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Mathematics of syntax

How best to reconcile

syntactical issues to do with name-binding and
α-conversion

with a structural approach to semantics?

Specifically: improved forms of structural recursion
and structural induction for syntactical structures.
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Structural recursion and induction

Compositionality
is crucial in [programming language] semantics

—it’s preferable to give meaning to
program constructions rather than just to
whole programs.
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Structural recursion and induction

In particular, for semantics, concrete syntax

letfun f x = if x > 100 then x − 10

else f ( f ( x + 11 ) ) in f ( x + 100 )

is unimportant compared to abstract syntax (ASTs):

letfun

f x if

>

x 100

−

x 10

@

f @

f +

x 11

@

f +

x 101
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Running example

Concrete syntax:

t ::= x | t t | λx.t | letfunx x = t in t

ASTs:

Λ , µS.(V + (S × S) + (V × S) + (V × V × S × S))

where V is some fixed, countably infinite set (of
names x of variables).
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letfun f x = ifx > 100 thenx − 10

else f(f(x + 11))

in f(x + 101)

letrec

f x if

>

x 100

−

x 10

@

f @

f +

x 11

@

f +

x 101
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Structural recursion for Λ
, µS.(V + (S × S) + (V × S) + (V × V × S × S))

Given a set S

and functions



















fV : V → S

fA : S × S → S

fL : V × S → S

fF : V × V × S × S → S,

there is a unique function f̂ : Λ → S satisfying

f̂ x1 = fV x1

f̂(t1 t2) = fA(f̂ t1, f̂ t2)

f̂(λx1.t1) = fL(x1, f̂ t1)

f̂(letfunx1 x2 = t1 in t2) = fF(x1, x2, f̂ t1, f̂ t2)

for all x1, x2 ∈ V and t1, t2 ∈ Λ.
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Structural recursion for Λ
, µS.(V + (S × S) + (V × S) + (V × V × S × S))

Given a set S

and functions



















fV : V → S

fA : S × S → S

fL : V × S → S

fF : V × V × S × S → S,

there is a unique function f̂ : Λ → S satisfying

f̂ x1 = fV x1

f̂(t1 t2) = fA(f̂ t1, f̂ t2)

f̂(λx1.t1) = fL(x1, f̂ t1)

f̂(letfunx1 x2 = t1 in t2) = fF(x1, x2, f̂ t1, f̂ t2)

for all x1, x2 ∈ V and t1, t2 ∈ Λ.Do
esn
’t t
ake
bin
din
g i
nto
acc
ou
nt!
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letfun f x = ifx > 100 thenx − 10
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letfun f x = ifx > 100 thenx − 10

else f(f(x + 11))

in f(x + 101)

letfun

f x if

>

x 100

−

x 10

@

f @

f +

x 11

@

f +

x 101

free
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Abstract syntax / α

Dealing with issues to do with binders and
α-conversion is
■ irritating (want to get on with more interesting
aspects of semantics!)

■ pervasive (very many languages involve binding
operations; cf. POPLMark Challenge [TPHOLs ’05])

■ difficult to formalise/mechanise without loosing
sight of common informal practice:
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Abstract syntax / α

Dealing with issues to do with binders and
α-conversion is
■ irritating (want to get on with more interesting
aspects of semantics!)

■ pervasive (very many languages involve binding
operations; cf. POPLMark Challenge [TPHOLs ’05])

■ difficult to formalise/mechanise without loosing
sight of common informal practice:
“We identify expressions up to α-equivalence”. . .
. . . and then forget about it, referring to α-equi-
valence classes e = [t]α only via representatives, t.

For example. . .
TPHOLs 2005, - p. 9

E.g. – capture-avoiding substitution

■ (x := e)x1 , if x1 = x then e else x1

■ (x := e)(e1 e2) , ((x := e)e1)((x := e)e2)

■ (x := e)(λx1.e1) ,

if x1 /∈ fv(x, e) then λx1.(x := e)e1

else don’t care!
■ (x := t)(letfunx1 x2 = e1 in e2) , ?
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E.g. – capture-avoiding substitution
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■ (x := e)(λx1.e1) ,

if x1 /∈ fv(x, e) then λx1.(x := e)e1

else don’t care!
■ (x := t)(letfunx1 x2 = e1 in e2) ,

if x1, x2 /∈ fv(x, t) & x2 /∈ fv(x1, e2)

then letfunx1 x2 = (x := t)e1 in (x := t)e2

else don’t care!

TPHOLs 2005, - p. 9

E.g. – capture-avoiding substitution

■ (x := e)x1 , if x1 = x then e else x1

■ (x := e)(e1 e2) , ((x := e)e1)((x := e)e2)

■ (x := e)(λx1.e1) ,

if x1 /∈ fv(x, e) then λx1.(x := e)e1

else don’t care!
■ (x := t)(letfunx1 x2 = e1 in e2) ,

if x1, x2 /∈ fv(x, t) & x2 /∈ fv(x1, e2)

then letfunx1 x2 = (x := t)e1 in (x := t)e2

else don’t care!
Does uniquely specify a well-defined function on α-equivalence classes,

(x := e)(−) : Λ/α → Λ/α, but not via an obvious, structurally recursive definition

of a function f̂ : Λ → Λ respecting α-equivalence.
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E.g. – denotational semantics

of Λ/α in some suitable domain D:
■ Jx1Kρ , ρ(x1)

■ Je1 e2Kρ , app(Je1Kρ, Je2Kρ)

■ Jλx1.e1Kρ , fun(λd ∈ D. Je1K(ρ[x1 7→ d]))

■ Jletfunx1 x2 = e1 in e2Kρ , fix(· · · )

(ρ ranges over environments mapping variables to
elements of D)
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E.g. – denotational semantics

of Λ/α in some suitable domain D:
■ Jx1Kρ , ρ(x1)

