o-Structural Recursion and Induction

Andrew Pitts
University of Cambridge
Computer Laboratory

Overview

a-Structural Recursion and Induction

Andrew Pitts
University of Cambridge
Compter Laboratory

Tettun fa = if2 > 100thenz — 10
etz f(f(z +11))
in e+ 100)
Tetwac
I @
- a 5o+
w0 & 10 g w0
I

Abstract syntax /
Deaing with issues to do with binders and

a-Structural recursion

1 thre o recursion rincle for 1/ tha lgtimises
these “defntions” of (z - () /i
[=):A/a— D7

Yes! — ccstructural recursio

(and xdacion too-ses Iachurs notes.

a-Structural recursion for A /a:

(The Freshness relation () # () between
cloments of nominal sets generalies the
(=) # ful~) relation batween variables and ASTs
cavhre-moting siditton enrol,
e and (FCB) holds m-w because
2 el e sy o 1

1,3a # Sl s, m)

Languageséx form nominal sets
For example, natural G-action on A/ is given by:

wox & nia)
e (erea) £ (e en)(mees)
e () & Ao)
- (lottunz, z; = €1 1n e3)
Tottunn(ay) w()

Nominal signatures

- Sorts partitioned o atomsorts v & data-sorts 5
- Constructor § e s o il wsing
paring 71+ o3 and stomandng)

Given an informal recursive defintion on ASTs/a for

& nominal signature, to show that i is an instance of

vstructural recursion:

1 wicn et (5) and functons -1 1 1)

29w s a mm\m\ sot structure and then prove the
1o ported:

vy o o o 1)

functions we get another such,

Mathematics of syntax
How best to reconcle

rtactcal s todo ith rame-siding and

with a structural approach to semantics?

Spactcay: improve forms of sirucurl recursn
and structural inauction for syntactic

Structural recursion for A
Given a set S

and functons

e
there is a uniase function : A — S saitying

Structural recursion and induction

position

Structural recursion for A

G st's

3
" 8
e [1555 s

e = ey
fue - nute
FQent) = Sl 1)

PR o ey e PR

@ - B
\,"”,um» = T dt
G2t = fenrafn it

annevahhEk

E.g. - capture-avoiding substitution
(o= m s e = then « oo x)
2lem o) & oom e = oo
(= e &

31 frrz.«) tren Az = ey

ase

S e = e 27

a-Structural recursion

Is there a recursion principle for A/ that legitimises
hese certons® o (s - 0)(-) A+ Ao ana
[=):A/a

Yes! — avstructural racursior

(and inducton too——see lecture otes).
What about other languages with binders?

o be explained
- Nominal sets, support and the fresness reltin,
Qe
How to arstructursl racurson from the
o e 15 gual e o
cers?

Languagestx form nominal sets
For example, natural G-action on A/ is given by:

wer ()

m(eren) £ (m-er)(m - e2)
e (o) £ Am(e) (-)

7 (ettuma 2 = e tn es) £

Lettun () (2

For this action, i is not hard to see that « & A/ is

supported by any fait sat of varibles containng all

those occurting free in e and hence
wHeitn g fole)

Nominal signatures

- Sorts partiioned into atorm-sorts 1 & cata-sorts 4.
- Constructors K have arties o bult using
Danng a1 + o nd atomndng ()

[Eq. rominal sguature for
A T T ot etuna —) ras
. catacsort term and constructors

F: war) (fvar) term) » term) — term

Given an informal recursive dsfintion on ASTS/a for
& romal s o show a1 an indance
structural recurson

i s

1 find which sets (5) and functions (7
involved:

2.0 5 & pomr et sctur and ten prove the
7i-) are fintely supported:
o vty e B o 11

Step 3 is sometimes trvial, sometimes not

TeTaM G

E.g. — capture-avoiding substitution

“ if o= then e oise
(2 5= jen)((@ 1= cles)

) 2
2 € fola,e) then oy (x = e)ey
it carel

(@ 1= D(1ettmnz 2 = e in es) £
tenm ey Lo d kea)
then Lactus o, 2, o (e
ke don't

a-Structural recursion

Is there a recursion principl for Ao tht legitimises

these “defintions” of (z 1= ¢)(~) : A/ax — A/ and
(=1 Afa— D7
Yes! — arstructural recursion

(and induction too—see lecture notes).
‘Whnat about cther langusges with binders?
Yes! — avaiable for any nominal sgnature.

Actions of permutations

i of sl te permtations of V.
" sckon of G on sat S & funchin

S writen (m5) s

zaiE

ot 5 + action of G on 5.

Nominal function sets.
oopental of 5 and & i the caegery of
Gesets s the 615 - S eauipped
i e Ceachont

B
st s)
Even f § and " are nominal, not every function
from S to 5" is necessarly fintely supported
wrt. tris action.

