construction of HOL-ε
to finitely supported functions we get another such.

TPHOLs 2005, - p. 25

Given an informal recursive definition on ASTs/α for
a nominal signature, to show that it is an instance of
α-structural recursion:

1. find which sets (S) and functions (fV , fA, fL, fF)
are involved;

2. give S a nominal-set structure and then prove the
f(−) are finitely supported;

3. verify the (FCB) for f(−).

Step 3 is sometimes trivial, sometimes not.

TPHOLs 2005, - p. 26

To be explained:

■ Nominal sets, support and the freshness relation,
(−) # (−).
(Simplified version of [Gabbay-Pitts, 2002].)

■ How to generalise α-structural recursion from the
example language Λ to general languages with
binders?

■ How is α-structural recursion proved?
■ What’s involved with applying α-structural recursion
in any particular case?

■ Mechanisation?

TPHOLs 2005, - p. 27

Mechanisation?

■ Norrish’s HOL4 development. [TPHOLs ’04]
■ Urban & Tasson’s Isabelle/HOL theory of nominal
sets (“p-sets”) and α-structural induction for
λ-calculus. [CADE-20, 2005].
Isabelle’s axiomatic type classes are helpful.

Wanted: full implementation of α-structural
recursion/induction theorems parameterised by a
user-declared nominal signature
(in either HOL4, or Isabelle/HOL, or both).

TPHOLs 2005, - p. 27

Mechanisation?

■ Gabbay’s FM-HOL [35yrs of Automath, 2002].

Wanted: a new machine-assisted higher-order logic
to support reasoning about ordinary sets and
nominal sets simultaneously.
◆ Should incorporate a reflection principle to exploit
Fact The standard set-theoretic model of
HOL (without choice) restricts to finitely
supported elements; e.g. if we apply a
construction of HOL-ε to finitely supported
functions we get another such.

◆ Also needs some (lightweight!) treatment of
partial functions.

TPHOLs 2005, - p. 28

Assessment

■ Results apply directly to standard notions of AST &
α-equivalence within ordinary HOL
—like Gordon & Melham’s “5 Axioms” work [TPHOLs ’96], except closer to

informal practice regarding freshness of bound names (more applicable).

■ Crucial notion of “finite support” is automatically
preserved by constructions in HOL
(if we avoid choice principles).

■ Mathematical treatment of “fresh names” afforded
by nominal sets is proving useful in other contexts
(e.g. Abramsky et al [LICS ’04], Winskel & Turner [200?]).

TPHOLs 2005, - p. 29

Conclusion

Claim: dealing with issues of bound names and
α-equivalence on ASTs is made easier through use
of permutations (rather than traditional use of
non-bijective renamings).

Is the use of name-permutations & support simple
enough to become part of standard practice?
(It’s now part of mine!)

	Overview
	Overview

	Mathematics of syntax
	Structural recursion and induction
	Structural recursion and induction
	Structural recursion and induction
	Structural recursion and induction
	Structural recursion and induction
	Structural recursion and induction
	Structural recursion and induction

	Running example
	
	Structural recursion for Lambda
	Structural recursion for Lambda

	Example AST
	Example AST
	Example AST

	Abstract syntax mod alpha
	Abstract syntax mod alpha
	Abstract syntax mod alpha

	E.g. -- capture-avoiding substitution
	E.g. -- capture-avoiding substitution
	E.g. -- capture-avoiding substitution
	E.g. -- capture-avoiding substitution

	E.g. -- denotational semantics
	E.g. -- denotational semantics
	E.g. -- denotational semantics

	alpha-Structural recursion
	alpha-Structural recursion
	alpha-Structural recursion
	alpha-Structural recursion
	alpha-Structural recursion
	alpha-Structural recursion

	alpha-Structural recursion for Lambda/alpha
	alpha-Structural recursion for Lambda/alpha
	alpha-Structural recursion for Lambda/alpha
	alpha-Structural recursion for Lambda/alpha

	To be explained
	Actions of permutations
	Finite support and freshness
	Finite support and freshness
	Finite support and freshness
	Finite support and freshness

	Languages/alpha form nominal sets
	Languages/alpha form nominal sets
	Languages/alpha form nominal sets

	Nominal function sets
	Nominal function sets
	Nominal function sets

	Route map (I)
	Proof
	Proof

	Route map (II)
	Reprise
	Reprise

	Nominal signatures
	Nominal signatures
	Nominal signatures
	Nominal signatures

	Route map (III)
	Applying alpha-structural recursion
	Applying alpha-structural recursion
	Applying alpha-structural recursion

	Route map (III)
	Mechanisation?
	Mechanisation?