■ Je1 e2Kρ , app(Je1Kρ, Je2Kρ)

■ Jλx1.e1Kρ , fun(λd ∈ D. Je1K(ρ[x1 7→ d]))

■ Jletfunx1 x2 = e1 in e2Kρ , fix(· · · )

Why is this (very standard)
definition independent of the
choice of bound variable x1?
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E.g. – denotational semantics

of Λ/α in some suitable domain D:
■ Jx1Kρ , ρ(x1)

■ Je1 e2Kρ , app(Je1Kρ, Je2Kρ)

■ Jλx1.e1Kρ , fun(λd ∈ D. Je1K(ρ[x1 7→ d]))

■ Jletfunx1 x2 = e1 in e2Kρ , fix(· · · )

In this case we can use ordinary structural recursion
to first define denotations of ASTs and then prove
that they respect α-equivalence.

But is there a quicker way, working directly with
ASTs/α?
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α-Structural recursion

Is there a recursion principle for Λ/α that legitimises
these “definitions” of (x := e)(−) : Λ/α → Λ/α and
J−K : Λ/α → D?
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α-Structural recursion

Is there a recursion principle for Λ/α that legitimises
these “definitions” of (x := e)(−) : Λ/α → Λ/α and
J−K : Λ/α → D?

Yes! — α-structural recursion
(and induction too—see lecture notes).
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α-Structural recursion

Is there a recursion principle for Λ/α that legitimises
these “definitions” of (x := e)(−) : Λ/α → Λ/α and
J−K : Λ/α → D?

Yes! — α-structural recursion
(and induction too—see lecture notes).

What about other languages with binders?

Yes! — available for any nominal signature.

Great. What’s the catch?

Need to learn a bit of possibly unfamiliar math, to do
with permutations and support.
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α-Structural recursion for Λ/α

Given a nominal set S

and functions



















fV : V → S

fA : S × S → S

fL : V × S → S

fF : V × V × S × S → S,

all supported by a finite subset A ⊆ V,

there is a unique function f̂ : Λ/α → S

such that. . .
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α-Structural recursion for Λ/α

. . . ∃! function f̂ : Λ/α → S such that:

f̂ x1 = fV x1

f̂(e1 e2) = fA(f̂ e1, f̂ e2)

x1 /∈ A ⇒ f̂(λx1.e1) = fL(x1, f̂ e1)

x1, x2 /∈ A & x1 6= x2 & x2 /∈ fv(e2) ⇒

f̂(letfunx1 x2 = e1 in e2) = fF(x1, x2, f̂ e1, f̂ e2)

for all x1, x2 ∈ V & e1, e2 ∈ Λ/α,

TPHOLs 2005, - p. 12

α-Structural recursion for Λ/α

. . . ∃! function f̂ : Λ/α → S such that:

f̂ x1 = fV x1

f̂(e1 e2) = fA(f̂ e1, f̂ e2)

x1 /∈ A ⇒ f̂(λx1.e1) = fL(x1, f̂ e1)

x1, x2 /∈ A & x1 6= x2 & x2 /∈ fv(e2) ⇒

f̂(letfunx1 x2 = e1 in e2) = fF(x1, x2, f̂ e1, f̂ e2)

provided freshness condition for binders (FCB) holds
for fL: (∃x1 /∈ A)(∀s ∈ S) x1 # fL(x1, s)

for fF : (∃x1, x2 /∈ A) x1 6= x2 &

(∀s1, s2 ∈ S) x2 # s1 ⇒

x1, x2 # fF (x1, x2, s1, s2)
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α-Structural recursion for Λ/α

. . . ∃! function f̂ : Λ/α → S such that:

f̂ x1 = fV x1

f̂(e1 e2) = fA(f̂ e1, f̂ e2)

x1 /∈ A ⇒ f̂(λx1.e1) = fL(x1, f̂ e1)

x1, x2 /∈ A & x1 6= x2 & x2 /∈ fv(e2) ⇒

f̂(letfunx1 x2 = e1 in e2) = fF(x1, x2, f̂ e1, f̂ e2)

provided freshness condition for binders (FCB) holds
for fL: (∃x1 /∈ A)(∀s ∈ S) x1 # fL(x1, s)

for fF : (∃x1, x2 /∈ A) x1 6= x2 &

(∀s1, s2 ∈ S) x2 # s1 ⇒

x1, x2 # fF (x1, x2, s1, s2)

The freshness relation (−) # (−) between names
and elements of nominal sets generalises the
(−) /∈ fv(−) relation between variables and ASTs.

E.g. for the capture-avoiding substitution example,
fL(x1, e) , λx1.e and (FCB) holds trivially because
x1 /∈ fv(λx1.e) (and similarly for fF ).
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To be explained:

■ Nominal sets, support and the freshness relation,
(−) # (−).

■ How to generalise α-structural recursion from the
example language Λ to general languages with
binders?

■ How is α-structural recursion proved?
■ What’s involved with applying α-structural recursion
in any particular case?

■ Mechanisation?
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Actions of permutations

■ G , group of all finite permutations of V.
■ An action of G on a set S is a function

G × S → S written (π, s) 7→ π · s

satisfying ι · s = s and π · (π′ · s) = (ππ′) · s

■ G-set , set S + action of G on S.
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Finite support and freshness

Definition. A finite subset A ⊆ V supports an
element s ∈ S of a G-set S if

(∀x, x′ ∈ V − A) (x x′) · s = s
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Finite support and freshness

Definition. A finite subset A ⊆ V supports an
element s ∈ S of a G-set S if

(∀x, x′ ∈ V − A) (x x′)

the permutation that swaps x and x′

· s = s
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Finite support and freshness

Definition. A finite subset A ⊆ V supports an
element s ∈ S of a G-set S if

(∀x, x′ ∈ V − A) (x x′) · s = s

A nominal set is a G-set all of whose elements have
a finite support.

