
Semantics of Local Names

Andrew Pitts

Computer Laboratory

MFPS XXXI & CALCO 2015
nominal techniques · algebraic effects

1/22



Local names

◮ Local variables in Algol-like languages:
new X in 〈command〉

◮ Generativity + local declarations in ML-like languages:
let x = ref〈val〉 in 〈exp〉

◮ Channel-name restriction in π-like process calculi:
(νa)〈process〉

◮ Use of fresh names in meta-programming/reasoning, e.g.

A-nf(e1 e2) , let v1 = e1, v2 = e2 in v1 v2

where v1 v2 are fresh

2/22



Local names

◮ Local variables in Algol-like languages:
new X in 〈command〉

◮ Generativity + local declarations in ML-like languages:
let x = ref〈val〉 in 〈exp〉

◮ Channel-name restriction in π-like process calculi:
(νa)〈process〉

◮ Use of fresh names in meta-programming/reasoning, e.g.

A-nf(e1 e2) , let v1 = e1, v2 = e2 in v1 v2

where v1 v2 are fresh

What is the mathematical foundation for these
locality constructs? Is it the same in each case?

2/22



What is the mathematical foundation for these
locality constructs? Is it the same in each case?

I’ve had a 20+ year interest (obsession?) in such questions,

aided by

James Cheney, Ranald Clouston, Roy Crole, Jasper Derikx, Dan
Ghica, Marcelo Fiore, Jamie Gabbay, Matthew Hennessy,
Matt Lakin, Steffen Lösch, Justus Matthiesen, Frank Nebel,
Eike Ritter, Uli Schöpp, Mark Shinwell, Ian Stark, Sam Staton,
Alley Stoughton, Christian Urban, . . .

3/22



What is the mathematical foundation for these
locality constructs? Is it the same in each case?

I’ve had a 20+ year interest (obsession?) in such questions,

aided by

James Cheney, Ranald Clouston, Roy Crole, Jasper Derikx, Dan
Ghica, Marcelo Fiore, Jamie Gabbay, Matthew Hennessy,
Matt Lakin, Steffen Lösch, Justus Matthiesen, Frank Nebel,
Eike Ritter, Uli Schöpp, Mark Shinwell, Ian Stark, Sam Staton,
Alley Stoughton, Christian Urban, . . .

What’s new?

3/22



What is the mathematical foundation for these
locality constructs? Is it the same in each case?

What’s new:

Integration with dependent type theory (DTT)

Motivation: programming or proving?

3/22



What is the mathematical foundation for these
locality constructs? Is it the same in each case?

What’s new:

Integration with dependent type theory (DTT)

Motivation: programming or proving.

◮ DTT with generative local names

◮ Nominal techniques

◮ Judgemental freshness

3/22



DTT with generative names

4/22



DTT judgements

{

typing T type t : T
equality T = T ′ t = t′ : T

are intertwined:

(x : T1) ⊢ T2(x) type t = t′ : T1

T2(t) = T2(t′)

t : T1 T1 = T2

t : T2

5/22



DTT judgements

{

typing T type t : T
equality T = T ′ t = t′ : T

If we allow generative, locally scoped names νx. t(x),
what are the rules for (decidable) equality judgements?

5/22



DTT judgements

{

typing T type t : T
equality T = T ′ t = t′ : T

If we allow generative, locally scoped names νx. t(x),
what are the rules for (decidable) equality judgements?

Familiar generative dynamics of locally scoped names

(νx. t(x) , state) → (t(a) , state ⊎ {a})

5/22



DTT judgements

{

typing T type t : T
equality T = T ′ t = t′ : T

If we allow generative, locally scoped names νx. t(x),
what are the rules for (decidable) equality judgements?

Familiar generative dynamics of locally scoped names

(νx. t(x) , state) → (t(a) , state ⊎ {a})

can be reformulated with evaluation contexts E[_]

E[νx. t(x)] → νx. E[t(x)]

to answer this question.