Nominal signatures
- Sorts parttioned into stormsorte & cata-sors 5
*Contirctors o § have e o bt ueng
pﬁmng @, = a3 and atom-binding ((v))e that
Sl i

rsaivlence atwaan AST
T o o

To be explained:
- Nominal sets, support and the freshness reltion,

How o generlee a-trucurl recursion fom tne
mmb language A to general languages
binder
Fow f csructural rcursin pro
- Wt velved i apping e e
y partic
vt

Overview

Structural recursion and induction

positionality

Structural recursion and induction

Compositionality

Structural recursion and induction
Compositionality
is crucial in [programming language) semantics

—its preferable to give meaning to
program constructions rather than just to
Whdle programs.

else f(f(z +11)) elee f(f(z +11)) e
S] AL
Va + £+

E.g. - capture-avoiding substitution

= s then ¢ okse

CEment e
=) & == e =)
(= o)
g Mx.c) then Az, (z i e)ey
[v
i & food) e o)

a-Structural recursion
Is there a recursion principle for A/ that legitimises
have detritons® of (1) Aot s Ao and
[=1: A/~ D?

18, sl reursion
(and incucton too—see lecture notes).

What about other languages with binders?
et — available for any nominal signature.
Great. What's the catch?

Finite support and freshness

E.g. - denotational semantics

of Ao in some sutable domain D
~Imlp 2 p)
<leveal & aplleilp.ealo)
Bl o4 € . ek =)
< Dettunz, 3= 1 3n ol & fia(--)
o s . s g oo o
o D)

cloments

a-Structural recursion
Is there a recursion princivle for A/ that legiimises
these “cefrtions™ of (z i ¢)(~) : Aa — A/ox and
151 Ao D7

Yesl — astructural recursion
(and incicton too—see lecture otes).

What about other languages with binders?
Yes! — available for any nominal sgnature.

Great. Wnat's the catch?

Noad to learn bt of possby urfamiar math o co
with permtations and suppor

Finite support and freshness

E.g. - denotational semantics

of A/cx in some sutable domain D:

il 2 plar)

levale & el el

Do el (o, =)
RPN

Wny is this (very &tandard)
aeinition ndeper .
choice of bound varadle 7,7

a-Structural recursion for A/
Given a nominal set §
oy

e | 12258
ana functions {14753
TV xVxSxS—S,
al supported by a frte subset A C 7,

there i a uniaue function f : A/ — 5
such that

Finite support and freshness

Structural recursion and induction
In particuar for semantics, conerete syntax
S % % D) G e

is unimportant compared to abstract syntax (ASTS)

e o
> S e i
PR

¢+

e

Abstract syntax / o

Dealing with lsues to do with binders and
st (rat t gt n i rce kst
ks of semantis|
- pervasive (very many inveive binding
e PO e T os))
Sttt o trmabn/mctanie it
of common nformal practic

E.g. - denotational semantics

of Ao in some sutatie domain D
<ol £ o)

< levealp * app(leilplexlo)

< Dzv.eilp 2 fun(d € D. fes](plzs —)
Dettunz, 23 = e 2 exlp & fia(.-)

In this case we can use ordinary structural recursion
o frst den carcaions of AST: and tren prove
that hey respect o

But s there a auicker way, working directly with
AS/a?

a-Structural recursion for A/ax

51 function £ : A/a — S such that:

Running example
Concrete syntax:

am et dadt |1ettumae = tint

AST:
NS ST 4 (8 5 8) 4 (V% S) 4 (V% Vx5 % 5))
where is some fixed, countably infrite set (of

Parmes 2 of vanablos

Abstract syntax /

Dealing with isues to do with binders and

- irtating (want to get on with more interesting
spects of semantics)

a-Structural recursion
1 o recrsn prncis o At ogtses
thoe “aeons of (x 1)) : A/ — A/ and
[l:afa—

a-Structural recursion for A/

5t function J: A/a — § such that:

fo =
feren = nfenfen
nEA = fQae) = fuln, fe)
A kn frn g e &
JQotfunziaz = ey ines) = fe(wr, @2, fer, fes)

Foo= fm
leren) = Iafenfen)
£ A = e = filowfe)
i AR A g o) >
fottunei s = o inen) = foenan fenfes)

F oo m €V & e € AT

Finite support and freshness

[Dsfition A e subset A C 7 suppors an
clment s < 5 F o st S
(Va2 €V—A) (o)

[Oefinion. A fte subset A C 7 supports an
[Goment « € 5 of a Gt 5 iF
Wrd €V A) (x) . u=s

[Befinfion. A fite subset A C
[Soment « € 5 of a Gset S iF
e €V

Nominal function sets

The exponential of S and S in the category
et & e st of b et 1 5 5 eipped
Wit the G-actio

wrs =S
s)

T e [S=5]fly mmored cons from
a o o nominal st 5 i, by
- g

To be explained:
- Nomial et support and the fresvess relton,

- How to generslise a-structural recursion from
ool bgwgs 15 Geneal Wgges v

- How is a-structural recursion proved?
What's invlved with applying a-structural recursion

+ Mechanisation?

Mechanisation?