TPHOLs 2005, - p. 15

Finite support and freshness

Definition. A finite subset A ⊆ V supports an
element s ∈ S of a G-set S if

(∀x, x′ ∈ V − A) (x x′) · s = s

A nominal set is a G-set all of whose elements have
a finite support.

Lemma. If s ∈ S has a finite support, then it has a
smallest one, written supp(s) .

Notation. If x /∈ supp(s), we write x # s and say

“x is fresh for s.”
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Languages/α form nominal sets

For example, natural G-action on Λ/α is given by:

π · x , π(x)

π · (e1 e2) , (π · e1)(π · e2)

π · (λx.e) , λπ(x).(π · e)

π · (letfunx1 x2 = e1 in e2) ,

letfunπ(x1) π(x2) = π · e1 in π · e2
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Languages/α form nominal sets

For example, natural G-action on Λ/α is given by:

π · x , π(x)

π · (e1 e2) , (π · e1)(π · e2)

π · (λx.e) , λπ(x).(π · e)

π · (letfunx1 x2 = e1 in e2) ,

letfunπ(x1) π(x2) = π · e1 in π · e2

N.B. binding and non-binding constructs are treated just the same
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Languages/α form nominal sets

For example, natural G-action on Λ/α is given by:

π · x , π(x)

π · (e1 e2) , (π · e1)(π · e2)

π · (λx.e) , λπ(x).(π · e)

π · (letfunx1 x2 = e1 in e2) ,

letfunπ(x1) π(x2) = π · e1 in π · e2

For this action, it is not hard to see that e ∈ Λ/α is
supported by any finite set of variables containing all
those occurring free in e and hence

x # e iff x /∈ fv(e).
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Nominal function sets

The exponential of S and S′ in the category of
G-sets is the set of all functions f : S → S′ equipped
with the G-action:

π · f : S → S′

s 7→ π · (f(π−1 · s))

Even if S and S′ are nominal, not every function
from S to S′ is necessarily finitely supported
w.r.t. this action.

(e.g. any surjection N → V can’t have finite support)
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Nominal function sets

The exponential of S and S′ in the category of
G-sets is the set of all functions f : S → S′ equipped
with the G-action:

π · f : S → S′

s 7→ π · (f(π−1 · s))

The set S→fsS
′ of finitely supported functions from

a nominal set S to a nominal set S′ is, by
construction, a nominal set.
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To be explained:

■ Nominal sets, support and the freshness relation,
(−) # (−).

■ How to generalise α-structural recursion from the
example language Λ to general languages with
binders?

■ How is α-structural recursion proved?
■ What’s involved with applying α-structural recursion
in any particular case?

■ Mechanisation?
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α-Structural recursion for Λ/α

. . . ∃! function f̂ : Λ/α → S such that:

f̂ x1 = fV x1

f̂(e1 e2) = fA(f̂ e1, f̂ e2)

x1 /∈ A ⇒ f̂(λx1.e1) = fL(x1, f̂ e1)

x1, x2 /∈ A & x1 6= x2 & x2 /∈ fv(e2) ⇒

f̂(letfunx1 x2 = e1 in e2) = fF(x1, x2, f̂ e1, f̂ e2)

provided freshness condition for binders (FCB) holds
for fL: (∃x1 /∈ A)(∀s ∈ S) x1 # fL(x1, s)

for fF : (∃x1, x2 /∈ A) x1 6= x2 &

(∀s1, s2 ∈ S) x2 # s1 ⇒

x1, x2 # fF (x1, x2, s1, s2)
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α-Structural recursion for Λ/α

. . . ∃! function f̂ : Λ/α → S such that:

f̂ x1 = fV x1

f̂(e1 e2) = fA(f̂ e1, f̂ e2)

x1 /∈ A ⇒ f̂(λx1.e1) = fL(x1, f̂ e1)

x1, x2 /∈ A & x1 6= x2 & x2 /∈ fv(e2) ⇒

f̂(letfunx1 x2 = e1 in e2) = fF(x1, x2, f̂ e1, f̂ e2)

provided freshness condition for binders (FCB) holds
for fL: (∃x1 /∈ A)(∀s ∈ S) x1 # fL(x1, s)

for fF : (∃x1, x2 /∈ A) x1 6= x2 &

(∀s1, s2 ∈ S) x2 # s1 ⇒

x1, x2 # fF (x1, x2, s1, s2)

Using nominal signatures, these
conditions can be determined
automatically from the pattern
of bindings in a constructor’s
arity. . .
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Nominal signatures

Generalisation of many-sorted, algebraic signatures
that includes info about how constructors bind
names.

Not as general as some schemes for expressing
binding patterns (cf. Pottier’s Cαml), but a good
compromise between expressiveness and simplicity.
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Nominal signatures

■ Sorts partitioned into atom-sorts ν & data-sorts δ.
■ Constructors K : σ → δ have arities σ built using
pairing σ1 ∗ σ2 and atom-binding 〈〈ν〉〉σ
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Nominal signatures

■ Sorts partitioned into atom-sorts ν & data-sorts δ.
■ Constructors K : σ → δ have arities σ built using
pairing σ1 ∗ σ2 and atom-binding 〈〈ν〉〉σ

E.g. nominal signature for
Λ = {t ::= x | t t | λx.t | letfunx x = t in t} has
atom-sort var, data-sort term and constructors:
V : var → term

A : term ∗ term → term

L : 〈〈var〉〉term → term

F : 〈〈var〉〉((〈〈var〉〉term) ∗ term) → term
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Nominal signatures

■ Sorts partitioned into atom-sorts ν & data-sorts δ.
■ Constructors K : σ → δ have arities σ built using
pairing σ1 ∗ σ2 and atom-binding 〈〈ν〉〉σ that
automatically determine:
◆ appropriate notion of α-equivalence between ASTs
◆ the (FCB) in α-structural recursion

TPHOLs 2005, - p. 21

To be explained:

■ Nominal sets, support and the freshness relation,
(−) # (−).

