# $\alpha$-Structural Recursion and Induction 

Andrew Pitts
University of Cambridge
Computer Laboratory

## Overview

## Overview

and

## Mathematics of syntax

How best to reconcile
syntactical issues to do with name-binding and $\alpha$-conversion
with a structural approach to semantics?
Specifically: improved forms of structural recursion and structural induction for syntactical structures.

## Structural recursion and induction

## Structural recursion and induction

## position

## Structural recursion and induction

## positionality

## Structural recursion and induction

## Compositionality

## Structural recursion and induction

## Compositionality

 is crucial in [programming language] semantics-it's preferable to give meaning to program constructions rather than just to whole programs.

## Structural recursion and induction

In particular, as far as semantics is concerned, concrete syntax
letfun $\mathrm{f} x=$ if $\mathrm{x}>100$ then $\mathrm{x}-10$
else $\mathrm{f}(\mathrm{f}(\mathrm{x}+11))$ in $\mathrm{f}(\mathrm{x}+100)$
is unimportant compared to abstract syntax (ASTs):


## Structural recursion and induction

ASTs enable two fundamental (and inter-linked) tools in programming language semantics:

- Definition of functions on syntax by recursion on its structure.
- Proof of properties of syntax by induction on its structure.


## Running example

Concrete syntax:

$$
t::=x|t t| \lambda x . t \mid \text { letfun } x x=t \text { in } t
$$

ASTs:

$$
\Lambda \triangleq \mu S \cdot(\mathbb{V}+(S \times S)+(\mathbb{V} \times S)+(\mathbb{V} \times \mathbb{V} \times S \times S))
$$

where $\mathbb{V}$ is some fixed, countably infinite set (of names $x$ of variables).

$$
\begin{aligned}
& \text { letfun } f x=\text { if } x>100 \text { then } x-10 \\
& \text { else } f(f(x+11))
\end{aligned}
$$



$$
\begin{aligned}
& \text { Structural recursion for } \boldsymbol{\Lambda} \\
& \triangleq \mu S .(\mathbb{V}+(S \times S)+(\mathbb{V} \times S)+(\mathbb{V} \times \mathbb{V} \times S \times S))
\end{aligned}
$$

Given a set $S$

$$
\left\{\begin{array}{l}
f_{\mathrm{V}}: \mathbb{V} \rightarrow S \\
f_{\mathrm{A}}: S \times S \rightarrow S \\
f_{\mathrm{L}}: \mathbb{V} \times S \rightarrow S \\
f_{\mathrm{F}}: \mathbb{V} \times \mathbb{V} \times S \times S \rightarrow S
\end{array}\right.
$$

there is a unique function $\hat{f}: \Lambda \rightarrow S$ satisfying

$$
\begin{aligned}
\hat{f} x_{1} & =f_{\mathrm{V}} x_{1} \\
\hat{f}\left(t_{1} t_{2}\right) & =f_{\mathrm{A}}\left(\hat{f} t_{1}, \hat{f} t_{2}\right) \\
\hat{f}\left(\lambda x_{1} \cdot t_{1}\right) & =f_{\mathrm{L}}\left(x_{1}, \hat{f} t_{1}\right) \\
\hat{f}\left(\text { letfun } x_{1} x_{2}=t_{1} \text { in } t_{2}\right) & =f_{\mathrm{F}}\left(x_{1}, x_{2}, \hat{f} t_{1}, \hat{f} t_{2}\right)
\end{aligned}
$$

for all $x_{1}, x_{2} \in \mathbb{V}$ and $t_{1}, t_{2} \in \Lambda$.

$$
\begin{gathered}
\text { Structural recursion for } \Lambda_{\triangleq \mu S .(\mathbb{V}+(S \times S)+(\mathbb{V} \times S)+(\mathbb{V} \times \mathbb{V} \times S \times S))}
\end{gathered}
$$

Given a set $S$
and functions

$$
\left\{\begin{array}{l}
f_{\mathrm{V}}: \mathbb{V} \rightarrow S \\
f_{\mathrm{A}}: S \times S \rightarrow S \\
f_{\mathrm{L}}: \mathbb{V} \times S \rightarrow s \\
f_{\mathrm{F}}: \mathbb{V} \times \mathbb{V} \text { into }
\end{array}\right.
$$

there is a unique functi- ding $\rightarrow S$ satisfying


$$
\begin{aligned}
& \text { letfun } f x=\text { if } x>100 \text { then } x-10 \\
& \text { else } f(f(x+11))
\end{aligned}
$$



$$
\begin{aligned}
& \text { letfun } f x=\text { if } x>100 \text { then } x-10 \\
& \text { else } f(f(x+11)) \\
& \text { in } f(x+101)
\end{aligned}
$$



$$
\begin{aligned}
& \text { letfun } f x=\text { if } x>100 \text { then } x-10 \\
& \text { else } f(f(x+11)) \\
& \text { in } f(x+101)
\end{aligned}
$$

free


## Abstract syntax / $\alpha$

Dealing with issues to do with binders and $\alpha$-conversion is

- irritating (want to get on with more interesting aspects of semantics!)
- pervasive (very many languages involve binding operations; cf. POPLMark Challenge [TPHOLs '05])
- difficult to formalise/mechanise without loosing sight of common informal practice:


## Abstract syntax / $\alpha$

Dealing with issues to do with binders and $\alpha$-conversion is

- irritating (want to get on with more interesting aspects of semantics!)
- pervasive (very many languages involve binding operations; cf. POPLMark Challenge [TPHOLs '05])
- difficult to formalise/mechanise without loosing sight of common informal practice:
"We identify expressions up to $\alpha$-equivalence"...


## Abstract syntax / $\alpha$

Dealing with issues to do with binders and $\alpha$-conversion is

- irritating (want to get on with more interesting aspects of semantics!)
- pervasive (very many languages involve binding operations; cf. POPLMark Challenge [TPHOLs '05])
- difficult to formalise/mechanise without loosing sight of common informal practice:
"We identify expressions up to $\alpha$-equivalence". . . . . . and then forget about it, referring to $\alpha$-equivalence classes $e=[t]_{\alpha}$ only via representatives, $t$.
For example.. .


## E.g. - capture-avoiding substitution

$(x:=e) e_{1}=$ substitute $e$ for all free occurrences of $x$ in $e_{1}$, avoiding capture of free variables in $e$ by binders in $e_{1}$.

## E.g. - capture-avoiding substitution

$-(x:=e) x_{1} \triangleq$ if $x_{1}=x$ then $e$ else $x_{1}$

- $(x:=e)\left(e_{1} e_{2}\right) \triangleq\left((x:=e) e_{1}\right)\left((x:=e) e_{2}\right)$
$-(x:=e)\left(\lambda x_{1} \cdot e_{1}\right) \triangleq$
if $x_{1} \notin f v(x, e)$ then $\lambda x_{1} \cdot(x:=e) e_{1}$
else don't care!
$-(x:=e)\left(\right.$ letfun $x_{1} x_{2}=e_{1}$ in $\left.e_{2}\right) \triangleq$ ?


## E.g. - capture-avoiding substitution

- $(x:=e) x_{1} \triangleq$ if $x_{1}=x$ then $e$ else $x_{1}$
- $(x:=e)\left(e_{1} e_{2}\right) \triangleq\left((x:=e) e_{1}\right)\left((x:=e) e_{2}\right)$
$-(x:=e)\left(\lambda x_{1} \cdot e_{1}\right) \triangleq$
if $x_{1} \notin f v(x, e)$ then $\lambda x_{1} .(x:=e) e_{1}$
else don't care!
- ( $x:=e)\left(\right.$ letfun $x_{1} x_{2}=e_{1}$ in $\left.e_{2}\right) \triangleq$
if $x_{1}, x_{2} \notin f v(x, e) \& x_{2} \notin f v\left(x_{1}, e_{2}\right)$
then letfun $x_{1} x_{2}=(x:=e) e_{1}$ in $(x:=e) e_{2}$ else don't care!


## E.g. - capture-avoiding substitution

- $(x:=e) x_{1} \triangleq$ if $x_{1}=x$ then $e$ else $x_{1}$
- $(x:=e)\left(e_{1} e_{2}\right) \triangleq\left((x:=e) e_{1}\right)\left((x:=e) e_{2}\right)$
$-(x:=e)\left(\lambda x_{1} \cdot e_{1}\right) \triangleq$
if $x_{1} \notin f v(x, e)$ then $\lambda x_{1} \cdot(x:=e) e_{1}$ else don't care!
$-(x:=e)\left(\right.$ letfun $x_{1} x_{2}=e_{1}$ in $\left.e_{2}\right) \triangleq$ if $x_{1}, x_{2} \notin f v(x, e) \& x_{2} \notin f v\left(x_{1}, e_{2}\right)$
then letfun $x_{1} x_{2}=(x:=e) e_{1}$ in $(x:=e) e_{2}$ else don't care!

Does uniquely specify a well-defined function on $\alpha$-equivalence classes, $(x:=e)(-): \Lambda / \alpha \rightarrow \Lambda / \alpha$, but not via an obvious, structurally recursive definition of a function $\hat{f}: \Lambda \rightarrow \Lambda$ respecting $\alpha$-equivalence.