- Norrish's HOL development. [TPHOLs ‘04]
- Uroan 8 Tsson's abta/0L trcry o pomial
ots (‘prsts”) and a-structural inductior
A cles. ICADE-20, 20051

To be explained:
Norsl s, soport ana e s rn

< How to garrae srucurl recursion from the
‘example language A to general languages with

binders?
+ How is cstructural recursion proved
- What's involved with apslying a-structural recursion
i any particuar case?

oM

Proof
Structural recursion reduces to ordinary structural
recursion for ASTs witin higher-order logic: roughly
intion for all permutations
nere

to use a set 5.

Mechanisation?
- Gabbay’s FM-HOL [85yrs of Automath, 2002).
assited higher-order logic

£
i
g
3

A nominal set is a Grset all of whose sements have
a finte support.

a-Structural recursion for A/a
3! function f : A/a — S such that:

A nominal set is a Gsat 2l of whose slements have.
2 finte support.

Lomima. 4 & S as a e support then & s o
amalest o, wrten [sapp (2]

Neaton £ 2 ¢ supp(s), we e
2 & tren

a-Structural recursion for A /ar

fleres) = falfenfes)

jautomaticaly from the
Jo binangs & consruciors
Jarty...

A = faee) = hlenfe)

e € AR £ kxa € foler) = a neu,‘s.mx,;mm:) ‘

Faetsnzry = ernen) = ol] skt a1 ines) = ooy an o fen)

o s conton o b (CE) Folfs . provied freshess condlion for biders (FCB) ke
11 (G g AYvs € 8) for fu: (3e & A)(¥s € S) 1 # fulerss)

for £y m..;,m;,.w,x
(Vo152 € 8) 2 # 31 =
1iea # Sl o)

Proof
oStructural recursion ordinary structural
Tecurson for AT wte Hgher-orier gk rouy
speaking, one makes @ cefin fo o permutaions

whers you m

ol e e FCBE 2 # £ () = # JuCe. .
then for any ="
Tula) = @2)- filars)
= il (@))
(.- respects a-conversion of s argument.

o 11

Assessment

me. (lgh»«qmu treatment of
partal functions.

for J1i (s € A)my £ 2
(o €) ton =
@@y # Lr(@1 2280 8)
To be explained
- Norminl sets, support and the freshness rlton,

fon t2 qenasin st rcurin fom tra
A to general angusges

Assessment

Caim: dealing with issues of bound names and

non-biective renamings).

[& e e of name permutations & support smpe
lenouign to become part of standard practice?
[0 now part of mine)

Provided freshiness condition for binders (FCB) Polds
for fi: (31 § A)(¥a € 5) o # Fulr, o)
for fri (3raa § A)r £ 72 &
(Vorss2 € 8) 2 o1 =
z1iea # L2 mem)

Languagestx form nominal sets
For example, natural G-action on /o is given by:
wo ()
®e(eren) 2 (- er)(m-e)

Lettun () wes) = 706 06

Nominal signatures

Ganealatonof many orted igsralc srtures
et lutes info about now conructors

e e o e for reag
g paters (e Pt Corn ot
S Detwmen exmascnes and bt

nformal recursive defiton on AST/o for
2 romial sonatre to show that ¢ an ntance of
ructural rec
e i st (5) an o (s 1)
involved:

2o S a nomalet strucure and tnen prove the
71, are ftely supported:
3. veriy the (FCB) for /.,

TPHOLS 2005, - p. 2

Mathematics of syntax

How best to reconcile

syntactical issues to do with name-binding and
a-conversion

with a structural approach to semantics?

Specifically: improved forms of structural recursion
and structural induction for syntactical structures.

Structural recursion and induction

Structural recursion and induction

position

Structural recursion and induction

positionality

Structural recursion and induction

Compositionality

Structural recursion and induction

Compositionality

is crucial in [programming language] semantics

—it’s preferable to give meaning to
program constructions rather than just to

whole programs.

Structural recursion and induction

In particular, as far as semantics is concerned,
concrete syntax

letfun £f x = 1f x > 100 then x — 10
else £ (£ (x + 11)) in £ (x + 100)
is unimportant compared to abstract syntax (ASTs):

letfun
f X 1f @

Structural recursion and induction

ASTs enable two fundamental (and inter-linked) tools
iIn programming language semantics:

Definition of functions on syntax
by recursion on its structure.

Proof of properties of syntax
by induction on its structure.

Running example

Concrete syntax:

ti=x|tt| Axe.t | letfunxax =t int
ASTs:
AZ2puS.(VH(SXS)+ (VXS +(VXVxS8xS))

where V is some fixed, countably infinite set (of
names x of variables).

letfun fx = ifx > 100 thenax — 10

in f(z + 101)

else f(f(x + 11))

if

letrec

10 f @

Q@

f

X

f

|

Q@

I

11

101

00000000000000

Structural recursion for A

ZpuS. (V4 (SXxS)+(Vx8)+(VXVxXSxS))

Given a set S fo:V o S

fA:S XS — S
foL:Vx§— 5§
fFP: VXV XSXS—S,

A

there is a unique function f : A — S satisfying

and functions

fwl = fva
f(tits) = fa(fta, fta)
f()\$1-t1) = fu(x1, ft1)
f(letfun rq1 o = 1 1n tz) — fF(azl, 2, ftl, ftg)

for all 1, T2 € VY and t1, 1o € A.