■ How to generalise α-structural recursion from the
example language Λ to general languages with
binders?

■ How is α-structural recursion proved?
■ What’s involved with applying α-structural recursion
in any particular case?

■ Mechanisation?
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Proof

α-Structural recursion reduces to ordinary structural
recursion for ASTs within higher-order logic: roughly
speaking, one makes a definition for all permutations
simultaneously, i.e. uses G → S where you might
expect to use a set S.

TPHOLs 2005, - p. 22

Proof

α-Structural recursion reduces to ordinary structural
recursion for ASTs within higher-order logic: roughly
speaking, one makes a definition for all permutations
simultaneously, i.e. uses G → S where you might
expect to use a set S.

Rôle of the (FCB): if x # fL & (∀s) x # fL(x, s),
then for any x′ # (fL, x, s)

fL(x, s) = (x x′) · fL(x, s)

= fL(x′, (x x′) · s)

so fL(−, −) respects α-conversion of its argument.

TPHOLs 2005, - p. 23

To be explained:

■ Nominal sets, support and the freshness relation,
(−) # (−).

■ How to generalise α-structural recursion from the
example language Λ to general languages with
binders?

■ How is α-structural recursion proved?
■ What’s involved with applying α-structural recursion
in any particular case?

■ Mechanisation?
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Given an informal recursive definition on ASTs/α for
a nominal signature, to show that it is an instance of
α-structural recursion:

1. find which sets (S) and functions (fV , fA, fL, fF )
are involved;

2. give S a nominal-set structure and then prove the
f(−) are finitely supported;

3. verify the (FCB) for f(−).
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Given an informal recursive definition on ASTs/α for
a nominal signature, to show that it is an instance of
α-structural recursion:

1. find which sets (S) and functions (fV , fA, fL, fF )
are involved;

2. give S a nominal-set structure and then prove the
f(−) are finitely supported;

3. verify the (FCB) for f(−).

For step 2 we can use:
Fact The standard set-theoretic model of HOL
(without choice) restricts to finitely supported
elements; e.g. if we apply a construction of HOL-ε
to finitely supported functions we get another such.
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Given an informal recursive definition on ASTs/α for
a nominal signature, to show that it is an instance of
α-structural recursion:

1. find which sets (S) and functions (fV , fA, fL, fF )
are involved;

2. give S a nominal-set structure and then prove the
f(−) are finitely supported;

3. verify the (FCB) for f(−).

Step 3 is sometimes trivial, sometimes not.
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To be explained:

■ Nominal sets, support and the freshness relation,
(−) # (−).

■ How to generalise α-structural recursion from the
example language Λ to general languages with
binders?

■ How is α-structural recursion proved?
■ What’s involved with applying α-structural recursion
in any particular case?

■ Mechanisation?
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Mechanisation?

■ Norrish’s HOL4 development. [TPHOLs ’04]
■ Urban & Tasson’s Isabelle/HOL theory of nominal
sets (“p-sets”) and α-structural induction for
λ-calculus. [CADE-20, 2005].
Isabelle’s axiomatic type classes are helpful.

Wanted: full implementation of α-structural
recursion/induction theorems parameterised by a
user-declared nominal signature
(in either HOL4, or Isabelle/HOL, or both).
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Mechanisation?

■ Gabbay’s FM-HOL [35yrs of Automath, 2002].

Wanted: a new machine-assisted higher-order logic
to support reasoning about ordinary sets and
nominal sets simultaneously.
◆ Should incorporate a reflection principle to exploit
Fact The standard set-theoretic model of
HOL (without choice) restricts to finitely
supported elements; e.g. if we apply a
construction of HOL-ε to finitely supported
functions we get another such.

◆ Also needs some (lightweight!) treatment of
partial functions.
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Assessment

■ Results apply directly to standard notions of AST &
α-equivalence within ordinary HOL
—like Gordon & Melham’s “5 Axioms” work [TPHOLs ’96], except closer to

informal practice regarding freshness of bound names (more applicable).

■ Crucial finite support property is automatically
preserved by constructions in HOL
(if we avoid choice principles).

■ Mathematical treatment of “fresh names” afforded
by nominal sets is proving useful in other contexts
(e.g. Abramsky et al [LICS ’04], Winskel & Turner [200?]).
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Assessment

Claim: dealing with issues of bound names and
α-equivalence on ASTs is made easier through use
of permutations (rather than traditional use of
non-bijective renamings).

Is the use of name-permutations & support simple
enough to become part of standard practice?
(It’s now part of mine!)
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Mathematics of syntax

How best to reconcile

syntactical issues to do with name-binding and
α-conversion

with a structural approach to semantics?

Specifically: improved forms of structural recursion
and structural induction for syntactical structures.
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Structural recursion and induction
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position
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Structural recursion and induction

Compositionality
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Structural recursion and induction

Compositionality
is crucial in [programming language] semantics

—it’s preferable to give meaning to
program constructions rather than just to
whole programs.
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Structural recursion and induction

In particular, as far as semantics is concerned,
concrete syntax

letfun f x = if x > 100 then x − 10

else f ( f ( x + 11 ) ) in f ( x + 100 )

is unimportant compared to abstract syntax (ASTs):

letfun

f x if

>

x 100

−

x 10

@

f @

f +

x 11

@

f +

x 101
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Structural recursion and induction

ASTs enable two fundamental (and inter-linked) tools
in programming language semantics:

■ Definition of functions on syntax

by recursion on its structure.

