
Step-indexed Biorthogonality

Andrew Pitts

Computer Laboratory

Parametricity Workshop 1/13

Workshop on
‘parametricity or logical relations’

Question: What are

logical relations parameterised by relations

good for?

Parametricity Workshop 2/13

Workshop on
‘parametricity or logical relations’

Question: What are

logical relations parameterised by relations

good for?

One answer: proving properties of

contextual equivalence of programs.

Parametricity Workshop 2/13

Contextual equivalence
Two phrases of a programming language are
(“Morris style”) contextually equivalent (∼=ctx) if
occurrences of the first phrase in any program can be
replaced by the second phrase without affecting the
observable results of executing the program.

Gottfried Wilhelm Leibniz (1646–1716),
identity of indiscernibles:
duo quaedam communes proprietates
eorum nequaquam possit
(two distinct things cannot have
all their properties in common).

Parametricity Workshop 3/13

Contextual equiv. without contexts
Principle [cf. Gordon, Lassen (1998)]
∼=ctx (defined conventionally, using contexts) is the
greatest compatible & adequate relation.

Parametricity Workshop 4/13

Contextual equiv. without contexts
Principle [cf. Gordon, Lassen (1998)]
∼=ctx (defined conventionally, using contexts) is the
greatest compatible & adequate relation.

Impredicative characterization

:-(

Important nonetheless, because:

! ‘program-with-hole’ too concrete for languages with

! binders
! complicated judgement forms where we have to be

careful about compatibility/substitutivity properties.

Parametricity Workshop 4/13

Contextual equiv. without contexts
Principle [cf. Gordon, Lassen (1998)]
∼=ctx (defined conventionally, using contexts) is the
greatest compatible & adequate relation.

Impredicative characterization

:-(

Important nonetheless, because:

! ‘program-with-hole’ too concrete for languages with

! binders
! complicated judgement forms where we have to be

careful about compatibility/substitutivity properties.

! emphasises the coinductive nature of ∼=ctx—expect it to be
rich in properties, e.g. relational parametricity. . .

Parametricity Workshop 4/13

∼=ctx is relationally parametric
For example: ∅ " Λα.e1

∼=ctx Λα.e2 : ∀α.τ
if and only if

for all τ1, τ2 and all ‘good’ relations τ1
r
↔ τ2,

e1[τ1/α] and e2[τ2/α] are related by τ[τ1/α]
τ[r/α]
↔ τ[τ2/α]

Parametricity Workshop 5/13

∼=ctx is relationally parametric

Consequences:

! type-directed extensionality properties of ∼=ctx

! functoriality/naturality w.r.t. indexes
! universal properties of recursive datatypes

Functional programming is category theory without
equations—working up to ∼=ctx, we get the equations ‘for
free’.

Parametricity Workshop 5/13

Template for syntactic
relational parametricity

1. Define a (paramaterised) binary logical relation ∼ between
programming language expressions. Make sure ∼ is
compatible and adequate by construction; so ∼ ⊆ ∼=ctx.

Parametricity Workshop 6/13

Template for syntactic
relational parametricity

1. Define a (paramaterised) binary logical relation ∼ between
programming language expressions. Make sure ∼ is
compatible and adequate by construction; so ∼ ⊆ ∼=ctx.

2. Prove ∼ is reflexive (Fundamental Property of LRs).

Parametricity Workshop 6/13

Template for syntactic
relational parametricity

1. Define a (paramaterised) binary logical relation ∼ between
programming language expressions. Make sure ∼ is
compatible and adequate by construction; so ∼ ⊆ ∼=ctx.

2. Prove ∼ is reflexive (Fundamental Property of LRs).

3. Prove that ∼ respects ∼=ctx. Hence by 2,
∼=ctx= (∼=ctx ◦ id) ⊆ (∼=ctx ◦∼) ⊆ ∼.

Parametricity Workshop 6/13

Template for syntactic
relational parametricity

1. Define a (paramaterised) binary logical relation ∼ between
programming language expressions. Make sure ∼ is
compatible and adequate by construction; so ∼ ⊆ ∼=ctx.