Structural recursion for A
2 uS.(V4+(SxS)+ (VxS +(VxVxSxS))

Given a set S

fv:V—>§

fA:S XS — S
fL: VX 8§ — 8§
JF: N

and functions

= fr(z1, ftl)A)
ti1 inty) = fr(x1,x2, f i1, ft2)

xrs €V and t1, 1o € A.

w]o

letfun fx = ifx > 100 thenax — 10

in f(z + 101)

else f(f(x + 11))

if

letfun

10 f @

Q@

f

X

f

|

Q@

I

11

101

00000000000000

letfun fx = ifx > 100 thenax — 10

else f(f(x 4+ 11))
in f(z + 101)

letfun
fe_x if Q@
> — @ —f
r 100 x f @ x 101
fo+
r 11

00000000000000

letfun fx = ifx > 100 thenax — 10

in f(z + 101)

else f(f(x + 11))

letfun

101

Abstract syntax / o

Dealing with issues to do with binders and
a-conversion Is

irritating (want to get on with more interesting
aspects of semantics!)

pervasive (very many languages involve binding
operations; cf POPLMark Challenge [TPHOLs ’05])

difficult to formalise/mechanise without loosing
sight of common informal practice:

Abstract syntax / o

Dealing with issues to do with binders and
a-conversion Is

irritating (want to get on with more interesting
aspects of semantics!)

pervasive (very many languages involve binding
operations; cf POPLMark Challenge [TPHOLs ’05])

difficult to formalise/mechanise without loosing
sight of common informal practice:

“We identify expressions up to a-equivalence”. ..

Abstract syntax / «

Dealing with issues to do with binders and
a-conversion Is

irritating (want to get on with more interesting
aspects of semantics!)

pervasive (very many languages involve binding
operations; cf POPLMark Challenge [TPHOLs ’05])

difficult to formalise/mechanise without loosing
sight of common informal practice:

“We identify expressions up to a-equivalence”. ..
... and then forget about it, referring to a-equi-
valence classes e = [t], only via representatives, t.

For example. ..

E.g. — capture-avoiding substitution

(x := e)ey| = substitute e for all free occurrences

of x in e;, avoiding capture of free variables in e
by binders in e;.

(x
(x

(x

E.g. — capture-avoiding substitution

= e)x, = if x1 = = then e else x;

= e)(e1e2) = ((x :=e)e1)((x := e)ey)
= e)(Axq.e1) =
if ©1 € fo(x,e) then Axq.(x := e)e;
else don’t carel
.= e)(letfun; T2 = e; in ey) = ?

(x
(x

(x

E.g. — capture-avoiding substitution

= e)x, = if x1 = = then e else x;

= e)(e1e2) = ((x :=e)e1)((x := e)ey)

= e)(Axq.e1) =

if ©1 € fo(x,e) then Axq.(x := e)e;

else don’t carel

:= e)(letfunT; T2 = e; in e3) =

if ©1, 22 & fo(x,e) & x2 & fo(xy,es)

then letfun L1 T2
else don’t carel

(x :=e)ey in (x := e)ey

E.g. — capture-avoiding substitution

(r:=e)x, = if z; = x then e else x;

(z:=¢e)(e1e2) = ((x :=e)er)((z := e)es)
(z := e)(Az1.e1) =
if ©1 € fo(x,e) then Axq.(x := e)e;
else don’t carel
(:= e)(letfunx; T2 = e; in ey) =
if ©1, 22 & fo(x,e) & x2 & fo(xy,es)
then letfunax; 2 = (x := e)e; in (x := e)es
else don’t carel

Does uniquely specify a well-defined function on a-equivalence classes,
(x:=e)(—): A/Ja — A/a, but not via an obvious, structurally recursive definition
of a function f : A — A respecting a-equivalence.

OOOOOOOOOOOOOOO

E.g. — denotational semantics

of A/a in some suitable domain D:

[1]p = p(z1)

[e1 e2]p = app([ei]p, [e2]p)

Azi.ei]p = fun(Ad € D. [ei](p[z, — d]))

[letfunx; x2 = e; in ex]p 2 fix(---)

where
- p ranges over environments mapping variables to elements of D

- D comes equipped with continuous functions app : D x D — D and
fun : (D — D) — D.

OOOOOOOOOOOOOOO

E.g. — denotational semantics

of A/a in some suitable domain D:
- [z1]p = p(z1)
- [e1 e2]p = app([ei]p, [e2]p)

« [Az1.ei]p = fun(Ad € D. [er] (p[z1 — d]))
- [letfunz, &2 = e in ex]lp = fix(---) 7
Why is this (very standard)

definition independent of the
choice of bound variable x?

E.g. — denotational semantics

of A/a in some suitable domain D:

[1]p = p(x1)

[e1 e2]p = app([ei]p, [e2]p)

Azi.ei]p = fun(Ad € D. [ei](p[z, — d]))

[letfunx; x2 = e; in ex]p 2 fix(---)

In this case we can use ordinary structural recursion
to first define denotations of ASTs and then prove
that they respect a-equivalence.