■ Proof of properties of syntax

by induction on its structure.
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Running example

Concrete syntax:

t ::= x | t t | λx.t | letfunx x = t in t

ASTs:

Λ , µS.(V + (S × S) + (V × S) + (V × V × S × S))

where V is some fixed, countably infinite set (of
names x of variables).
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letfun f x = ifx > 100 thenx − 10

else f(f(x + 11))

in f(x + 101)

letrec

f x if

>

x 100

−

x 10

@

f @

f +

x 11

@

f +

x 101
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Structural recursion for Λ
, µS.(V + (S × S) + (V × S) + (V × V × S × S))

Given a set S

and functions



















fV : V → S

fA : S × S → S

fL : V × S → S

fF : V × V × S × S → S,

there is a unique function f̂ : Λ → S satisfying

f̂ x1 = fV x1

f̂(t1 t2) = fA(f̂ t1, f̂ t2)

f̂(λx1.t1) = fL(x1, f̂ t1)

f̂(letfunx1 x2 = t1 in t2) = fF(x1, x2, f̂ t1, f̂ t2)

for all x1, x2 ∈ V and t1, t2 ∈ Λ.
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Structural recursion for Λ
, µS.(V + (S × S) + (V × S) + (V × V × S × S))

Given a set S

and functions



















fV : V → S

fA : S × S → S

fL : V × S → S

fF : V × V × S × S → S,

there is a unique function f̂ : Λ → S satisfying

f̂ x1 = fV x1

f̂(t1 t2) = fA(f̂ t1, f̂ t2)

f̂(λx1.t1) = fL(x1, f̂ t1)

f̂(letfunx1 x2 = t1 in t2) = fF(x1, x2, f̂ t1, f̂ t2)

for all x1, x2 ∈ V and t1, t2 ∈ Λ.Do
esn
’t t
ake
bin
din
g i
nto
acc
ou
nt!
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letfun f x = ifx > 100 thenx − 10

else f(f(x + 11))

in f(x + 101)

letfun

f x if

>

x 100

−

x 10

@

f @

f +

x 11

@

f +

x 101
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letfun f x = ifx > 100 thenx − 10

else f(f(x + 11))

in f(x + 101)

letfun

f x if

>

x 100

−

x 10

@

f @

f +

x 11

@

f +

x 101
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letfun f x = ifx > 100 thenx − 10

else f(f(x + 11))

in f(x + 101)

letfun

f x if

>

x 100

−

x 10

@

f @

f +

x 11

@

f +

x 101

free
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Abstract syntax / α

Dealing with issues to do with binders and
α-conversion is
■ irritating (want to get on with more interesting
aspects of semantics!)

■ pervasive (very many languages involve binding
operations; cf. POPLMark Challenge [TPHOLs ’05])

■ difficult to formalise/mechanise without loosing
sight of common informal practice:
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■ irritating (want to get on with more interesting
aspects of semantics!)

■ pervasive (very many languages involve binding
operations; cf. POPLMark Challenge [TPHOLs ’05])

■ difficult to formalise/mechanise without loosing
sight of common informal practice:
“We identify expressions up to α-equivalence”. . .
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Abstract syntax / α

Dealing with issues to do with binders and
α-conversion is
■ irritating (want to get on with more interesting
aspects of semantics!)

■ pervasive (very many languages involve binding
operations; cf. POPLMark Challenge [TPHOLs ’05])

■ difficult to formalise/mechanise without loosing
sight of common informal practice:
“We identify expressions up to α-equivalence”. . .
. . . and then forget about it, referring to α-equi-
valence classes e = [t]α only via representatives, t.

For example. . .
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E.g. – capture-avoiding substitution

(x := e)e1 = substitute e for all free occurrences

of x in e1, avoiding capture of free variables in e
by binders in e1.
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E.g. – capture-avoiding substitution

■ (x := e)x1 , if x1 = x then e else x1

■ (x := e)(e1 e2) , ((x := e)e1)((x := e)e2)

■ (x := e)(λx1.e1) ,

if x1 /∈ fv(x, e) then λx1.(x := e)e1

else don’t care!
■ (x := e)(letfunx1 x2 = e1 in e2) , ?
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E.g. – capture-avoiding substitution

■ (x := e)x1 , if x1 = x then e else x1

■ (x := e)(e1 e2) , ((x := e)e1)((x := e)e2)

■ (x := e)(λx1.e1) ,

if x1 /∈ fv(x, e) then λx1.(x := e)e1

else don’t care!
■ (x := e)(letfunx1 x2 = e1 in e2) ,

if x1, x2 /∈ fv(x, e) & x2 /∈ fv(x1, e2)

then letfunx1 x2 = (x := e)e1 in (x := e)e2

else don’t care!
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E.g. – capture-avoiding substitution

■ (x := e)x1 , if x1 = x then e else x1

■ (x := e)(e1 e2) , ((x := e)e1)((x := e)e2)

■ (x := e)(λx1.e1) ,

if x1 /∈ fv(x, e) then λx1.(x := e)e1

else don’t care!
■ (x := e)(letfunx1 x2 = e1 in e2) ,

if x1, x2 /∈ fv(x, e) & x2 /∈ fv(x1, e2)

then letfunx1 x2 = (x := e)e1 in (x := e)e2

else don’t care!
Does uniquely specify a well-defined function on α-equivalence classes,

(x := e)(−) : Λ/α → Λ/α, but not via an obvious, structurally recursive definition

of a function f̂ : Λ → Λ respecting α-equivalence.
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E.g. – denotational semantics

of Λ/α in some suitable domain D:
■ Jx1Kρ , ρ(x1)

■ Je1 e2Kρ , app(Je1Kρ, Je2Kρ)

■ Jλx1.e1Kρ , fun(λd ∈ D. Je1K(ρ[x1 7→ d]))

■ Jletfunx1 x2 = e1 in e2Kρ , fix(· · · )

where

- ρ ranges over environments mapping variables to elements of D

- D comes equipped with continuous functions app : D × D → D and

fun : (D → D) → D.
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E.g. – denotational semantics

of Λ/α in some suitable domain D:
■ Jx1Kρ , ρ(x1)

■ Je1 e2Kρ , app(Je1Kρ, Je2Kρ)

■ Jλx1.e1Kρ , fun(λd ∈ D. Je1K(ρ[x1 7→ d]))

■ Jletfunx1 x2 = e1 in e2Kρ , fix(· · · )

Why is this (very standard)
definition independent of the
choice of bound variable x1?