## E.g. - denotational semantics

of $\Lambda / \alpha$ in some suitable domain $D$ :

- $\llbracket x_{1} \rrbracket \rho \triangleq \rho\left(x_{1}\right)$
$-\llbracket e_{1} e_{2} \rrbracket \rho \triangleq \operatorname{app}\left(\llbracket e_{1} \rrbracket \rho, \llbracket e_{2} \rrbracket \rho\right)$
$-\llbracket \lambda x_{1} \cdot e_{1} \rrbracket \rho \triangleq \operatorname{fun}\left(\lambda d \in D . \llbracket e_{1} \rrbracket\left(\rho\left[x_{1} \mapsto d \rrbracket\right)\right)\right.$
$-\llbracket$ letfun $x_{1} x_{2}=e_{1}$ in $e_{2} \rrbracket \rho \triangleq$ fix $(\cdots)$
where
- $\rho$ ranges over environments mapping variables to elements of $D$
- $D$ comes equipped with continuous functions app : $D \times D \rightarrow D$ and fun $:(D \rightarrow D) \rightarrow D$.


## E.g. - denotational semantics

of $\Lambda / \alpha$ in some suitable domain $D$ :
$-\llbracket x_{1} \rrbracket \rho \triangleq \rho\left(x_{1}\right)$
$-\llbracket e_{1} e_{2} \rrbracket \rho \triangleq \operatorname{app}\left(\llbracket e_{1} \rrbracket \rho, \llbracket e_{2} \rrbracket \rho\right)$
$-\llbracket \lambda x_{1} \cdot e_{1} \rrbracket \rho \triangleq \operatorname{fun}\left(\lambda d \in D . \llbracket e_{1} \rrbracket\left(\rho\left[x_{1} \mapsto d \rrbracket\right)\right)\right.$
$-\llbracket$ letfun $x_{1} x_{2}=e_{1}$ in $e_{2} \rrbracket \rho \triangleq \operatorname{fix}(\cdots)$
Why is this (very standard) definition independent of the choice of bound variable $x_{1}$ ?

## E.g. - denotational semantics

of $\Lambda / \alpha$ in some suitable domain $D$ :

- $\llbracket x_{1} \rrbracket \rho \triangleq \rho\left(x_{1}\right)$
$-\llbracket e_{1} e_{2} \rrbracket \rho \triangleq \operatorname{app}\left(\llbracket e_{1} \rrbracket \rho, \llbracket e_{2} \rrbracket \rho\right)$
$-\llbracket \lambda x_{1} \cdot e_{1} \rrbracket \rho \triangleq \operatorname{fun}\left(\lambda d \in D . \llbracket e_{1} \rrbracket\left(\rho\left[x_{1} \mapsto d\right]\right)\right)$
- 【letfun $x_{1} x_{2}=e_{1}$ in $e_{2} \rrbracket \rho \triangleq f i x(\cdots)$

In this case we can use ordinary structural recursion to first define denotations of ASTs and then prove that they respect $\alpha$-equivalence.

But is there a quicker way, working directly with ASTs/ $\alpha$ ?

## $\alpha$-Structural recursion

Is there a recursion principle for $\Lambda / \alpha$ that legitimises these "definitions" of $(x:=e)(-): \Lambda / \alpha \rightarrow \Lambda / \alpha$ and $\llbracket-\rrbracket: \Lambda / \alpha \rightarrow D$ (and many other e.g.s)?

## $\alpha$-Structural recursion

Is there a recursion principle for $\Lambda / \alpha$ that legitimises these "definitions" of $(x:=e)(-): \Lambda / \alpha \rightarrow \Lambda / \alpha$ and $\llbracket-\rrbracket: \Lambda / \alpha \rightarrow D$ (and many other e.g.s)?

Yes! - $\alpha$-structural recursion (and induction too-see paper).

## $\alpha$-Structural recursion

Is there a recursion principle for $\Lambda / \alpha$ that legitimises these "definitions" of $(x:=e)(-): \Lambda / \alpha \rightarrow \Lambda / \alpha$ and $\llbracket-\rrbracket: \Lambda / \alpha \rightarrow D$ (and many other e.g.s)?

Yes! - $\alpha$-structural recursion (and induction too-see paper).

What about other languages with binders?

## $\alpha$-Structural recursion

Is there a recursion principle for $\Lambda / \alpha$ that legitimises these "definitions" of $(x:=e)(-): \Lambda / \alpha \rightarrow \Lambda / \alpha$ and $\llbracket-\rrbracket: \Lambda / \alpha \rightarrow D$ (and many other e.g.s)?

Yes! - $\alpha$-structural recursion (and induction too-see paper).

What about other languages with binders?
Yes! - available for any nominal signature.

## $\alpha$-Structural recursion

Is there a recursion principle for $\Lambda / \alpha$ that legitimises these "definitions" of $(x:=e)(-): \Lambda / \alpha \rightarrow \Lambda / \alpha$ and $\llbracket-\rrbracket: \Lambda / \alpha \rightarrow D$ (and many other e.g.s)?