But is there a quicker way, working directly with
ASTs/a?

o-Structural recursion

Is there a recursion principle for A/a that legitimises
these “definitions” of (x :=e)(—) : A/Ja — A/a and
[—] : A/ — D (and many other e.g.s)?

o-Structural recursion

Is there a recursion principle for A/a that legitimises
these “definitions” of (x :=e)(—) : A/Ja — A/a and
[—] : A/ — D (and many other e.g.s)?

Yes| — «o-structural recursion
(and induction too—see paper).

o-Structural recursion

Is there a recursion principle for A/a that legitimises
these “definitions” of (x :=e)(—) : A/Ja — A/a and
[—] : A/ — D (and many other e.g.s)?

Yes| — «o-structural recursion
(and induction too—see paper).

What about other languages with binders?

o-Structural recursion

Is there a recursion principle for A/a that legitimises
these “definitions” of (x :=e)(—) : A/Ja — A/a and
[—] : A/ — D (and many other e.g.s)?

Yes| — «o-structural recursion
(and induction too—see paper).

What about other languages with binders?

Yes!l — available for any nominal signature.

o-Structural recursion

Is there a recursion principle for A/a that legitimises
these “definitions” of (x :=e)(—) : A/Ja — A/a and
[—] : A/ — D (and many other e.g.s)?

Yes| — «o-structural recursion
(and induction too—see paper).

What about other languages with binders?
Yes!l — available for any nominal signature.

Great. What’s the catch?

o-Structural recursion

Is there a recursion principle for A/a that legitimises
these “definitions” of (x :=e)(—) : A/Ja — A/a and
[—] : A/ — D (and many other e.g.s)?

Yes| — «o-structural recursion
(and induction too—see paper).

What about other languages with binders?
Yes!l — available for any nominal signature.

Great. What’s the catch?

Need to learn a bit of possibly unfamiliar math, to do
with permutations and support.

a-Structural recursion for A/«

Given a nominal set S

fv:V—-> 8§
faA:SXS—S

fL: VX §—>S8

fFP: VXV XSXS—S,

and functions

all supported by a finite subset A C V,

there is a unique function f: A/a — S
such that. ..

a-Structural recursion for A/«

... 3! function f: A/a — S such that:

JE331 v
fleres) = fa(feu, fen)
r1 &€ A = f()\ml.el) = fL(ml,fel)
r1, L2 & A & x1 #£ 2 & 2 &€ fv(ez) =

f(letfun 1 Xy — €1 1n 62) — fF(wla L2, fela fez)

for all z1, 2, €V & e1,e5 € A/,

a-Structural recursion for A/«

... 3! function f: A/a — S such that:

JE331 A
flerea) = fa(fer, fer)
L1 ¢ A — f()\ml.el) — fL(ml,fel)
r1, L2 & A & x1 #£ 2 & 2 &€ fv(ez) =

f(letfun 1 Xy — €1 1n 62) — fF(wla L2, fela fez)

provided freshness condition for binders (FCB) holds
for fr: (o, & A)(Vs € S) 1 # fr(x1,8)
for fr: (Axi,x0 & A) 1 # 3 &

(Vs1,820 € S) 2 # 81 =

L1y L2 # fF(wla L24 S15 82)

a-Structural recursion for A/«

~

The freshness relation (—) # (—) between names
and elements of nominal sets generalises the
(—) & fu(—) relation between variables and ASTs.

E.g. for the capture-avoiding substitution example,
fr(zi,e) = Axzq.e and (FCB) holds trivially because
r1 & fu(Axq.e) (and similarly for fr).

J

'provided freshness conditio‘h\Fa{ binders (FCB) holds
for fr: (o, & A)(Vs € S) 1 # fr(x1,8)
for fr: (Axi,x0 & A) 1 # 3 &

(Vs1,820 € S) 2 # 81 =

L1y L2 # fF(:Bla L24 S15 32)

To be explained:

Nominal sets, support
and the freshness relation, (—) # (—)-
(Simplified version of [Gabbay-Pitts, 2002].)

How is a-structural recursion proved?

How to generalise a-structural recursion from the
example language A to general languages with
binders?

What’s involved with applying «-structural recursion
in any particular case?

Mechanisation?

Actions of permutations

G £ group of all finite permutations of V.
An action of G on a set S is a function

GxS—S written (w,s)+— m-s

satisfying [t - s =s|and |w - (7' -s) = (77’) - s

G-set £ set S + action of G on S.

Finite support and freshness

Definition. A finite subset A C V supports an
element s € S of a G-set S if

(Ve, ' € V—A) (xx')-s5=s

Finite support and freshness

Definition. A finite subset A C V supports an
element s € S of a G-set S if

(Ve, 2’ € V—A) (xx')-s5=s

|

the permutation that swaps = and z’

Finite support and freshness

Definition. A finite subset A C V supports an
element s € S of a G-set S if

(Ve, ' € V—A) (xx')-s5=s

A nominal set is a G-set all of whose elements have
a finite support.

Finite support and freshness

Definition. A finite subset A C V supports an
element s € S of a G-set S if

(Ve, ' € V—A) (xx')-s5=s

A nominal set is a G-set all of whose elements have
a finite support.