2. Prove ∼ is reflexive (Fundamental Property of LRs).

3. Prove that ∼ respects ∼=ctx. Hence by 2,
∼=ctx= (∼=ctx ◦ id) ⊆ (∼=ctx ◦∼) ⊆ ∼.

4. Deduce properties of ∼=ctx from 1+3.

Become rich and famous.

Parametricity Workshop 6/13

Template for syntactic
relational parametricity

1. Define a (paramaterised) binary logical relation ∼ between
programming language expressions. Make sure ∼ is
compatible and adequate by construction; so ∼ ⊆ ∼=ctx.

2. Prove ∼ is reflexive (Fundamental Property of LRs).

3. Prove that ∼ respects ∼=ctx. Hence by 2,
∼=ctx= (∼=ctx ◦ id) ⊆ (∼=ctx ◦∼) ⊆ ∼.

Difficulties:
! How do we ensure relations are ‘respectful’ (3)?

! Term-level recursion makes 2 moderately hard.

! Type-level recursion (with −ve occurrences) makes 1 very
hard.

Parametricity Workshop 6/13

Template for syntactic
relational parametricity

1. Define a (paramaterised) binary logical relation ∼ between
programming language expressions. Make sure ∼ is
compatible and adequate by construction; so ∼ ⊆ ∼=ctx.

2. Prove ∼ is reflexive (Fundamental Property of LRs).

3. Prove that ∼ respects ∼=ctx. Hence by 2,
∼=ctx= (∼=ctx ◦ id) ⊆ (∼=ctx ◦∼) ⊆ ∼.

Difficulties:

! How do we ensure relations are ‘respectful’ (3)? Ans: (_)⊥⊥

! Term-level recursion makes 2 moderately hard. Ans: (_)⊥⊥

! Type-level recursion makes 1 very hard.

Parametricity Workshop 6/13

Biorthogonal-closed relations

Given sets T, T∗ and relation 〈_|_〉 ⊆ T∗ × T, we get

a Galois connection P(T × T)op

(_)⊥

P(T∗ × T∗)

(_)⊥

:

(E, E′) ∈ r⊥ " (∀(e, e′) ∈ r) 〈E|e〉 ⇔ 〈E′|e′〉
(e, e′) ∈ R⊥ " (∀(E, E′) ∈ R) 〈E|e〉 ⇔ 〈E′|e′〉

Parametricity Workshop 7/13

Biorthogonal-closed relations

Given sets T, T∗ and relation 〈_|_〉 ⊆ T∗ × T, we get

a Galois connection P(T × T)op

(_)⊥

P(T∗ × T∗)

(_)⊥

:

r1 ⊆ r2 ⇒ r⊥2 ⊆ r⊥1
R ⊆ r⊥ ⇔ r ⊆ R⊥

Parametricity Workshop 7/13

Biorthogonal-closed relations

Given sets T, T∗ and relation 〈_|_〉 ⊆ T∗ × T, we get

a Galois connection P(T × T)op

(_)⊥

P(T∗ × T∗)

(_)⊥

:

⊥⊥-closed relations: r = r⊥⊥

Apply with T = terms, T∗ = evaluation contexts, 〈_|_〉
= termination (+observation).

For call-by-value, we have V ⊆ T and use

‘valuable’ relations: r = (r|V)⊥⊥

Parametricity Workshop 7/13

Biorthogonal-closed relations

Given sets T, T∗ and relation 〈_|_〉 ⊆ T∗ × T, we get

a Galois connection P(T × T)op

(_)⊥

P(T∗ × T∗)

(_)⊥

:

⊥⊥-closed relations: r = r⊥⊥

Apply with T = terms, T∗ = evaluation contexts, 〈_|_〉
= termination (+observation).