Yes! - $\alpha$-structural recursion (and induction too-see paper).

What about other languages with binders?
Yes! - available for any nominal signature.
Great. What's the catch?

## $\alpha$-Structural recursion

Is there a recursion principle for $\Lambda / \alpha$ that legitimises these "definitions" of $(x:=e)(-): \Lambda / \alpha \rightarrow \Lambda / \alpha$ and $\llbracket-\rrbracket: \Lambda / \alpha \rightarrow D$ (and many other e.g.s)?

Yes! - $\alpha$-structural recursion (and induction too-see paper).

What about other languages with binders?
Yes! - available for any nominal signature.
Great. What's the catch?
Need to learn a bit of possibly unfamiliar math, to do with permutations and support.

## $\alpha$-Structural recursion for $\Lambda / \alpha$

Given a nominal set $S$
and functions $\left\{\begin{array}{l}f_{\mathrm{V}}: \mathbb{V} \rightarrow S \\ f_{\mathrm{A}}: S \times S \rightarrow S \\ f_{\mathrm{L}}: \mathbb{V} \times S \rightarrow S \\ f_{\mathrm{F}}: \mathbb{V} \times \mathbb{V} \times S \times S \rightarrow S,\end{array}\right.$
all supported by a finite subset $A \subseteq \mathbb{V}$,
there is a unique function $\hat{f}: \Lambda / \alpha \rightarrow S$
such that...

## $\alpha$-Structural recursion for $\Lambda / \alpha$

$\ldots \exists$ ! function $\hat{f}: \Lambda / \alpha \rightarrow S$ such that:

$$
\begin{aligned}
\hat{f} x_{1} & =f_{\mathrm{V}} x_{1} \\
\hat{f}\left(e_{1} e_{2}\right) & =f_{\mathrm{A}}\left(\hat{f} e_{1}, \hat{f} e_{2}\right) \\
x_{1} \notin A \Rightarrow \hat{f}\left(\lambda x_{1} \cdot e_{1}\right) & =f_{\mathrm{L}}\left(x_{1}, \hat{f} e_{1}\right)
\end{aligned}
$$

$x_{1}, x_{2} \notin A \& x_{1} \neq x_{2} \& x_{2} \notin f v\left(e_{2}\right) \Rightarrow$
$\hat{f}\left(\right.$ letfun $x_{1} x_{2}=e_{1}$ in $\left.e_{2}\right)=f_{\mathrm{F}}\left(x_{1}, x_{2}, \hat{f} e_{1}, \hat{f} e_{2}\right)$
for all $x_{1}, x_{2} \in \mathbb{V} \& e_{1}, e_{2} \in \Lambda / \alpha$,

## $\alpha$-Structural recursion for $\Lambda / \alpha$

$\ldots \exists$ ! function $\hat{f}: \Lambda / \alpha \rightarrow S$ such that:

$$
\begin{aligned}
\hat{f} x_{1} & =f_{\mathrm{V}} x_{1} \\
\hat{f}\left(e_{1} e_{2}\right) & =f_{\mathrm{A}}\left(\hat{f} e_{1}, \hat{f} e_{2}\right) \\
x_{1} \notin A \Rightarrow \hat{f}\left(\lambda x_{1} \cdot e_{1}\right) & =f_{\mathrm{L}}\left(x_{1}, \hat{f} e_{1}\right)
\end{aligned}
$$

$x_{1}, x_{2} \notin A \& x_{1} \neq x_{2} \& x_{2} \notin f v\left(e_{2}\right) \Rightarrow$
$\hat{f}$ (letfun $x_{1} x_{2}=e_{1}$ in $\left.e_{2}\right)=f_{\mathrm{F}}\left(x_{1}, x_{2}, \hat{f} e_{1}, \hat{f} e_{2}\right)$
provided freshness condition for binders (FCB) holds for $f_{L}:\left(\exists x_{1} \notin A\right)(\forall s \in S) x_{1} \# f_{L}\left(x_{1}, s\right)$
for $f_{F}:\left(\exists x_{1}, x_{2} \notin A\right) x_{1} \neq x_{2} \&$

$$
\begin{aligned}
& \left(\forall s_{1}, s_{2} \in S\right) x_{2} \# s_{1} \Rightarrow \\
& \quad x_{1}, x_{2} \# f_{F}\left(x_{1}, x_{2}, s_{1}, s_{2}\right)
\end{aligned}
$$