Lemma. If s € S has a finite support, then it has a
smallest one, written | supp(s) |-

Notation. If © € supp(s), we write |x # s| and say
“x 1s fresh for s.”

Languagestx form nominal sets

For example, natural G-action on A/« is given by:

cx = m(x)

- (e1ez) = (m-e1)(m - e2)
. (Az.e) = Amw(x).(7 - e)

(letfun &1 o — €1 1n 62) il

>l=l=l>l

letfunm(xy) w(x2) = 7T+ €1 in - ey

Languagestx form nominal sets

For example, natural G-action on A/« is given by:

cx = m(x)

- (e1ez) = (m-e1)(m - e2)
. (Az.e) = Amw(x).(7 - e)

(letfun &1 o — €1 1n 62) il

>l=l=l>l

letfunm(xy) w(x2) = 7T+ €1 in - ey

N.B. binding and non-binding constructs are treated just the same

Languagestx form nominal sets

For example, natural G-action on A/« is given by:

cx = m(x)
- (erez) = (- e1)(m - e2)
- (Az.e) = Am(x).(7 - e)

. (letfun &1 o — €1 1n 62) il

53 3 3 9

letfunm(xy) w(x2) = 7T+ €1 in - ey

For this action, it is not hard to see that e € A/a is
supported by any finite set of variables containing all
those occurring free in e and hence

x # e iff x & fu(e).

Nominal function sets

The exponential of S and S’ in the category of
G-sets is the set of all functions f : S — S’ equipped
with the G-action:

w-f:8 — 8
s = m-(f(m1-9))

With this definition, = - (—) preserves function
application:

(m-f)(mw-s) = w-(f(w" - (7 3)))
w- (f(e-s))

- (f s)

Nominal function sets

The exponential of S and S’ in the category of
G-sets is the set of all functions f : S — S’ equipped

with the G-action:
w-f:8 — 8

s — - (f(m™"-s))

Even if S and S’ are nominal, not every function
from S to S’ is necessarily finitely supported
w.r.t. this action.

(e.g. any surjection N — V can’t have finite support)

Nominal function sets

The exponential of S and S’ in the category of
G-sets is the set of all functions f : S — S’ equipped

with the G-action:
w-f:8 — 8

The set

s — - (f(m™"-s))

S_>fSS,

of finitely supported functions from

a nominal set S to a nominal set S’ is, by
construction, a nominal set.

To be explained:

« Nominal sets, support and the freshness relation,
(=) # (—)-
(Simplified version of [Gabbay-Pitts, 2002].)

« How is a-structural recursion proved?

- How to generalise a-structural recursion from the
example language A to general languages with
binders?

« What'’s involved with applying a-structural recursion
in any particular case?

« Mechanisation?

0000000000000000

Proof

a-Structural recursion reduces to ordinary structural
recursion for ASTs within higher-order logic: roughly
speaking, one makes a definition for all permutations
simultaneously, i.e. uses G — S where you might
expect to use a set S.

Proof

a-Structural recursion reduces to ordinary structural
recursion for ASTs within higher-order logic: roughly
speaking, one makes a definition for all permutations
simultaneously, i.e. uses G — S where you might
expect to use a set S.

Role of the (FCB): if = # f1 & (Vs) x # fr(x, s),
then for any x’ # (fr,x, s)

fr(z, s) (xx') - fr(z, s)
fr(x'y (xx’) - s)

so fr(—,—) respects a-conversion of its argument.

To be explained:

« Nominal sets, support and the freshness relation,
(=) # (—)-
(Simplified version of [Gabbay-Pitts, 2002).)

» How is a-structural recursion proved?

- How to generalise a-structural recursion from the
example language A to general languages with
binders?

« What’s involved with applying a-structural recursion
in any particular case?

« Mechanisation?

ssssssssssssssss

a-Structural recursion for A/«

... 3! function f: A/a — S such that:

fwl A
flerea) = fa(fer, fer)
L1 ¢ A — f()\ml.el) — fL(ml,fel)
r1, L2 & A & x1 # 2 & 2 & fv(ez) =

f(letfun 1Ty — €1 1n 62) — fF(wla L2, fela fez)

provided freshness condition for binders (FCB) holds
for fr: (o, & A)(Vs € S) 1 # fr(x1,8)
for fr: (Axi,x0 & A) 1 # 3 &

(Vs1,820 € S) 2 # 81 =

L1y L2 # fF(:Bla L24 S15 32)

a-Structural recursion for A/«

Using nominal signatures, these

conditions can be determined
automatically from the pattern

f(|of bindings in a constructor’s

1 ¢ A= f(A: arity. . .

... 3! function f: A/

T1, L2 & A & 1 #£ 2 & 2 &€ fv(ez) =)
19f€2)

f(letfun 1 o — €1 1n 62) — fF(Zli‘l, 2, f

provided freshness condition for binders (FCB) holds
for fr: (o, & A)(Vs € S) 1 # fr(x1,8)
for fr: (Axi,x0 & A) 1 # 3 &

(Vs1,820 € S) 2 # 81 =

L1y L2 # fF(:Bla L24 S15 32)

Nominal signatures

Generalisation of many-sorted, algebraic signatures
that includes info about how constructors bind
names.

