Locally Nameless Sets

Andrew Pitts

58 UNIVERSITY OF
» CAMBRIDGE

50th POPL, Boston 2023

the speaker while not
attending the 1st POPL

~—

1/12

Plan

Context: development of the meta-theory of programming languages
within interactive theorem provers (Agda, Coq, Isabelle/HOL, Lean, ...)

» Review of the locally nameless method for
representing and computing with the syntax of
languages involving binding constructs.

» A new mathematical foundation for it,
independent of any particular language.

» Consequences of that new foundation.

Named, Nameless and Locally Nameless

illustrated by a running example from simply typed A-calculus with products

named (nominal) terms: bound vars named, free vars named
Ay i B.(x,y)

3/12

Named, Nameless and Locally Nameless

illustrated by a running example from simply typed A-calculus with products
named (nominal) terms: bound vars named, free vars named

x:Ay:A F Ay:B(x,y): B> AXB
Az : B. (x,2)

3/12

Named, Nameless and Locally Nameless

illustrated by a running example from simply typed A-calculus with products

named (nominal) terms: bound vars named, free vars named

x: Ay A F

[Ay . B. (X, y)]a :B— AX B not purely inductive

« equiv class

3/12

Named, Nameless and Locally Nameless

illustrated by a running example from simply typed A-calculus with products
named (nominal) terms: bound vars named, free vars named

X A, y: A F [/\y . B. (X, Y)]a :B— A X B not purely inductive
X . A, y: A, z:C [)\y . B. (X, y)]a - B—-AXB weakening invariant

3/12

Named, Nameless and Locally Nameless

illustrated by a running example from simply typed A-calculus with products
named (nominal) terms: bound vars named, free vars named

nameless (de Bruijn) terms: bound vars indexed, free vars indexed (dangling)
AB. (2, 0) purely inductive

3/12

Named, Nameless and Locally Nameless

illustrated by a running example from simply typed A-calculus with products
named (nominal) terms: bound vars named, free vars named

nameless (de Bruijn) terms: bound vars indexed, free vars indexed (dangling)

A A F AB. (2, 0) :B—- AXB purely inductive
A, A, C + J)B. (2 -+ 1, 0) B— AX B not weakening invariant

3/12

Named, Nameless and Locally Nameless

illustrated by a running example from simply typed A-calculus with products
named (nominal) terms: bound vars named, free vars named
nameless (de Bruijn) terms: bound vars indexed, free vars indexed (dangling)
locally nameless terms: bound vars indexed, free vars named

AB. (X, 0) purely inductive

3/12

Named, Nameless and Locally Nameless

illustrated by a running example from simply typed A-calculus with products
named (nominal) terms: bound vars named, free vars named
nameless (de Bruijn) terms: bound vars indexed, free vars indexed (dangling)

locally nameless terms: bound vars indexed, free vars named

X @ A, y: A F AB. (X, 0) :B—- AXB purely inductive
X . A, y: A,Z :C F AB. (X, 0) :B—- AXB weakening invariant

Aydemir, Charguéraud, Pierce, Pollack & Weirich, POPL 2008

See Charguéraud, J. Automated Reasoning 49(2012)363-408

3/12

https://doi.org/10.1145/1328438.1328443
https://doi.org/10.1007/s10817-011-9225-2

Locally Nameless infrastructure

operations

opening | {i—-x}t

closing | {i<x}t

relations

freshness
locally closed

up to a level -

locally closed

term obtained from t by replacing
index i with variable x

term obtained from t by replacing
variable x with index i

variable x does not occur in term ¢
all indices in term t are < i

0 > t (i.e. t contains no indices)

Locally Nameless infrastructure

(By restricting attention to locally closed terms, one can avoid error-prone
index-shifting operations. E.g. for capture-avoiding substitution of u for x in t

, so long as lc u holds, it is correct to define it at lambda-abstractions by

[x = u](AAL) 2 XA ([x — ut)

variable x does not occur in term t

freshness E

locally closed
up to a level

locally closed -

> t all indices in term t are < i

0 > t (i.e. t contains no indices)

Locally nameless infrastructure

The need to restrict to locally closed terms means that a locally closed

binding form such as A At should not be deconstructed to ¢ (not locally
closed), but rather to {0—x}t with x fresh.