Using ⊥⊥-closed relations to define ∼, magically (?)
we get respectfulness (for step 3) and admissibility
properties for term-level recursions (for step 2).
Parametricity Workshop 7/13

Template for syntactic
relational parametricity

1. Define a (paramaterised) binary logical relation ∼ between
programming language expressions. Make sure ∼ is
compatible and adequate by construction; so ∼ ⊆ ∼=ctx.

2. Prove ∼ is reflexive (Fundamental Property of LRs).

3. Prove that ∼ respects ∼=ctx. Hence by 2,
∼=ctx= (∼=ctx ◦ id) ⊆ (∼=ctx ◦∼) ⊆ ∼.

Difficulties:

! How do we ensure relations are ‘respectful’ (3)? Ans: (_)⊥⊥

! Term-level recursion makes 2 moderately hard. Ans: (_)⊥⊥

! Type-level recursion makes 1 very hard.

Parametricity Workshop 8/13

Template for syntactic
relational parametricity

1. Define a (paramaterised) binary logical relation ∼ between
programming language expressions. Make sure ∼ is
compatible and adequate by construction; so ∼ ⊆ ∼=ctx.

2. Prove ∼ is reflexive (Fundamental Property of LRs).

3. Prove that ∼ respects ∼=ctx. Hence by 2,
∼=ctx= (∼=ctx ◦ id) ⊆ (∼=ctx ◦∼) ⊆ ∼.

Difficulties:
! How do we ensure relations are ‘respectful’ (3)? Ans: (_)⊥⊥

! Term-level recursion makes 2 moderately hard. Ans: (_)⊥⊥

! Type-level recursion makes 1 very hard.

Biorthogonal-closed relations were first used for relational
parametricity results in [AMP+Stark, HOOTS book,
pp 227–273 (CUP 1998)] & [AMP, MSCS 10(2000)
321-359]; but the technique goes back (at least) to Girard’s
normalization proof for Linear Logic, to Krivine, to . . .

Parametricity Workshop 8/13

Template for syntactic
relational parametricity

1. Define a (paramaterised) binary logical relation ∼ between
programming language expressions. Make sure ∼ is
compatible and adequate by construction; so ∼ ⊆ ∼=ctx.

Difficulties:

! Type-level recursion makes 1 very hard.

Parametricity Workshop 8/13

Simple example of mixed variance,
type-level recursion—no types!

Untyped cbv λ-calculus

Values v ∈ V ::= x, f
| fun(f x = e)

Expressions e ∈ Λ ::= v
| v v
| let x = e in e

Frame stacks E ∈ Λ∗ ::= Id
| E ◦ (x ! e)

Termination
〈Id|v〉

〈E|e[v/x]〉

〈E ◦ (x ! e)|v〉

〈E ◦ (x ! e)|e′〉

〈E| let x = e in e′〉
etc.

Parametricity Workshop 9/13

Simple example of mixed variance,
type-level recursion—no types!

Want relation # on closed values/expressions/frame
stacks satisfying:

! For v = fun(f x = e) & v′ = fun(f x = e′):
v # v′ ⇔ (∀v1, v′

1) v1 # v′
1 ⇒

e[v/ f , v1/x]# e′[v′/ f , v′
1/x]

! e # e′ ⇔ (∀E, E′) E # E′ ⇒ 〈E|e〉 ⇒ 〈E′|e′〉

! E # E′ ⇔ (∀v, v′) v # v′ ⇒ 〈E|v〉 ⇒ 〈E′|v′〉

For then after some work we get #∩#op = ∼=ctx and
become rich & famous.

Parametricity Workshop 9/13

Simple example of mixed variance,
type-level recursion—no types!

Want relation # on closed values/expressions/frame
stacks satisfying:

! For v = fun(f x = e) & v′ = fun(f x = e′):
v # v′ ⇔ (∀v1, v′

1) v1 # v′
1 ⇒

e[v/ f , v1/x]# e′[v′/ f , v′
1/x]

! e # e′ ⇔ (∀E, E′) E # E′ ⇒ 〈E|e〉 ⇒ 〈E′|e′〉

! E # E′ ⇔ (∀v, v′) v # v′ ⇒ 〈E|v〉 ⇒ 〈E′|v′〉

But how to define such a relation #?
(Note the occurrence of # ⇒ #.)