TPHOLs 2005, - p. 11

E.g. – denotational semantics

of Λ/α in some suitable domain D:
■ Jx1Kρ , ρ(x1)

■ Je1 e2Kρ , app(Je1Kρ, Je2Kρ)

■ Jλx1.e1Kρ , fun(λd ∈ D. Je1K(ρ[x1 7→ d]))

■ Jletfunx1 x2 = e1 in e2Kρ , fix(· · · )

In this case we can use ordinary structural recursion
to first define denotations of ASTs and then prove
that they respect α-equivalence.

But is there a quicker way, working directly with
ASTs/α?
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α-Structural recursion

Is there a recursion principle for Λ/α that legitimises
these “definitions” of (x := e)(−) : Λ/α → Λ/α and
J−K : Λ/α → D (and many other e.g.s)?
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α-Structural recursion

Is there a recursion principle for Λ/α that legitimises
these “definitions” of (x := e)(−) : Λ/α → Λ/α and
J−K : Λ/α → D (and many other e.g.s)?

Yes! — α-structural recursion
(and induction too—see paper).
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α-Structural recursion

Is there a recursion principle for Λ/α that legitimises
these “definitions” of (x := e)(−) : Λ/α → Λ/α and
J−K : Λ/α → D (and many other e.g.s)?

Yes! — α-structural recursion
(and induction too—see paper).

What about other languages with binders?

Yes! — available for any nominal signature.

Great. What’s the catch?

Need to learn a bit of possibly unfamiliar math, to do
with permutations and support.
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α-Structural recursion for Λ/α

Given a nominal set S

and functions



















fV : V → S

fA : S × S → S

fL : V × S → S

fF : V × V × S × S → S,

all supported by a finite subset A ⊆ V,

there is a unique function f̂ : Λ/α → S

such that. . .
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α-Structural recursion for Λ/α

. . . ∃! function f̂ : Λ/α → S such that:

f̂ x1 = fV x1

f̂(e1 e2) = fA(f̂ e1, f̂ e2)

x1 /∈ A ⇒ f̂(λx1.e1) = fL(x1, f̂ e1)

x1, x2 /∈ A & x1 6= x2 & x2 /∈ fv(e2) ⇒

f̂(letfunx1 x2 = e1 in e2) = fF(x1, x2, f̂ e1, f̂ e2)

for all x1, x2 ∈ V & e1, e2 ∈ Λ/α,



TPHOLs 2005, - p. 13

α-Structural recursion for Λ/α

. . . ∃! function f̂ : Λ/α → S such that:

f̂ x1 = fV x1

f̂(e1 e2) = fA(f̂ e1, f̂ e2)

x1 /∈ A ⇒ f̂(λx1.e1) = fL(x1, f̂ e1)

x1, x2 /∈ A & x1 6= x2 & x2 /∈ fv(e2) ⇒

f̂(letfunx1 x2 = e1 in e2) = fF(x1, x2, f̂ e1, f̂ e2)

provided freshness condition for binders (FCB) holds
for fL: (∃x1 /∈ A)(∀s ∈ S) x1 # fL(x1, s)

for fF : (∃x1, x2 /∈ A) x1 6= x2 &

(∀s1, s2 ∈ S) x2 # s1 ⇒

x1, x2 # fF (x1, x2, s1, s2)
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α-Structural recursion for Λ/α

. . . ∃! function f̂ : Λ/α → S such that:

f̂ x1 = fV x1

f̂(e1 e2) = fA(f̂ e1, f̂ e2)

x1 /∈ A ⇒ f̂(λx1.e1) = fL(x1, f̂ e1)

x1, x2 /∈ A & x1 6= x2 & x2 /∈ fv(e2) ⇒

f̂(letfunx1 x2 = e1 in e2) = fF(x1, x2, f̂ e1, f̂ e2)

provided freshness condition for binders (FCB) holds
for fL: (∃x1 /∈ A)(∀s ∈ S) x1 # fL(x1, s)

for fF : (∃x1, x2 /∈ A) x1 6= x2 &

(∀s1, s2 ∈ S) x2 # s1 ⇒

x1, x2 # fF (x1, x2, s1, s2)

The freshness relation (−) # (−) between names
and elements of nominal sets generalises the
(−) /∈ fv(−) relation between variables and ASTs.

E.g. for the capture-avoiding substitution example,
fL(x1, e) , λx1.e and (FCB) holds trivially because
x1 /∈ fv(λx1.e) (and similarly for fF ).
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To be explained:

■ Nominal sets, support
and the freshness relation, (−) # (−).
(Simplified version of [Gabbay-Pitts, 2002].)

■ How is α-structural recursion proved?
■ How to generalise α-structural recursion from the
example language Λ to general languages with
binders?

■ What’s involved with applying α-structural recursion
in any particular case?