Vix, (I,x: A {0-x}t: B)

E.g.
FTEFAXAt:A-— B

cofinite quantifier
Wx, ¢(x) |= property ¢(x) holds for all but finitely many variables x

(cf. McKinna-Pollack | Gabbay-AMP nominal freshness quantifier)
Aydemir, Charguéraud, Pierce, Pollack & Weirich, POPL 2008
Charguéraud, J. Automated Reasoning 49(2012)363-408

https://doi.org/10.1145/1328438.1328443
https://doi.org/10.1007/s10817-011-9225-2

A new syntax-independent theory

Up to now, locally nameless developments depend on the structure of
the object language (case-by-case)

» {i—x}tand {i<x}t defined by recursion over term ¢

» x # tand i > t defined by induction over term t

A new syntax-independent theory

Up to now, locally nameless developments depend on the structure of
the object language (case-by-case)

New (surprising?) insight
[inspired by “nominal techniques”, ACM SIGLOG News, 3(2016)57-72]

» opening/closing operations can be given an
equational axiomatization

» freshness and local closedness can be defined in terms of
opening/closing and U, with expected properties with respect to
finitely supported objects

http://dx.doi.org/10.1145/2893582.2893594

Locally nameless sets

Fix atomic names x, y, z, ... € A (= IN) and disjoint indices i, j, k, . . .

Definition. A set S is locally nameless
if it comes equipped with two
(‘opening’ and ’closing’) functions
{-}_ { <} N-A->S5->S5
satisfying nine equations
and the finite support property
Vse S, (Ux, x # s) A (3i, i > s)

freshness local closedness
Vi, {i~x}s=s Vj>i, Vx, {j-ox}s=s

€ IN.

Locally nameless sets

Fix atomic names x, y, z, ... € A (= IN) and disjoint indices i, j, k, ... € IN.

Definition. A set S is locally nameless (" (imxq{ioys = {ioy)s)
if it comes equipped with two lioxtjoxts = {oxds
(‘opening’ and ’closing’) functions tﬁtﬁsitis
{-}_ {«}_ N-A->S5- 5/> {imxHimys = Loy Himxbs (i #)
SatiSinng nine (5 mod duality) equations lioxd{ieyts = Yoy Hioxds (x#y)
d the finit t t {i=xHjeyts = {ieyHi=xts (i#j, x#y)
and the mnite support property {imyHiex}imy}s = JmyHiox}Hiox}s
VseS, (Ux, x# s)A(Ti, i =s) |U-xHi=xlioyts = UyHimyHions

The opening/closing axioms imply that every locally nameless set has well-defined
operations of

renaming
{i<x}a isgiven
{i=x}a isgiven
{yexta = {imyHicx}a
for some/any i > a
{imjta =
swapping

(xy)a £ {j-x}{imy}HjcyHicx}a
for some/any i,j >~ a with i # j

(ij)a £
(ix)a = (xi)a= -

The opening/closing axioms imply that every locally nameless set has well-defined
operations of

renaming
{i<x}a isgiven
{i=x}a isgiven

{yexta £ {imyHicx}a

for some/any i > a Theorem. Every locally

o N nameless set is a renset
{i=jta = - [Popescu, IJCAR 2022]
swapping and (hence) a nominal set
(xy)a £ {xHimyHimyHicx)a Lt CUP 200
for some/any i,j >~ a with i # j
(i j)a
(ix)a = (xi)a= -

Hence get the action of any function IN U A — IN U A\ (because of finite support property).

https://doi.org/10.1007/978-3-031-10769-6_36
https://www.cambridge.org/gb/academic/subjects/computer-science/programming-languages-and-applied-logic/nominal-sets-names-and-symmetry-computer-science?format=HB&isbn=9781107017788

The category Lns

Theorem.
Isomorphism of categories: We get a category of
locally nameless sets by
- T taking morphisms to be
Lns = (Set w)fs functions that commute with

the opening/closing functions.

(Right-hand side is a known topos.)

The category Lns

Theorem.
Isomorphism of categories: We get a category of
locally nameless sets by
- T taking morphisms to be
Lns = (Set w)fs functions that commute with

the opening/closing functions.

(Right-hand side is a knawn topos.)

T,, = monoid of all
functionsw — w

The category Lns

Theorem.
Isomorphism of categories:

Lns = (SetTW)fS

(Right-hand side is @ kno

We get a category of

locally nameless sets by
taking morphisms to be
functions that commute with
the opening/closing functions.