Not as general as some schemes for expressing
binding patterns (cf. Pottier’s Caml), but a good
compromise between expressiveness and simplicity.

Nominal signatures

« Sorts partitioned into atom-sorts v & data-sorts 9.

- Constructors K : o0 — d have arities o built using
pairing o * oy and atom-binding (v))o

Nominal signatures

Sorts partitioned into atom-sorts v & data-sorts 9.

Constructors K : o — 6 have arities o built using
pairing o * oy and atom-binding (v))o

E.g. nominal signature for

A={tu=x|tt| Ax.t | letfunxax =t in t} has
atom-sort var, data-sort term and constructors:
V :var — term

A :term * term — term
L : {(var))term — term
F: {var))(({{var))term) * term) — term

Nominal signatures

Sorts partitioned into atom-sorts v & data-sorts 9.

Constructors K : o — 6 have arities o built using
pairing o, * oy and atom-binding {(v) o that
automatically determine:

appropriate notion of a-equivalence between ASTs
the (FCB) in a-structural recursion

To be explained:

« Nominal sets, support and the freshness relation,
(=) # (—)-
(Simplified version of [Gabbay-Pitts, 2002].)

« How to generalise a-structural recursion from the
example language A to general languages with
binders?

» How is a-structural recursion proved?

- What’s involved with applying a-structural recursion
in any particular case?

« Mechanisation?

Given an informal recursive definition on ASTs/a for
a nominal signature, to show that it is an instance of
o-structural recursion:

1. find which sets (S) and functions (fv, fa, fr. fr)
are involved:

2. give S a nominal-set structure and then prove the
f—) are finitely supported;

3. verify the (FCB) for f(_).

Given an informal recursive definition on ASTs/a for
a nominal signature, to show that it is an instance of
o-structural recursion:

1. find which sets (S) and functions (fv, fa, fr. fr)
are involved:

2. give S a nominal-set structure and then prove the
f(-) are finitely supported;

3. verify the (FCB) for f(_).

For step 2 we can use:

Fact The standard set-theoretic model of HOL
(without choice) restricts to finitely supported
elements; e.g. if we apply a construction of HOL-¢
to finitely supported functions we get another such.

Given an informal recursive definition on ASTs/a for
a nominal signature, to show that it is an instance of
o-structural recursion:

1. find which sets (S) and functions (fv, fa, fr. fr)
are involved:

2. give S a nominal-set structure and then prove the
f(-) are finitely supported;

3. verify the (FCB) for f_).

Step 3 is sometimes trivial, sometimes not.

2222222222222222

To be explained:

« Nominal sets, support and the freshness relation,
(=) # (—)-
(Simplified version of [Gabbay-Pitts, 2002].)

« How to generalise a-structural recursion from the
example language A to general languages with
binders?

» How is a-structural recursion proved?

« What'’s involved with applying a-structural recursion
in any particular case?

- Mechanisation?

ssssssssssssssss

Mechanisation?

Norrish’s HOL4 development. [TPHOLs ’04]

Urban & Tasson’s Isabelle/HOL theory of nominal
sets (“p-sets”) and «-structural induction for
A-calculus. [CADE-20, 2005].

Isabelle’s axiomatic type classes are helpful.

Wanted: full implementation of «o-structural
recursion/induction theorems parameterised by a
user-declared nominal signature

(in either HOLA4, or Isabelle/HOL, or both).

Mechanisation?
Gabbay’s FM-HOL [35yrs of Automath, 2002).

Wanted: a new machine-assisted higher-order logic
to support reasoning about ordinary sets and
nominal sets simultaneously.

Should incorporate a reflection principle to exploit

Fact The standard set-theoretic model of
HOL (without choice) restricts to finitely
supported elements; e.g. if we apply a
construction of HOL-¢ to finitely supported
functions we get another such.

Also needs some (lightweight!) treatment of
partial functions.

Assessment

Results apply directly to standard notions of AST &
a-equivalence within ordinary HOL
—like Gordon & Melham’s “5 Axioms” work [TPHOLs ’96), except closer to

informal practice regarding freshness of bound names (more applicable).

Crucial notion of “finite support” is automatically
preserved by constructions in HOL

(if we avoid choice principles).

Mathematical treatment of “fresh names” afforded
by nominal sets is proving useful in other contexts
(e.g. Abramsky et al [LICS '04], Winskel & Turner [2007]).

TPHOLs 2005, - p. 28

Conclusion

Claim: dealing with issues of bound names and
a-equivalence on ASTs is made easier through use
of permutations (rather than traditional use of
non-bijective renamings).

Is the use of name-permutations & support simple
enough to become part of standard practice?