## $\alpha$-Structural recursion for $\Lambda / \alpha$

The freshness relation $(-) \#(-)$ between names and elements of nominal sets generalises the $(-) \notin f v(-)$ relation between variables and ASTs.
E.g. for the capture-avoiding substitution example, $f_{L}\left(x_{1}, e\right) \triangleq \lambda x_{1} . e$ and (FCB) holds trivially because $x_{1} \notin f v\left(\lambda x_{1} \cdot e\right)$ (and similarly for $f_{F}$ ).
provided freshness condition for binders (FCB) holds for $f_{L}:\left(\exists x_{1} \notin A\right)(\forall s \in S) x_{1} \# f_{L}\left(x_{1}, s\right)$
for $f_{F}:\left(\exists x_{1}, x_{2} \notin A\right) x_{1} \neq x_{2} \&$

$$
\begin{aligned}
& \left(\forall s_{1}, s_{2} \in S\right) x_{2} \# s_{1} \Rightarrow \\
& \quad x_{1}, x_{2} \# f_{F}\left(x_{1}, x_{2}, s_{1}, s_{2}\right)
\end{aligned}
$$

## To be explained:

- Nominal sets, support and the freshness relation, $(-) \#(-)$. (Simplified version of [Gabbay-Pitts, 2002].)
- How is $\alpha$-structural recursion proved?
- How to generalise $\alpha$-structural recursion from the example language $\Lambda$ to general languages with binders?
- What's involved with applying $\alpha$-structural recursion in any particular case?
- Mechanisation?


## Actions of permutations

- $\mathbb{G} \triangleq$ group of all finite permutations of $\mathbb{V}$.
- An action of $\mathbb{G}$ on a set $S$ is a function

$$
\mathbb{G} \times S \rightarrow S \quad \text { written } \quad(\pi, s) \mapsto \pi \cdot s
$$

satisfying $\iota \cdot s=s$ and $\pi \cdot\left(\pi^{\prime} \cdot s\right)=\left(\pi \pi^{\prime}\right) \cdot s$

- $\mathbb{G}$-set $\triangleq$ set $S+$ action of $\mathbb{G}$ on $S$.


## Finite support and freshness

Definition. A finite subset $A \subseteq \mathbb{V}$ supports an element $s \in S$ of a $\mathbb{G}$-set $S$ if

$$
\left(\forall x, x^{\prime} \in \mathbb{V}-A\right) \quad\left(x x^{\prime}\right) \cdot s=s
$$

## Finite support and freshness

Definition. A finite subset $A \subseteq \mathbb{V}$ supports an element $s \in S$ of a $\mathbb{G}$-set $S$ if

$$
\left(\forall x, x^{\prime} \in \mathbb{V}-A\right) \quad\left(x x^{\prime}\right) \cdot s=s
$$

the permutation that swaps $x$ and $x^{\prime}$

## Finite support and freshness

Definition. A finite subset $A \subseteq \mathbb{V}$ supports an element $s \in S$ of a $\mathbb{G}$-set $S$ if

$$
\left(\forall x, x^{\prime} \in \mathbb{V}-A\right) \quad\left(x x^{\prime}\right) \cdot s=s
$$

A nominal set is a $\mathbb{G}$-set all of whose elements have a finite support.

## Finite support and freshness

Definition. A finite subset $A \subseteq \mathbb{V}$ supports an element $s \in S$ of a $\mathbb{G}$-set $S$ if

$$
\left(\forall x, x^{\prime} \in \mathbb{V}-A\right) \quad\left(x x^{\prime}\right) \cdot s=s
$$

A nominal set is a $\mathbb{G}$-set all of whose elements have a finite support.

Lemma. If $s \in S$ has a finite support, then it has a smallest one, written $\operatorname{supp}(s)$.

Notation. If $x \notin \operatorname{supp}(s)$, we write $x \# s$ and say " $x$ is fresh for $s$."

## Languages/ $\boldsymbol{\alpha}$ form nominal sets

For example, natural $\mathbb{G}$-action on $\Lambda / \alpha$ is given by:

$$
\begin{aligned}
& \pi \cdot x \triangleq \pi(x) \\
& \pi \cdot\left(e_{1} e_{2}\right) \triangleq\left(\pi \cdot e_{1}\right)\left(\pi \cdot e_{2}\right) \\
& \pi \cdot(\lambda x . e) \triangleq \lambda \pi(x) \cdot(\pi \cdot e) \\
& \pi \cdot\left(\text { letfun } x_{1} x_{2}=e_{1} \text { in } e_{2}\right) \triangleq \\
& \quad \quad \text { letfun } \pi\left(x_{1}\right) \pi\left(x_{2}\right)=\pi \cdot e_{1} \text { in } \pi \cdot e_{2}
\end{aligned}
$$