5/22



DTT judgements

{

typing T type t : T
equality T = T ′ t = t′ : T

If we allow generative, locally scoped names νx. t(x),
what are the rules for (decidable) typing judgements?

5/22



Typing generative local names

T type (x : Name) ⊢ t(x) : T

νx. t(x) : T

is safe, but inexpressive – seems inevitable that type
expressions as well as term expressions may involve name
generation:

(x : Name) ⊢ t(x) : T(x)

νx. t(x) : νx. T(x)

6/22



Typing generative local names

T type (x : Name) ⊢ t(x) : T

νx. t(x) : T

is safe, but inexpressive – seems inevitable that type
expressions as well as term expressions may involve name
generation:

(x : Name) ⊢ t(x) : T(x)

νy. t(y) : νz. T(z)

If t & T are both generative, what does t : T mean?
Are there models to guide us?

6/22



Nominal techniques

7/22



Nominal sets overview

Fix countably infinite set A (elements a, b, c, . . . called atoms).

Nominal set =

set D +





atom-swapping function

(_ _)·_ : A�A�D�D

with simple algebraic properties



 + finite supports

Morphism of nominal sets =
function that commutes with atom swapping

8/22



Nominal sets overview

Fix countably infinite set A (elements a, b, c, . . . called atoms).

Nominal set =

set D +





atom-swapping function

(_ _)·_ : A�A�D�D

with simple algebraic properties



 + finite supports

Morphism of nominal sets =
function that commutes with atom swapping

for every d ∈ D there is
a finite list of names Sd ∈ List A

satisfying (∀a, b /∈ Sd) (a b) · d = d

(Sd lists the names that d may involve.
In this talk I will try to be constructive,

so no use of least support sets.)

8/22



Nominal sets overview

Fix countably infinite set A (elements a, b, c, . . . called atoms).

Nominal set =

set D +





atom-swapping function

(_ _)·_ : A�A�D�D

with simple algebraic properties



 + finite supports

Morphism of nominal sets =
function that commutes with atom swapping

If you want to know more, then read

8/22



Families of nominal sets

Equivalent presentation of slice categories Nom/D
making pullbacks associate ‘on the nose’:

9/22



Families of nominal sets

Equivalent presentation of slice categories Nom/D
making pullbacks associate ‘on the nose’:

A family over D ∈ Nom is specified by:

◮ D-indexed family of sets (Ed | d ∈ D)

◮ dependently typed atom-swapping

(a b) · _ : Ed � E(a b)·d

with dependent version of finite support property.

Get a category with families (CwF) [Dybjer, 1996]
modelling extensional MLTT. . .

9/22



DTT CwF Nom
contexts objects

Γ ⊢ D ∈ Nom
types families

Γ ⊢ T type







∑d∈D Ed

Γ






∈ Nom/D

terms global sections

Γ ⊢ t : T







D

id

∑d∈D Ed

D






∈ Nom/D

See [M. Hofmann, Syntax and Semantics of Dependent Types, 1997].

10/22



Judgemental freshness

11/22



Local names

◮ Local variables in Algol-like languages:
new X in 〈command〉

◮ Generativity + local declarations in ML-like languages:
let x = ref〈val〉 in 〈exp〉

◮ Channel-name restriction in π-like process calculi:
(νa)〈process〉

◮ Use of fresh names in meta-programming/reasoning, e.g.

A-nf(e1 e2) , let v1 = e1, v2 = e2 in v1 v2

where v1 v2 are fresh

Thesis: fresh names in metaprogramming/reasoning are always
used in way that is semantically trivial.

12/22



Semantic freshness

freshness relation _ # _ ⊆ A × D (for D ∈ Nom)

a # d , (∃b /∈ Sd) (a b) · d = d

⇔ (∀b /∈ Sd) (a b) · d = d

provides a syntax-independent notion of

freeness/non-occurrence

13/22



Semantic freshness

freshness relation _ # _ ⊆ A × D (for D ∈ Nom)

a # d , (∃b /∈ Sd) (a b) · d = d

⇔ (∀b /∈ Sd) (a b) · d = d

If d is described by a term t with no free variables,
then {free atoms of t} will do for Sd.