Parametricity Workshop 9/13

Simple example of mixed variance,
type-level recursion—no types!

Step-indexed version the logical relation:

! For v = fun(f x = e) & v′ = fun(f x = e′):
v #n v′ " (∀m < n)(∀v1, v′

1) v1 #m v′
1 ⇒

e[v/ f , v1/x]#m e′[v′/ f , v′
1/x]

! e #n e′ " (∀m ≤ n)(∀E, E′) E #m E′ ⇒
〈E|e〉m ⇒ 〈E′|e′〉

! E #n E′ " (∀m ≤ n)(∀v, v′) v #m v′ ⇒
〈E|v〉m ⇒ 〈E′|v′〉

where 〈E|e〉n means termination in at most n steps.

Parametricity Workshop 9/13

Simple example of mixed variance,
type-level recursion—no types!

Step-indexed version the logical relation:

! For v = fun(f x = e) & v′ = fun(f x = e′):
v #n v′ " (∀m < n)(∀v1, v′

1) v1 #m v′
1 ⇒

e[v/ f , v1/x]#m e′[v′/ f , v′
1/x]

! e #n e′ " (∀m ≤ n)(∀E, E′) E #m E′ ⇒
〈E|e〉m ⇒ 〈E′|e′〉

! E #n E′ " (∀m ≤ n)(∀v, v′) v #m v′ ⇒
〈E|v〉m ⇒ 〈E′|v′〉

defined by well-founded recursion for (ω,<).

Parametricity Workshop 9/13

Simple example of mixed variance,
type-level recursion—no types!

Step-indexed version the logical relation:

Theorem. ∼=ctx = #∩#op, where # =
⋃

n<ω #n.

[For details, see tutorial by AMP in Ahmed, Benton, Birkedal and Hofmann
(eds), Modelling, Controlling and Reasoning About State, Dagstuhl Seminar
Proceedings 10351 (2010).]

Parametricity Workshop 9/13

Step-indexed relations

! When Appel & McAllester first introduced the
technique, it seemed too intensional to be useful for
proving (extensional) properties of ∼=ctx.

Ahmed [ESOP 2006] proved otherwise.

Parametricity Workshop 10/13

Step-indexed relations

! When Appel & McAllester first introduced the
technique, it seemed too intensional to be useful for
proving (extensional) properties of ∼=ctx.

Ahmed [ESOP 2006] proved otherwise.
! Benton-Hur [ICFP 2009], Dreyer-Neis-Birkedal

[ICFP 2010] combined step-indexing with use of
biorthogonal closure.

Parametricity Workshop 10/13

Step-indexed relations

! When Appel & McAllester first introduced the
technique, it seemed too intensional to be useful for
proving (extensional) properties of ∼=ctx.

Ahmed [ESOP 2006] proved otherwise.
! Benton-Hur [ICFP 2009], Dreyer-Neis-Birkedal

[ICFP 2010] combined step-indexing with use of
biorthogonal closure.

! Big win over previous methods (e.g. do not have to
change the language by adding syntactic
projections).

I consider Exercise 7.8.1 in my chapter in ATTAPL
(marked [∗ ∗ ∗ ∗ . . .]) to be answered!

Parametricity Workshop 10/13

7.8 Notes 289

to prove not only conversions and simple extensionality principles for FML,

but also quite subtle properties of =ctx such as Theorems 7.7.1(5) and 7.7.8.

