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Explicitly named
bound variables

Aim to give a formal logic for some
informal practices when representing and
reasoning with syntax involving explicitly
named bound variables.
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Explicitly named
bound variables

Aim to give a formal logic for some
informal practices when representing and
reasoning with syntax involving explicitly
named bound variables.

Such as: “. . . by induction on the structure of parse
trees, but renaming bound variables to be fresh as
necessary” (cf. Barendregt Variable Convention)
—isn’t a correct use of structural induction.
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Explicitly named
bound variables

Don’t aim to replace explicitly named bound
variables with anonymous forms of binder.

Use of de Bruijn indices doesn’t address
common, informal practices.

Use of meta-level typed lambda calculus
(HOAS) has problems with simple forms
of structural recursion/induction.
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Explicitly named
bound variables

Previous work (joint with MJ Gabbay):
mathematical model of syntax modulo
α-equivalence with good structural
recursion/induction properties. Uses
Fraenkel-Mostowski permutation model of set
theory (FM-sets).

This work: Nominal logic gives a simple,
first-order axiomatisation of key properties of
the FM-sets model.
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Fundamental assumption
underlying Nominal Logic
The only assertions [about syntax] we deal
with are equivariant, i.e. their validity is
invariant under swapping bindable names.
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Fundamental assumption
underlying Nominal Logic
The only assertions [about syntax] we deal
with are equivariant, i.e. their validity is
invariant under swapping bindable names.

Swapping (a a′)·t, not renaming [a′/a]t,
because swapping-invariant properties have
better logical properties than renaming-invariant
ones, while sufficing for a theory of syntax mod
α-equivalence
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Fundamental assumption
underlying Nominal Logic
The only assertions [about syntax] we deal
with are equivariant, i.e. their validity is
invariant under swapping bindable names.

Bindable names rather than bound names
because, for reasons of compositionality,
we have to deal with “bits of syntax”
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Fundamental assumption
underlying Nominal Logic
The only assertions [about syntax] we deal
with are equivariant, i.e. their validity is
invariant under swapping bindable names.

Bindable names are called atoms in Nominal
Logic—mathematically different from names of
constants (the latter are not subject to swapping)

TACS 2001 – p.5



Nominal Logic
is many-sorted first-order logic with equality
(¬, ∧, ∨, ∃, ∀, =) plus:

some sorts are designated
sorts of atoms

terms with explicit swapping of atoms

freshness relation and quantifier

atom-abstraction sorts and terms
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Explicit swapping
Given terms a : A, a′ : A and t : S,
with A a sort of atoms and S any sort,
there is a term

(a a′)·t

of sort S, read “swap a and a′ in t”.
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Explicit swapping
Axioms

(a a)·x = x

(a a′)·(a a′)·x = x

(a1 a2)·a3 = a′
3

∧ (a1 a2)·a4 = a′
4

⇒ (a1 a2)·(a3 a4)·x =
(a′

3 a′
4)·(a1 a2)·x
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Explicit swapping
Theorem. In any model, the transposition
action x 7→ (a a′)·x extends uniquely
to a permutation action of all finite,
sort-respecting permutations of atoms.
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Explicit swapping
Theorem. In any model, the transposition
action x 7→ (a a′)·x extends uniquely
to a permutation action of all finite,
sort-respecting permutations of atoms.

id ·x = x,
π·(π′·x) = (ππ′)·x
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Explicit swapping
Theorem. In any model, the transposition
action x 7→ (a a′)·x extends uniquely
to a permutation action of all finite,
sort-respecting permutations of atoms.

Proof uses one of the standard presentations of the
symmetric group on finitely many symbols.
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Equivariance
Axioms

(a a′)·f(x1, . . . , xn) =
f((a a′)·x1, . . . , (a a′)·xn)

(each function symbol f : S1, . . . , Sn → S)
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Equivariance
Axioms

(a a′)·f(x1, . . . , xn) =
f((a a′)·x1, . . . , (a a′)·xn)

(each function symbol f : S1, . . . , Sn → S)

(Note that axiom

(a1 a2)·a3 = a′
3

∧ (a1 a2)·a4 = a′
4

⇒ (a1 a2)·(a3 a4)·x =
(a′

3
a′

4
)·(a1 a2)·x

says the swapping functions are equivariant.)
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Equivariance
Axioms

(a a′)·f(x1, . . . , xn) =
f((a a′)·x1, . . . , (a a′)·xn)

(each function symbol f : S1, . . . , Sn → S)

R(x1, . . . , xn) ⇔
R((a a′)·x1, . . . , (a a′)·xn)

(each relation symbol R <: S1, . . . , Sn)
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Equivariance
Theorem. Each first-order formula
ϕ(x1, . . . , xn) (with free variables
among those indicated) satisfies the
equivariance property :