13/22



Semantic freshness

freshness relation _ # _ ⊆ A × D (for D ∈ Nom)

a # d , (∃b /∈ Sd) (a b) · d = d

⇔ (∀b /∈ Sd) (a b) · d = d

If d is described by a term t with no free variables,
then {free atoms of t} will do for Sd.
But what if t does have free variables?

13/22



DTT CwF Nom
extend context with a variable dependent product

Γ ⊢ T type

Γ(x : T) ⊢
(x /∈ Γ)

(Ed | d ∈ D)

∑d∈D Ed

14/22



Bunched contexts
DTT+names CwF Nom
extend context with a variable dependent product

Γ ⊢ T type

Γ(x : T) ⊢
(x /∈ Γ)

(Ed | d ∈ D)

∑d∈D Ed

extend context with a fresh name separated product

Γ ⊢

Γ[a : Name] ⊢
(a /∈ Γ)

D

D ⊗ A

In DTT+names:
Name is a type of names,

JNameK = A (nominal set of atoms),
variables x and atoms a are disjoint classes of identifier.

14/22



Bunched contexts
DTT+names CwF Nom
extend context with a variable dependent product

Γ ⊢ T type

Γ(x : T) ⊢
(x /∈ Γ)

(Ed | d ∈ D)

∑d∈D Ed

extend context with a fresh name separated product

Γ ⊢

Γ[a : Name] ⊢
(a /∈ Γ)

D

D ⊗ A

{(d, a) ∈ D × A | a # d}

See [Stark-Schöpp, CSL 2004][Cheney, LMCS 2012].

14/22



Judgemental freshness

Judgemental freshness is derivable from judgemental equality

cf. [Clouston, LFMTP 2011] and [Crole-Nebel, MFPS 2013]

Γ ⊢ a : Name Γ ⊢ t : T
Γ[b : Name] ⊢ (swap a , b in t) = t : T

Γ ⊢ a # t : T
(b 6∈ Γ)

(swap a , b in t is an explicit swapping expression)

15/22



Judgemental freshness

Judgemental freshness is derivable from judgemental equality

cf. [Clouston, LFMTP 2011] and [Crole-Nebel, MFPS 2013]

Γ ⊢ a # T Γ ⊢ t : T
Γ[b : Name] ⊢ (swap a , b in t) = t : T

Γ ⊢ a # t : T
(b 6∈ Γ)

Γ ⊢ a : Name Γ ⊢ T
Γ[b : Name] ⊢ (swap a , b in T) = T

Γ ⊢ a # T
(b 6∈ Γ)

15/22



syntactic ⊂ judgemental ⊂ semantic
freshness 6= freshness 6= freshness

16/22



syntactic ⊂ judgemental ⊂ semantic
freshness 6= freshness 6= freshness

a occurs in if a = b then a else b, but
[a b : Name] ⊢ a # (if a = b then a else b) : Name

16/22



syntactic ⊂ judgemental ⊂ semantic
freshness 6= freshness 6= freshness

a occurs in if a = b then a else b, but
[a b : Name] ⊢ a # (if a = b then a else b) : Name

RHS is not in general a decidable
relation, but (conjecture) the LHS is.

16/22



Local names

◮ Local variables in Algol-like languages:
new X in 〈command〉

◮ Generativity + local declarations in ML-like languages:
let x = ref〈val〉 in 〈exp〉

◮ Channel-name restriction in π-like process calculi:
(νa)〈process〉

◮ Use of fresh names in meta-programming/reasoning, e.g.

A-nf(e1 e2) , let v1 = e1, v2 = e2 in v1 v2

where v1 v2 are fresh

Thesis: fresh names in metaprogramming/reasoning are always
used in way that is semantically trivial.