■ Mechanisation?
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Actions of permutations

■ G , group of all finite permutations of V.
■ An action of G on a set S is a function

G × S → S written (π, s) 7→ π · s

satisfying ι · s = s and π · (π′ · s) = (ππ′) · s

■ G-set , set S + action of G on S.
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Finite support and freshness

Definition. A finite subset A ⊆ V supports an
element s ∈ S of a G-set S if

(∀x, x′ ∈ V − A) (x x′) · s = s
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Finite support and freshness

Definition. A finite subset A ⊆ V supports an
element s ∈ S of a G-set S if

(∀x, x′ ∈ V − A) (x x′)

the permutation that swaps x and x′

· s = s
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Finite support and freshness

Definition. A finite subset A ⊆ V supports an
element s ∈ S of a G-set S if

(∀x, x′ ∈ V − A) (x x′) · s = s

A nominal set is a G-set all of whose elements have
a finite support.
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Finite support and freshness

Definition. A finite subset A ⊆ V supports an
element s ∈ S of a G-set S if

(∀x, x′ ∈ V − A) (x x′) · s = s

A nominal set is a G-set all of whose elements have
a finite support.

Lemma. If s ∈ S has a finite support, then it has a
smallest one, written supp(s) .

Notation. If x /∈ supp(s), we write x # s and say

“x is fresh for s.”
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Languages/α form nominal sets

For example, natural G-action on Λ/α is given by:

π · x , π(x)

π · (e1 e2) , (π · e1)(π · e2)

π · (λx.e) , λπ(x).(π · e)

π · (letfunx1 x2 = e1 in e2) ,

letfunπ(x1) π(x2) = π · e1 in π · e2
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Languages/α form nominal sets

For example, natural G-action on Λ/α is given by:

π · x , π(x)

π · (e1 e2) , (π · e1)(π · e2)

π · (λx.e) , λπ(x).(π · e)

π · (letfunx1 x2 = e1 in e2) ,

letfunπ(x1) π(x2) = π · e1 in π · e2

N.B. binding and non-binding constructs are treated just the same
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Languages/α form nominal sets

For example, natural G-action on Λ/α is given by:

π · x , π(x)

π · (e1 e2) , (π · e1)(π · e2)

π · (λx.e) , λπ(x).(π · e)

π · (letfunx1 x2 = e1 in e2) ,

letfunπ(x1) π(x2) = π · e1 in π · e2

For this action, it is not hard to see that e ∈ Λ/α is
supported by any finite set of variables containing all
those occurring free in e and hence

x # e iff x /∈ fv(e).
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Nominal function sets

The exponential of S and S′ in the category of
G-sets is the set of all functions f : S → S′ equipped
with the G-action:

π · f : S → S′

s 7→ π · (f(π−1 · s))

With this definition, π · (−) preserves function
application:

(π · f)(π · s) = π · (f(π−1 · (π · s)))

= π · (f(ι · s))

= π · (f s)
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Nominal function sets

The exponential of S and S′ in the category of
G-sets is the set of all functions f : S → S′ equipped
with the G-action:

π · f : S → S′

s 7→ π · (f(π−1 · s))

Even if S and S′ are nominal, not every function
from S to S′ is necessarily finitely supported
w.r.t. this action.

(e.g. any surjection N → V can’t have finite support)
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Nominal function sets

The exponential of S and S′ in the category of
G-sets is the set of all functions f : S → S′ equipped
with the G-action:

π · f : S → S′

s 7→ π · (f(π−1 · s))

The set S→fsS
′ of finitely supported functions from

a nominal set S to a nominal set S′ is, by
construction, a nominal set.
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To be explained:

■ Nominal sets, support and the freshness relation,
(−) # (−).
(Simplified version of [Gabbay-Pitts, 2002].)

■ How is α-structural recursion proved?
■ How to generalise α-structural recursion from the
example language Λ to general languages with
binders?

■ What’s involved with applying α-structural recursion
in any particular case?

■ Mechanisation?
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Proof

α-Structural recursion reduces to ordinary structural
recursion for ASTs within higher-order logic: roughly
speaking, one makes a definition for all permutations
simultaneously, i.e. uses G → S where you might
expect to use a set S.
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Proof

α-Structural recursion reduces to ordinary structural
recursion for ASTs within higher-order logic: roughly
speaking, one makes a definition for all permutations
simultaneously, i.e. uses G → S where you might
expect to use a set S.

Rôle of the (FCB): if x # fL & (∀s) x # fL(x, s),
then for any x′ # (fL, x, s)

fL(x, s) = (x x′) · fL(x, s)

= fL(x′, (x x′) · s)

so fL(−, −) respects α-conversion of its argument.
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To be explained:

■ Nominal sets, support and the freshness relation,
(−) # (−).
(Simplified version of [Gabbay-Pitts, 2002].)

■ How is α-structural recursion proved?
■ How to generalise α-structural recursion from the
example language Λ to general languages with
binders?

■ What’s involved with applying α-structural recursion
in any particular case?

■ Mechanisation?
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α-Structural recursion for Λ/α

. . . ∃! function f̂ : Λ/α → S such that:

f̂ x1 = fV x1

f̂(e1 e2) = fA(f̂ e1, f̂ e2)

x1 /∈ A ⇒ f̂(λx1.e1) = fL(x1, f̂ e1)

x1, x2 /∈ A & x1 6= x2 & x2 /∈ fv(e2) ⇒

f̂(letfunx1 x2 = e1 in e2) = fF(x1, x2, f̂ e1, f̂ e2)

provided freshness condition for binders (FCB) holds
for fL: (∃x1 /∈ A)(∀s ∈ S) x1 # fL(x1, s)

for fF : (∃x1, x2 /∈ A) x1 6= x2 &

(∀s1, s2 ∈ S) x2 # s1 ⇒

x1, x2 # fF (x1, x2, s1, s2)
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α-Structural recursion for Λ/α

. . . ∃! function f̂ : Λ/α → S such that:

f̂ x1 = fV x1

f̂(e1 e2) = fA(f̂ e1, f̂ e2)

x1 /∈ A ⇒ f̂(λx1.e1) = fL(x1, f̂ e1)

x1, x2 /∈ A & x1 6= x2 & x2 /∈ fv(e2) ⇒

f̂(letfunx1 x2 = e1 in e2) = fF(x1, x2, f̂ e1, f̂ e2)

provided freshness condition for binders (FCB) holds
for fL: (∃x1 /∈ A)(∀s ∈ S) x1 # fL(x1, s)

for fF : (∃x1, x2 /∈ A) x1 6= x2 &

(∀s1, s2 ∈ S) x2 # s1 ⇒

x1, x2 # fF (x1, x2, s1, s2)

Using nominal signatures, these
conditions can be determined
automatically from the pattern
of bindings in a constructor’s
arity. . .