ϕ(x1, . . . , xn) ⇔
ϕ((a a′)·x1, . . . , (a a′)·xn)
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Nominal Logic
is many-sorted first-order logic with equality
(¬, ∧, ∨, ∃, ∀, =) plus:

some sorts are designated
sorts of atoms

terms with explicit swapping of atoms

freshness relation and quantifier

atom-abstraction sorts and terms
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Freshness relation
Given terms a : A and t : S,
with A a sort of atoms and S any sort,
there is an atomic formula

a # t

read “a is fresh for t”.
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Freshness relation
Axioms

equivariance property for #

a # x ∧ a′ # x ⇒ (a a′)·x = x
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Freshness relation
Axioms

equivariance property for #

a # x ∧ a′ # x ⇒ (a a′)·x = x

(∀x1 : S1) · · · (∀xn : Sn)
(∃a : A) a # x1 ∧ · · · ∧ a # xn

(for all sorts S1, . . . , Sn and all sorts of atoms A)
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Freshness relation
Axioms

equivariance property for #

a # x ∧ a′ # x ⇒ (a a′)·x = x

(∀~x : ~S)(∃a : A) a # ~x

(for all sorts ~S and all sorts of atoms A)
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Freshness quantifier
Theorem Each first-order formula ϕ(a, ~x)
(with free variables among those indicated)
satisfies:
(∃a : A) a # ~x ∧ ϕ(a, ~x)

⇔ (∀a : A) a # ~x ⇒ ϕ(a, ~x)
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Freshness quantifier
Theorem Each first-order formula ϕ(a, ~x)
(with free variables among those indicated)
satisfies:
(∃a : A) a # ~x ∧ ϕ(a, ~x)

⇔ (∀a : A) a # ~x ⇒ ϕ(a, ~x)

Define ( Na : A)ϕ to be either formula
(where ~x = FV (ϕ) − {a})
and read it as “for some/any fresh a, ϕ”
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Nominal Logic
is many-sorted first-order logic with equality
(¬, ∧, ∨, ∃, ∀, =) plus:

some sorts are designated
sorts of atoms

terms with explicit swapping of atoms

freshness relation and quantifier

atom-abstraction sorts and terms
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Atom-abstraction
Sort formation: for every sort of atoms A
and every sort S, there is a sort

[A]S “sort of atom-abstractions”

Term formation: given terms a : A and
t : S, there is a term

a.t “abstract a in t”

of sort [A]S.
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Atom-abstraction
Axioms

equivariance property for a, x 7→ a.x

a.x = a′.x′ ⇔
( Na′′ : A) (a′′ a)·x = (a′′ a′)·x′

extensionality

(∀y : [A]S)
(∃a : A)(∃x : S) y = a.x

exhaustion
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Nominal Logic
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Swapping and freshness
for atoms

Axioms

(a a′)·a = a′

(∀a, a′ : A) a # a′ ⇔ ¬(a = a′)
(A any sort of atoms)

(∀a : A)(∀a′ : A′) a # a′

(A, A′ any distinct sorts of atoms)
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Swapping and freshness
for atoms

Axioms

(a a′)·a = a′

(∀a, a′ : A) a # a′ ⇔ ¬(a = a′)
(A any sort of atoms)

(∀a : A)(∀a′ : A′) a # a′
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Summary of the axioms
Many-sorted first-order logic with equality (¬,
∧, ∨, ∃, ∀, =) plus axioms for

elementary properties of swapping

ensuring all terms and formulas are
equivariant

properties of freshness

characterising atom-abstraction sorts up
to bijection
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Standard interpretation
Sorts denote FM-sets = sets equipped
with atom-permutation action for which
every element is finitely supported

for each element x there is a finite set
of atoms w such that (a a′)·x = x
for all a, a′ ∈ w

A sort of atoms denotes the set of all
atoms of a particular kind, with canonical
permutation action (given by application).
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Standard interpretation
Function and relation symbols denote
equivariant functions and relations
(i.e. ones preserving the permutation
action).

Swapping: (a a′)·x = special case of
the given permutation action π·x,
for π = the permutation interchanging a
and a′.
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Standard interpretation
Freshness relation: a # x means
“a is not in the support of x”.

Freshness quantifier: ( Na : A)ϕ(a)
means “ϕ(a) holds for all but finitely
many atoms a”.

Atom-abstraction sorts [A]S denote a
quotient (A × S)/ ∼, where ∼ as in
the extensionality axiom.
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Standard interpretation
Soundness Theorem. The standard
interpretation in FM-sets satisfies all the
axioms of Nominal Logic.