17/22



Freshness theorem for Nom
If f ∈ Nom(A × D, D′) satisfies for all a,d

a # d ⇒ a # f(a, d)

then ∃ unique f ′ ∈ Nom(D, D′) s.t. for all a,d

a # d ⇒ f ′d = f(a, d)

(so f ′d is f(a, d) for some/any fresh a)

18/22



Freshness theorem for Nom
If f ∈ Nom(A × D, D′) satisfies for all a,d

a # d ⇒ a # f(a, d)

then ∃ unique f ′ ∈ Nom(D, D′) s.t. for all a,d

a # d ⇒ f ′d = f(a, d)

(so f ′d is f(a, d) for some/any fresh a)

We can express this kind of
semantically trivial locally scoped name

in DTT + judgemental freshness, replacing this
with Γ[a : Name] ⊢ a # t : T

and introducing syntax for f ′as a function of f . . .

18/22



Judgementally fresh
locally scoped names

Formation and introduction:
Γ[a : A] ⊢ a # T(a)

Γ ⊢ νb. T(b)

Γ[a : A] ⊢ a # t(a) : T(a)

Γ ⊢ νb. t(b) : νc. T(c)

19/22



Judgementally fresh
locally scoped names

Formation and introduction:
Γ[a : A] ⊢ a # T(a)

Γ ⊢ νb. T(b)

Γ[a : A] ⊢ a # t(a) : T(a)

Γ ⊢ νb. t(b) : νc. T(c)

Computationally, νa. _ is a no-op. . .

Γ[a : A] ⊢ a # T(a)

Γ[a : A] ⊢ νb. T(b) = T(a)

Γ[a : A] ⊢ a # t(a) : T(a)

Γ[a : A] ⊢ νb. t(b) = t(a) : T(a)

19/22



Judgementally fresh
locally scoped names

Formation and introduction:
Γ[a : A] ⊢ a # T(a)

Γ ⊢ νb. T(b)

Γ[a : A] ⊢ a # t(a) : T(a)

Γ ⊢ νb. t(b) : νc. T(c)

Computationally, νa. _ is a no-op. . .

Γ[a : A] ⊢ a # T(a)

Γ[a : A] ⊢ νb. T(b) = T(a)

Γ[a : A] ⊢ a # t(a) : T(a)

Γ[a : A] ⊢ νb. t(b) = t(a) : T(a)

Sound interpretation in the CwF Nom using the Freshness Theorem.

19/22



FreshMLTT

[AMP, J. Matthiesen and J. Derikx, A Dependent Type Theory with

Abstractable Names, LSFA 2014.]

◮ intensional Martin-Löf Type Theory
+ swappable names
+ judgementally fresh, locally scoped names
+ (dependent) name-abstraction types.

◮ Sound semantics using the CwF of nominal sets.

◮ Prototype implementation in development by
Matthiesen.

20/22



FreshMLTT

[AMP, J. Matthiesen and J. Derikx, A Dependent Type Theory with

Abstractable Names, LSFA 2014.]

◮ intensional Martin-Löf Type Theory
+ swappable names
+ judgementally fresh, locally scoped names
+ (dependent) name-abstraction types.

◮ Sound semantics using the CwF of nominal sets.

◮ Prototype implementation in development by
Matthiesen.

To do: FreshMLTT has interesting (?) new forms of inductively defined indexed
families of types using constructors with dependent name-abstractions in their
arities (e.g. propositional freshness type – Curry-Howard for nominal logic).

20/22



Typing generative local names

T type (x : Name) ⊢ t(x) : T

νx. t(x) : T

is safe, but inexpressive – seems inevitable that type
expressions as well as term expressions may involve name
generation:

(x : Name) ⊢ t(x) : T(x)

νy. t(y) : νz. T(z)

If t & T are both generative, what does t : T mean?
Are there models to guide us?

21/22



Typing generative local names

If t & T are both generative, what does t : T mean?
Are there models to guide us?

Wanted: a design combining DTT with
generative locally scoped names

that is user-friendly (no monadic-style
over-sequentialization of the effect of name creation)

and with a simple semantic model.

If you have one, see me afterwards!

21/22



END

22/22


	DTT with generative names
	Nominal techniques
	Judgemental freshness
	END