	Assessment
	Conclusion
	Mathematics of syntax
	Structural recursion and induction
	Structural recursion and induction
	Structural recursion and induction
	Structural recursion and induction
	Structural recursion and induction

	Running example
	
	Structural recursion for Lambda
	Structural recursion for Lambda

	Example AST
	Example AST
	Example AST

	Abstract syntax mod alpha
	Abstract syntax mod alpha
	Abstract syntax mod alpha

	E.g. -- capture-avoiding substitution
	E.g. -- capture-avoiding substitution
	E.g. -- capture-avoiding substitution

	E.g. -- denotational semantics
	E.g. -- denotational semantics
	E.g. -- denotational semantics

	alpha-Structural recursion
	alpha-Structural recursion
	alpha-Structural recursion
	alpha-Structural recursion
	alpha-Structural recursion
	alpha-Structural recursion

	alpha-Structural recursion for Lambda/alpha
	alpha-Structural recursion for Lambda/alpha
	alpha-Structural recursion for Lambda/alpha
	alpha-Structural recursion for Lambda/alpha

	To be explained
	Actions of permutations
	Finite support and freshness
	Finite support and freshness
	Finite support and freshness
	Finite support and freshness

	Languages/alpha form nominal sets
	Languages/alpha form nominal sets
	Languages/alpha form nominal sets

	Nominal function sets
	Nominal function sets

	Route map (I)
	Reprise
	Reprise

	Nominal signatures
	Nominal signatures
	Nominal signatures
	Nominal signatures

	Route map (II)
	Proof
	Proof

	Route map (III)
	Applying alpha-structural recursion
	Applying alpha-structural recursion
	Applying alpha-structural recursion

	Route map (III)
	Mechanisation?
	Mechanisation?

	Assessment
	Assessment

	Mathematics of syntax
	Structural recursion and induction
	Structural recursion and induction
	Structural recursion and induction
	Structural recursion and induction
	Structural recursion and induction

	Running example
	
	Structural recursion for Lambda
	Structural recursion for Lambda

	Example AST
	Example AST
	Example AST

	Abstract syntax mod alpha
	Abstract syntax mod alpha
	Abstract syntax mod alpha

	E.g. -- capture-avoiding substitution
	E.g. -- capture-avoiding substitution
	E.g. -- capture-avoiding substitution

	E.g. -- denotational semantics
	E.g. -- denotational semantics
	E.g. -- denotational semantics

	alpha-Structural recursion
	alpha-Structural recursion
	alpha-Structural recursion
	alpha-Structural recursion
	alpha-Structural recursion
	alpha-Structural recursion

	alpha-Structural recursion for Lambda/alpha
	alpha-Structural recursion for Lambda/alpha
	alpha-Structural recursion for Lambda/alpha
	alpha-Structural recursion for Lambda/alpha

	To be explained
	Actions of permutations
	Finite support and freshness
	Finite support and freshness
	Finite support and freshness
	Finite support and freshness

	Languages/alpha form nominal sets
	Languages/alpha form nominal sets
	Languages/alpha form nominal sets

	Nominal function sets
	Nominal function sets

	Route map (I)
	Reprise
	Reprise

	Nominal signatures
	Nominal signatures
	Nominal signatures
	Nominal signatures

	Route map (II)
	Proof
	Proof

	Route map (III)
	Applying alpha-structural recursion
	Applying alpha-structural recursion
	Applying alpha-structural recursion

	Route map (III)
	Mechanisation?
	Mechanisation?

	Assessment
	Assessment