Incompleteness: the standard interpretation of the
freshness relation uses the weak-second-order notion
of finite support—so we should not expect Nominal
Logic to be complete for standard models. For
example. . .
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Incompleteness example
Consider the Nominal theory
sort of atoms A; sorts N , D; function symbols
o : N , s : N → N , f : N, D → A;
axioms
(∀x : N)¬(o = s(x))
(∀x, x′ : N)s(x) = s(x′) ⇒ x = x′

Any standard model of it satisfies
(∀y : D)(∃x, x′ : N) ¬(x = x′)

∧ f(x, y) = f(x′, y)
but this sentence cannot be proved from the
theory in Nominal Logic.
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Nominal theory of λ-terms
modulo α-equivalence

Intended model
(

λ-terms over a countable
set of variables a ∈ A
t ::= a | t t | λa.t

)/

α-equivalence

isomorphic to the inductively defined FM-set

µΛ.(A + (Λ × Λ) + [A]Λ)
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Nominal theory of λ-terms
modulo α-equivalence

Signature

sort of atoms A
sort Λ

function symbols var : A → Λ
app : Λ, Λ → Λ
lam : [A]Λ → Λ

relation symbol sub <: Λ, A, Λ, Λ
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Nominal theory of λ-terms
modulo α-equivalence

Signature

sort of atoms A
sort Λ “λ-terms mod =α”

function symbols var : A → Λ
app : Λ, Λ → Λ
lam : [A]Λ → Λ

relation symbol sub <: Λ, A, Λ, Λ
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Nominal theory of λ-terms
modulo α-equivalence

Signature

sort of atoms A
sort Λ

function symbols var : A → Λ
app : Λ, Λ → Λ
lam : [A]Λ → Λ

relation symbol sub <: Λ, A, Λ, Λ

sub(t, a, t′, t′′) supposed
to mean[t/a]t′ =α t′′

TACS 2001 – p.29



Nominal theory of λ-terms
modulo α-equivalence

Axioms
“var , app and lam are injective
and have disjoint images whose
union is the whole of Λ”

induction axiom. . .

clauses defining substitution. . .
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Induction axiom
(∀a : A) ϕ(var(a), ~y)
∧
(∀x, x′ : Λ)

ϕ(x, ~y) ∧ ϕ(x′, ~y) ⇒ ϕ(app(x, x′), ~y)
∧
( Na : A)(∀x : Λ)

ϕ(x, ~y) ⇒ ϕ(lam(a.x), ~y)
⇒
(∀x : Λ) ϕ(x, ~y)
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Induction axiom
(∀a : A) ϕ(var(a), ~y)
∧
(∀x, x′ : Λ)

ϕ(x, ~y) ∧ ϕ(x′, ~y) ⇒ ϕ(app(x, x′), ~y)
∧
( Na : A)(∀x : Λ)

ϕ(x, ~y) ⇒ ϕ(lam(a.x), ~y)
⇒
(∀x : Λ) ϕ(x, ~y)

makes sense of “. . . by induction
on the structure of parse trees,
but renaming bound variables to
be fresh as necessary”
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Substitution axioms
sub(x, a, var(a), x)

a # a′ ⇒ sub(x, a, var(a′), var(a′))

sub(x, a, y, z) ∧ sub(x, a, y′, z′)
⇒ sub(x, a, app(y, y′), app(z, z′))

sub(x, a, y, z) ∧ a′ # x
⇒ sub(x, a, lam(a′.y), lam(a′.z))
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Substitution axioms
sub(x, a, var(a), x)

a # a′ ⇒ sub(x, a, var(a′), var(a′))

sub(x, a, y, z) ∧ sub(x, a, y′, z′)
⇒ sub(x, a, app(y, y′), app(z, z′))

sub(x, a, y, z) ∧ a′ # x
⇒ sub(x, a, lam(a′.y), lam(a′.z))

in the standard model,
this means “a′ is not
free in x”

TACS 2001 – p.32



Nominal theory of λ-terms
modulo α-equivalence

Sample theorem of this theory whose proof
makes uses of the induction axiom:

(∀x : Λ)(∀a : A)(∀y : Λ)
(∃!z : Λ) sub(x , a, y , z )
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Conclusions
Nominal logic is an first-order presentation of
the key concepts of the FM-sets model of
syntax-with-binders:
equivariance, freshness and abstraction.
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Conclusions
Nominal logic is an first-order presentation of
the key concepts of the FM-sets model of
syntax-with-binders:
equivariance, freshness and abstraction.

Being first order, it doesn’t give a complete
axiomatisation of FM-sets notion of finite support, but
properties of freshness in Nominal Logic seem
sufficient in practice (cf. Gabbay’s development of an
Isabelle package for FM-set theory).
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Does the world really need
yet another logic?!
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Even if you don’t buy FM-sets, Nominal Logic, etc,
take home two simple but important underlying ideas,
useful for operational semantics (whether
pencil-and-paper or mechanised):

Name-swapping has much nicer logical
properties than renaming.

The only assertions about syntax we
should deal with are ones whose validity
is invariant under swapping bindable
names.
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