## Languages/ $\boldsymbol{\alpha}$ form nominal sets

For example, natural $\mathbb{G}$-action on $\Lambda / \alpha$ is given by:

|  |
| :---: |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |

## Languages/ $\boldsymbol{\alpha}$ form nominal sets

For example, natural $\mathbb{G}$-action on $\Lambda / \alpha$ is given by:

$$
\begin{aligned}
& \pi \cdot x \triangleq \pi(x) \\
& \pi \cdot\left(e_{1} e_{2}\right) \triangleq\left(\pi \cdot e_{1}\right)\left(\pi \cdot e_{2}\right) \\
& \pi \cdot(\lambda x . e) \triangleq \lambda \pi(x) \cdot(\pi \cdot e) \\
& \pi \cdot\left(\text { letfun } x_{1} x_{2}=e_{1} \text { in } e_{2}\right) \triangleq \\
& \quad \quad \text { letfun } \pi\left(x_{1}\right) \pi\left(x_{2}\right)=\pi \cdot e_{1} \text { in } \pi \cdot e_{2}
\end{aligned}
$$

For this action, it is not hard to see that $e \in \Lambda / \alpha$ is supported by any finite set of variables containing all those occurring free in $e$ and hence

$$
x \# e \text { iff } x \notin f v(e) .
$$

## Nominal function sets

The exponential of $S$ and $S^{\prime}$ in the category of $\mathbb{G}$-sets is the set of all functions $f: S \rightarrow S^{\prime}$ equipped with the $\mathbb{G}$-action:

$$
\begin{aligned}
\pi \cdot f: S & \rightarrow S^{\prime} \\
s & \mapsto \pi \cdot\left(f\left(\pi^{-1} \cdot s\right)\right)
\end{aligned}
$$

With this definition, $\pi \cdot(-)$ preserves function application:

$$
\begin{aligned}
(\pi \cdot f)(\pi \cdot s) & =\pi \cdot\left(f\left(\pi^{-1} \cdot(\pi \cdot s)\right)\right) \\
& =\pi \cdot(f(\iota \cdot s)) \\
& =\pi \cdot(f s)
\end{aligned}
$$

## Nominal function sets

The exponential of $S$ and $S^{\prime}$ in the category of $\mathbb{G}$-sets is the set of all functions $f: S \rightarrow S^{\prime}$ equipped with the $\mathbb{G}$-action:

$$
\begin{aligned}
\pi \cdot f: S & \rightarrow S^{\prime} \\
s & \mapsto \pi \cdot\left(f\left(\pi^{-1} \cdot s\right)\right)
\end{aligned}
$$

Even if $S$ and $S^{\prime}$ are nominal, not every function from $S$ to $S^{\prime}$ is necessarily finitely supported w.r.t. this action.
(e.g. any surjection $\mathbb{N} \rightarrow \mathbb{V}$ can't have finite support)

## Nominal function sets

The exponential of $S$ and $S^{\prime}$ in the category of $\mathbb{G}$-sets is the set of all functions $f: S \rightarrow S^{\prime}$ equipped with the $\mathbb{G}$-action:

$$
\begin{aligned}
\pi \cdot f: S & \rightarrow S^{\prime} \\
s & \mapsto \pi \cdot\left(f\left(\pi^{-1} \cdot s\right)\right)
\end{aligned}
$$

The set $S \rightarrow_{\mathrm{fs}} S^{\prime}$ of finitely supported functions from a nominal set $S$ to a nominal set $S^{\prime}$ is, by construction, a nominal set.

## To be explained:

- Nominal sets, support and the freshness relation, (-) \# (-). (Simplified version of [Gabbay-Pitts, 2002].)
- How is $\alpha$-structural recursion proved?
- How to generalise $\alpha$-structural recursion from the example language $\Lambda$ to general languages with binders?
- What's involved with applying $\alpha$-structural recursion in any particular case?
- Mechanisation?


## Proof

$\alpha$-Structural recursion reduces to ordinary structural recursion for ASTs within higher-order logic: roughly speaking, one makes a definition for all permutations simultaneously, i.e. uses $\mathbb{G} \rightarrow S$ where you might expect to use a set $S$.

## Proof

$\alpha$-Structural recursion reduces to ordinary structural recursion for ASTs within higher-order logic: roughly speaking, one makes a definition for all permutations simultaneously, i.e. uses $\mathbb{G} \rightarrow S$ where you might expect to use a set $S$.

Rôle of the (FCB): if $x \# f_{L} \&(\forall s) x \# f_{L}(x, s)$, then for any $x^{\prime} \#\left(f_{L}, x, s\right)$

$$
\begin{aligned}
f_{L}(x, s) & =\left(x x^{\prime}\right) \cdot f_{L}(x, s) \\
& =f_{L}\left(x^{\prime},\left(x x^{\prime}\right) \cdot s\right)
\end{aligned}
$$

so $f_{L}(-,-)$ respects $\alpha$-conversion of its argument.