Set™ = category of sets equipped with
an action of T,

full subcategory whose objects are those T,,-sets
whose elements are finitely supported

9/12

The category Lns

Theorem.
I[somorphism of categories:

Lns = (SetT“)fS

(Right-hand side is a known topos.)

Proof involves several ingredients, one of which is a known presentation of
finite full transformation monoids T, [lwahori & Iwahori, J. Comb. Theory (A), 16(1974)147-158].

https://doi.org/10.1016/0097-3165(74)90040-5

The category Lns

Corollary of the theorem’s proof

Theorem. is that various categories that
I[somorphism of categories: have been used to model
renaming [Staton 2007;
Lns & (SetTw)fs Gabbay & Hofmann 2008;

Popescu 2022] are all equivalent
to each other and to the category

(Right-hand side is a known topos.) Lns of locally nameless sets.

https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-688.pdf
https://doi.org/10.1007/978-3-540-89439-1_11
https://doi.org/10.1007/978-3-031-10769-6_36

Locally nameless sets

Fix atomic names x, y, z, ... € A (= IN) and disjoint indices i, j, k, ... € IN.

. egs . The abstract versions of
Definition. A set S is locally nameless {5}, {<}, # and ~

if it comes equipped with two agree with the usual concrete
(‘opening’ and ’closing’) functions recursive/inductive definitions
{__>_}_ {_e_}_ "N=A=S—->S when A is an inductively
satisfying nine equations defined set giving the locally

.. I tati f
and the finite support property Snj::: ;Sr?grlf:grzsen anen e

Vs € S, (MX, X # 5) N (Eli, I = 5) So what did we gain?

Binding has a generic, language-independent definition as a “shift”

functor

7 :Lns — Lns

abs

TST=CS

Consequences

given by shifting indices.
{i=x}(abss) £ abs({i+1-x}s)
{icx}(abss) £ abs({i+1<x}s)

11/12

Consequences

Binding has a generic, language-independent definition as a “shift”

functor

T :Lns - Lns

given by shifting indices.

» Initial algebras for functors combining 1 with + and x recover
locally nameless finitary syntax (see paper for details).

E.g. initial algebra for functor S — (INUA\) + (S x S) + 1 S is isomorphic to usual
locally nameless datatype for untyped A-terms.

Consequences

Binding has a generic, language-independent definition as a “shift”
functor |1 : Lns — Lns|given by shifting indices.

» Initial algebras for functors combining 1 with + and x recover
locally nameless finitary syntax (see paper for details).

» There are lots of non-syntactic locally nameless sets.
E.g. S = ((INUA — R) - R)g, which has a binding operation 1S — S if there is a
function (R — R) = R.
Potential for “locally nameless semantics” (applications to NBE?)

Consequences

Binding has a generic, language-independent definition as a “shift”
functor |1 : Lns — Lns|given by shifting indices.

» Initial algebras for functors combining 1 with + and x recover
locally nameless finitary syntax (see paper for details).

» Potential for “locally nameless semantics” (applications to NBE?)

» [to do] Simple automation of locally nameless “boilerplate” within

interactive theorem provers
(Cf. LNgen (ott—Coq) and Autosubst (Coq library for nameless).)

Binding has a generic, language-independent definition as a “shift”
functor |1 : Lns — Lns|given by shifting indices.

» Initial algebras for functors combining 1 with + and X recover
locally nameless finitary syntax (see paper for details).
» Potential for “locally nameless semantics” (applications to NBE?)
» [to do] Simple automation of locally nameless “boilerplate” within
interactive theorem provers
S :Set
var : (IN+A) - S
app:Sx S-S5

lam:1S—> S
LocallyNameless

Summary

New insight: locally nameless can be founded on an

algebra of opening/closing operations, independent of any
object-level language.

Cofinite quantification plays a key role.

Mathematical status of the axioms.

Data generic functor for binding.

Before: locally nameless syntax.

Now: locally nameless syntax and semantics.

Potential for typeclass-style automation of locally nameless boiler
plate.

Summary

New insight: locally nameless can be founded on an

algebra of opening/closing operations, independent of any
object-level language.

Cofinite quantification plays a key role.

Mathematical status of the axioms.

Data generic functor for binding.

Before: locally nameless syntax.

Now: locally nameless syntax and semantics.

Potential for typeclass-style automation of locally nameless boiler
plate.

End