Similar logical relations can be used to prove some properties of ML-style

references and of linear types: see Pitts and Stark (1998), Bierman, Pitts, and

Russo (2000), and Pitts (2002). Unfortunately, the characteristic feature of

logical relations—that functions are related iff they map related arguments

to related results—makes it difficult to define them in the presence of “recur-

sive features.” I mean by the latter programming language features which in a

denotational semantics lead one to have to solve domain equations in which

the defined domain occurs both positively (to the left of an even number

of function space constructions) and negatively (to the left of an odd num-

ber of function space constructions). Recursive datatypes involving function

types can lead to such domain equations; as does the use of references to

functions in ML. Suitable logical relations can be defined in the denotational

semantics of languages with such features using techniques such as those in

Pitts (1996), but they tell us properties of denotational equality, which is of-

ten a poor (if safe) approximation to contextual equivalence. For this reason

people have tried to develop syntactical analogs of these denotational logi-

cal relations: see Birkedal and Harper (1999). The unwinding theorem (Theo-

rem 7.4.4) provides the basis for such an approach. However, it seems like a

fresh idea is needed to make further progress. Therefore I set a last exercise,

whose solution is not included.

7.8.1 Exercise [!!!!. . . , "]: Extend FML with isorecursive types, µX.T, as in Figure

20-1 of TAPL, Chapter 20. By finding an operationally based logical relation as

in §7.6 or otherwise, try to prove the kind of properties of contextual equiv-

alence for this extended language that we developed for FML in this chapter.

(For the special case of iso-recursive types µX.T for which T contains no neg-

ative occurrences of X, albeit for a non-strict functional language, see Johann

(2002). The generalized ideal model of recursive polymorphic in Vouillon and

Melliès (2004) uses the same kind of Galois connection as we used in §7.6 and

may well shed light on this exercise. Recent work by Sumii and Pierce [2005]

is also relevant.) !

Take-home messages

! Relational parametricity is a powerful tool for
proving contextual equivalence of programs.

Parametricity Workshop 11/13

Take-home messages

! Relational parametricity is a powerful tool for
proving contextual equivalence of programs.

! Biorthogonal-closed, step-indexed, syntactical
relations provide an approach to relationally
parametric characterisations of contextual
equivalence which is simple and widely applicable.

Parametricity Workshop 11/13

Simple?

+ Mathematically elementary.
+ Works with the syntax as-is.

(Do not have to define, or add, syntactic projections.)

+ Uniform method that delvers a wide range of
general properties of ∼=ctx.
(Extensionality, ‘free theorems’, unfolding recursion,. . .)

− Does not, in itself, help us to understand
feature-specific properties of ∼=ctx.
(E.g. higher-order local stores.)

− Index manipulation! How to place ‘guards’?
(Denotational understanding is still important: see the work of

Nakano, Birkedal et al, . . . , on type theory & logic for guarded

recursion.)
Parametricity Workshop 12/13

Widely applicable?

Two examples of the robustness of the approach:

1. Correctness of representation of nominal algebraic
data mod α by FreshML ∼=ctx, via extensionality property
of name-abstractions 〈a〉e:

〈a〉e ∼=ctx 〈a′〉e′ ⇔ (Na′′) (a a′′) · e ∼=ctx (a′ a′′) · e′

Can apply the SIBCLR template, but instead of sets and
relations, use nominal sets and finitely supported
relations.

See [AMP, chapter 10 of Nominal Sets book, to appear].

Parametricity Workshop 13/13

Widely applicable?

Two examples of the robustness of the approach:

2. Step-indexed relational reasoning for countable
nondeterminism [Schwinghammer & Birkedal, CSL 2011].
Previous approaches fall over because

recursion + choice ⇒ unbounded non-determinism ⇒

non-continuous denotations.

SIBCLR template works beautifully to prove properties of
must-∼=ctx, using (ω1,<) for the steps instead of
(ω,<).

Parametricity Workshop 13/13

Widely applicable?

More examples needed:

! Properties of ∼=ctx for lazy functional
programming—the SIBCLR template should cope
well with recursive nature of heaps.

! call-by-need ∼=ctx = call-by-name ∼=ctx

! monadic encapsulation of effects
! ?

! HOT languages with concurrency features.
! ? (over to you)

Development/support within interactive
theorem-provers?

Parametricity Workshop 13/13