## To be explained:

- Nominal sets, support and the freshness relation, (-) \# (-). (Simplified version of [Gabbay-Pitts, 2002].)
- How is $\alpha$-structural recursion proved?
- How to generalise $\alpha$-structural recursion from the example language $\Lambda$ to general languages with binders?
- What's involved with applying $\alpha$-structural recursion in any particular case?
- Mechanisation?


## $\alpha$-Structural recursion for $\Lambda / \alpha$

$\ldots \exists$ ! function $\hat{f}: \Lambda / \alpha \rightarrow S$ such that:

$$
\begin{aligned}
\hat{f} x_{1} & =f_{\mathrm{V}} x_{1} \\
\hat{f}\left(e_{1} e_{2}\right) & =f_{\mathrm{A}}\left(\hat{f} e_{1}, \hat{f} e_{2}\right) \\
x_{1} \notin A \Rightarrow \hat{f}\left(\lambda x_{1} . e_{1}\right) & =f_{\mathrm{L}}\left(x_{1}, \hat{f} e_{1}\right)
\end{aligned}
$$

$x_{1}, x_{2} \notin A \& x_{1} \neq x_{2} \& x_{2} \notin f v\left(e_{2}\right) \Rightarrow$
$\hat{f}$ (letfun $x_{1} x_{2}=e_{1}$ in $e_{2}$ ) $=f_{\mathrm{F}}\left(x_{1}, x_{2}, \hat{f} e_{1}, \hat{f} e_{2}\right)$
provided freshness condition for binders (FCB) holds for $f_{L}:\left(\exists x_{1} \notin A\right)(\forall s \in S) x_{1} \# f_{L}\left(x_{1}, s\right)$ for $f_{F}:\left(\exists x_{1}, x_{2} \notin A\right) x_{1} \neq x_{2} \&$

$$
\begin{aligned}
& \left(\forall s_{1}, s_{2} \in S\right) x_{2} \# s_{1} \Rightarrow \\
& \quad x_{1}, x_{2} \# f_{F}\left(x_{1}, x_{2}, s_{1}, s_{2}\right)
\end{aligned}
$$

## $\alpha$-Structural recursion for $\Lambda / \alpha$

$\ldots \exists$ ! function $\hat{f}: \Lambda$ Using nominal signatures, these conditions can be determined automatically from the pattern of bindings in a constructor's

$$
x_{1} \notin A \Rightarrow \hat{f}(\lambda \text { arty... }
$$

$x_{1}, x_{2} \notin A \& x_{1} \neq x_{2} \& x_{2} \notin f v\left(e_{2}\right) \Rightarrow$
$\hat{f}\left(\right.$ letfun $x_{1} x_{2}=e_{1}$ in $\left.e_{2}\right)=f_{\mathrm{F}}\left(x_{1}, x_{2}, \hat{f} \varphi_{1}, \hat{f} e_{2}\right)$
provided freshness condition for binders (FCB) holds for $f_{L}:\left(\exists x_{1} \notin A\right)(\forall s \in S) x_{1} \# f_{L}\left(x_{1}, s\right)$ for $f_{F}:\left(\exists x_{1}, x_{2} \notin A\right) x_{1} \neq x_{2} \&$

$$
\begin{aligned}
& \left(\forall s_{1}, s_{2} \in S\right) x_{2} \# s_{1} \Rightarrow \\
& \quad x_{1}, x_{2} \# f_{F}\left(x_{1}, x_{2}, s_{1}, s_{2}\right)
\end{aligned}
$$

## Nominal signatures

Generalisation of many-sorted, algebraic signatures that includes info about how constructors bind names.

Not as general as some schemes for expressing binding patterns (cf. Pottier's Caml), but a good compromise between expressiveness and simplicity.

## Nominal signatures

- Sorts partitioned into atom-sorts $\nu \&$ data-sorts $\delta$.
- Constructors $K: \sigma \rightarrow \delta$ have arities $\sigma$ built using pairing $\sigma_{1} * \sigma_{2}$ and atom-binding $\langle\langle\nu\rangle\rangle \sigma$


## Nominal signatures

- Sorts partitioned into atom-sorts $\nu \&$ data-sorts $\delta$.
- Constructors $K: \sigma \rightarrow \delta$ have arities $\sigma$ built using pairing $\sigma_{1} * \sigma_{2}$ and atom-binding $\langle\langle\nu\rangle\rangle \sigma$
E.g. nominal signature for
$\Lambda=\{t::=x|t t| \lambda x . t \mid$ letfun $x=t$ in $t\}$ has atom-sort var, data-sort term and constructors:
$V:$ var $\rightarrow$ term
$A:$ term $*$ term $\rightarrow$ term
$L:\langle\langle$ var $\rangle\rangle$ term $\rightarrow$ term
$F:\langle\langle$ var $\rangle\rangle((\langle\langle$ var $\rangle\rangle$ term $) *$ term $) \rightarrow$ term