TPHOLs 2005, - p. 23

Nominal signatures

Generalisation of many-sorted, algebraic signatures
that includes info about how constructors bind
names.

Not as general as some schemes for expressing
binding patterns (cf. Pottier’s Cαml), but a good
compromise between expressiveness and simplicity.
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Nominal signatures

■ Sorts partitioned into atom-sorts ν & data-sorts δ.
■ Constructors K : σ → δ have arities σ built using
pairing σ1 ∗ σ2 and atom-binding 〈〈ν〉〉σ
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Nominal signatures

■ Sorts partitioned into atom-sorts ν & data-sorts δ.
■ Constructors K : σ → δ have arities σ built using
pairing σ1 ∗ σ2 and atom-binding 〈〈ν〉〉σ

E.g. nominal signature for
Λ = {t ::= x | t t | λx.t | letfunx x = t in t} has
atom-sort var, data-sort term and constructors:
V : var → term

A : term ∗ term → term

L : 〈〈var〉〉term → term

F : 〈〈var〉〉((〈〈var〉〉term) ∗ term) → term
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Nominal signatures

■ Sorts partitioned into atom-sorts ν & data-sorts δ.
■ Constructors K : σ → δ have arities σ built using
pairing σ1 ∗ σ2 and atom-binding 〈〈ν〉〉σ that
automatically determine:
◆ appropriate notion of α-equivalence between ASTs
◆ the (FCB) in α-structural recursion
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To be explained:

■ Nominal sets, support and the freshness relation,
(−) # (−).
(Simplified version of [Gabbay-Pitts, 2002].)

■ How to generalise α-structural recursion from the
example language Λ to general languages with
binders?

■ How is α-structural recursion proved?
■ What’s involved with applying α-structural recursion
in any particular case?

■ Mechanisation?
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Given an informal recursive definition on ASTs/α for
a nominal signature, to show that it is an instance of
α-structural recursion:

1. find which sets (S) and functions (fV , fA, fL, fF )
are involved;

2. give S a nominal-set structure and then prove the
f(−) are finitely supported;

3. verify the (FCB) for f(−).
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Given an informal recursive definition on ASTs/α for
a nominal signature, to show that it is an instance of
α-structural recursion:

1. find which sets (S) and functions (fV , fA, fL, fF )
are involved;

2. give S a nominal-set structure and then prove the
f(−) are finitely supported;

3. verify the (FCB) for f(−).

For step 2 we can use:
Fact The standard set-theoretic model of HOL
(without choice) restricts to finitely supported
elements; e.g. if we apply a construction of HOL-ε
to finitely supported functions we get another such.
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Given an informal recursive definition on ASTs/α for
a nominal signature, to show that it is an instance of
α-structural recursion:

1. find which sets (S) and functions (fV , fA, fL, fF )
are involved;

2. give S a nominal-set structure and then prove the
f(−) are finitely supported;

3. verify the (FCB) for f(−).

Step 3 is sometimes trivial, sometimes not.
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To be explained:

■ Nominal sets, support and the freshness relation,
(−) # (−).
(Simplified version of [Gabbay-Pitts, 2002].)

■ How to generalise α-structural recursion from the
example language Λ to general languages with
binders?

■ How is α-structural recursion proved?
■ What’s involved with applying α-structural recursion
in any particular case?

■ Mechanisation?
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Mechanisation?

■ Norrish’s HOL4 development. [TPHOLs ’04]
■ Urban & Tasson’s Isabelle/HOL theory of nominal
sets (“p-sets”) and α-structural induction for
λ-calculus. [CADE-20, 2005].
Isabelle’s axiomatic type classes are helpful.

Wanted: full implementation of α-structural
recursion/induction theorems parameterised by a
user-declared nominal signature
(in either HOL4, or Isabelle/HOL, or both).
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Mechanisation?

■ Gabbay’s FM-HOL [35yrs of Automath, 2002].

Wanted: a new machine-assisted higher-order logic
to support reasoning about ordinary sets and
nominal sets simultaneously.
◆ Should incorporate a reflection principle to exploit
Fact The standard set-theoretic model of
HOL (without choice) restricts to finitely
supported elements; e.g. if we apply a
construction of HOL-ε to finitely supported
functions we get another such.

◆ Also needs some (lightweight!) treatment of
partial functions.
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Assessment

■ Results apply directly to standard notions of AST &
α-equivalence within ordinary HOL
—like Gordon & Melham’s “5 Axioms” work [TPHOLs ’96], except closer to

informal practice regarding freshness of bound names (more applicable).

■ Crucial notion of “finite support” is automatically
preserved by constructions in HOL
(if we avoid choice principles).

■ Mathematical treatment of “fresh names” afforded
by nominal sets is proving useful in other contexts
(e.g. Abramsky et al [LICS ’04], Winskel & Turner [200?]).
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Conclusion

Claim: dealing with issues of bound names and
α-equivalence on ASTs is made easier through use
of permutations (rather than traditional use of
non-bijective renamings).

Is the use of name-permutations & support simple
enough to become part of standard practice?
(It’s now part of mine!)
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