(It’s now part of minel)

	Overview
	Overview

	Mathematics of syntax
	Structural recursion and induction
	Structural recursion and induction
	Structural recursion and induction
	Structural recursion and induction
	Structural recursion and induction
	Structural recursion and induction
	Structural recursion and induction

	Running example
	
	Structural recursion for Lambda
	Structural recursion for Lambda

	Example AST
	Example AST
	Example AST

	Abstract syntax mod alpha
	Abstract syntax mod alpha
	Abstract syntax mod alpha

	E.g. -- capture-avoiding substitution
	E.g. -- capture-avoiding substitution
	E.g. -- capture-avoiding substitution
	E.g. -- capture-avoiding substitution

	E.g. -- denotational semantics
	E.g. -- denotational semantics
	E.g. -- denotational semantics

	alpha-Structural recursion
	alpha-Structural recursion
	alpha-Structural recursion
	alpha-Structural recursion
	alpha-Structural recursion
	alpha-Structural recursion

	alpha-Structural recursion for Lambda/alpha
	alpha-Structural recursion for Lambda/alpha
	alpha-Structural recursion for Lambda/alpha
	alpha-Structural recursion for Lambda/alpha

	To be explained
	Actions of permutations
	Finite support and freshness
	Finite support and freshness
	Finite support and freshness
	Finite support and freshness

	Languages/alpha form nominal sets
	Languages/alpha form nominal sets
	Languages/alpha form nominal sets

	Nominal function sets
	Nominal function sets
	Nominal function sets

	Route map (I)
	Proof
	Proof

	Route map (II)
	Reprise
	Reprise

	Nominal signatures
	Nominal signatures
	Nominal signatures
	Nominal signatures

	Route map (III)
	Applying alpha-structural recursion
	Applying alpha-structural recursion
	Applying alpha-structural recursion

	Route map (III)
	Mechanisation?
	Mechanisation?

	Assessment
	Conclusion
	Mathematics of syntax
	Structural recursion and induction
	Structural recursion and induction
	Structural recursion and induction
	Structural recursion and induction
	Structural recursion and induction

	Running example
	
	Structural recursion for Lambda
	Structural recursion for Lambda

	Example AST
	Example AST
	Example AST

	Abstract syntax mod alpha
	Abstract syntax mod alpha
	Abstract syntax mod alpha

	E.g. -- capture-avoiding substitution
	E.g. -- capture-avoiding substitution
	E.g. -- capture-avoiding substitution

	E.g. -- denotational semantics
	E.g. -- denotational semantics
	E.g. -- denotational semantics

	alpha-Structural recursion
	alpha-Structural recursion
	alpha-Structural recursion
	alpha-Structural recursion
	alpha-Structural recursion
	alpha-Structural recursion

	alpha-Structural recursion for Lambda/alpha
	alpha-Structural recursion for Lambda/alpha
	alpha-Structural recursion for Lambda/alpha
	alpha-Structural recursion for Lambda/alpha

	To be explained
	Actions of permutations
	Finite support and freshness
	Finite support and freshness
	Finite support and freshness
	Finite support and freshness

	Languages/alpha form nominal sets
	Languages/alpha form nominal sets
	Languages/alpha form nominal sets

	Nominal function sets
	Nominal function sets

	Route map (I)
	Reprise
	Reprise

	Nominal signatures
	Nominal signatures
	Nominal signatures
	Nominal signatures

	Route map (II)
	Proof
	Proof

	Route map (III)
	Applying alpha-structural recursion
	Applying alpha-structural recursion
	Applying alpha-structural recursion

	Route map (III)
	Mechanisation?
	Mechanisation?

	Assessment
	Assessment

	Mathematics of syntax
	Structural recursion and induction
	Structural recursion and induction
	Structural recursion and induction
	Structural recursion and induction
	Structural recursion and induction

	Running example
	
	Structural recursion for Lambda
	Structural recursion for Lambda

	Example AST
	Example AST
	Example AST

	Abstract syntax mod alpha
	Abstract syntax mod alpha
	Abstract syntax mod alpha

	E.g. -- capture-avoiding substitution
	E.g. -- capture-avoiding substitution
	E.g. -- capture-avoiding substitution

	E.g. -- denotational semantics
	E.g. -- denotational semantics
	E.g. -- denotational semantics

	alpha-Structural recursion
	alpha-Structural recursion
	alpha-Structural recursion
	alpha-Structural recursion
	alpha-Structural recursion
	alpha-Structural recursion

	alpha-Structural recursion for Lambda/alpha
	alpha-Structural recursion for Lambda/alpha
	alpha-Structural recursion for Lambda/alpha
	alpha-Structural recursion for Lambda/alpha

	To be explained
	Actions of permutations
	Finite support and freshness
	Finite support and freshness
	Finite support and freshness
	Finite support and freshness

	Languages/alpha form nominal sets
	Languages/alpha form nominal sets
	Languages/alpha form nominal sets

	Nominal function sets
	Nominal function sets

	Route map (I)
	Reprise
	Reprise

	Nominal signatures
	Nominal signatures
	Nominal signatures
	Nominal signatures

	Route map (II)
	Proof
	Proof

	Route map (III)
	Applying alpha-structural recursion
	Applying alpha-structural recursion
	Applying alpha-structural recursion

	Route map (III)
	Mechanisation?
	Mechanisation?

	Assessment
	Assessment