## Nominal signatures

- Sorts partitioned into atom-sorts $\nu \&$ data-sorts $\delta$.
- Constructors $K: \sigma \rightarrow \delta$ have arities $\sigma$ built using pairing $\sigma_{1} * \sigma_{2}$ and atom-binding $\langle\langle\nu\rangle\rangle \sigma$ that automatically determine:
- appropriate notion of $\alpha$-equivalence between ASTs
- the (FCB) in $\alpha$-structural recursion


## To be explained:

- Nominal sets, support and the freshness relation, (-) \# (-). (Simplified version of [Gabbay-Pitts, 2002].)
- How to generalise $\alpha$-structural recursion from the example language $\Lambda$ to general languages with binders?
- How is $\alpha$-structural recursion proved?
- What's involved with applying $\alpha$-structural recursion in any particular case?
- Mechanisation?

Given an informal recursive definition on ASTs/ $\alpha$ for a nominal signature, to show that it is an instance of $\alpha$-structural recursion:

1. find which sets ( $S$ ) and functions ( $f_{V}, f_{A}, f_{L}, f_{F}$ ) are involved;
2. give $S$ a nominal-set structure and then prove the $f_{(-)}$are finitely supported;
3. verify the (FCB) for $f_{(-)}$.

Given an informal recursive definition on ASTs/ $\alpha$ for a nominal signature, to show that it is an instance of $\alpha$-structural recursion:

1. find which sets ( $S$ ) and functions ( $f_{V}, f_{A}, f_{L}, f_{F}$ ) are involved;
2. give $S$ a nominal-set structure and then prove the $f_{(-)}$are finitely supported;
3. verify the (FCB) for $f_{(-)}$.

For step 2 we can use:
Fact The standard set-theoretic model of HOL (without choice) restricts to finitely supported elements; e.g. if we apply a construction of $\mathrm{HOL}-\varepsilon$ to finitely supported functions we get another such.

Given an informal recursive definition on ASTs/ $\alpha$ for a nominal signature, to show that it is an instance of $\alpha$-structural recursion:

1. find which sets ( $S$ ) and functions ( $f_{V}, f_{A}, f_{L}, f_{F}$ ) are involved;
2. give $S$ a nominal-set structure and then prove the $f_{(-)}$are finitely supported;
3. verify the (FCB) for $f_{(-)}$.

Step 3 is sometimes trivial, sometimes not.

## To be explained:

- Nominal sets, support and the freshness relation, (-) \# (-). (Simplified version of [Gabbay-Pitts, 2002].)
- How to generalise $\alpha$-structural recursion from the example language $\Lambda$ to general languages with binders?
- How is $\alpha$-structural recursion proved?
- What's involved with applying $\alpha$-structural recursion in any particular case?
- Mechanisation?


## Mechanisation?

- Norrish's HOL4 development. [TPHOLs '04]
- Urban \& Tasson's Isabelle/HOL theory of nominal sets ("p-sets") and $\alpha$-structural induction for $\lambda$-calculus. [CADE-20, 2005].
Isabelle's axiomatic type classes are helpful.
Wanted: full implementation of $\alpha$-structural recursion/induction theorems parameterised by a user-declared nominal signature
(in either HOL4, or Isabelle/HOL, or both).


## Mechanisation?

- Gabbay's FM-HOL [35yrs of Automath, 2002].

Wanted: a new machine-assisted higher-order logic to support reasoning about ordinary sets and nominal sets simultaneously.

- Should incorporate a reflection principle to exploit Fact The standard set-theoretic model of HOL (without choice) restricts to finitely supported elements; e.g. if we apply a construction of HOL- $\varepsilon$ to finitely supported functions we get another such.
- Also needs some (lightweight!) treatment of partial functions.


## Assessment

- Results apply directly to standard notions of AST \& $\alpha$-equivalence within ordinary HOL
-like Gordon \& Melham's "5 Axioms" work [TPHOLs '96], except closer to informal practice regarding freshness of bound names (more applicable).
- Crucial notion of "finite support" is automatically preserved by constructions in HOL
(if we avoid choice principles).
- Mathematical treatment of "fresh names" afforded by nominal sets is proving useful in other contexts (e.g. Abramsky et al [LICS '04], Winskel \& Turner [200?]).


## Conclusion

Claim: dealing with issues of bound names and $\alpha$-equivalence on ASTs is made easier through use of permutations (rather than traditional use of non-bijective renamings).

Is the use of name-permutations \& support simple enough to become part of standard practice? (It's now part of mine!)

