
Locally Nameless Sets

Andrew Pi�s

50th POPL, Boston 2023

the speaker while not
a�ending the 1st POPL

1/12

Plan

Context: development of the meta-theory of programming languages
within interactive theorem provers (Agda, Coq, Isabelle/HOL, Lean, . . .)

◮ Review of the locally nameless method for
representing and computing with the syntax of
languages involving binding constructs.

◮ A new mathematical foundation for it,
independent of any particular language.

◮ Consequences of that new foundation.

2/12

Named, Nameless and Locally Nameless

illustrated by a running example from simply typed λ-calculus with products

named (nominal) terms: bound vars named, free vars named

λy : B. (x, y)

3/12

Named, Nameless and Locally Nameless

illustrated by a running example from simply typed λ-calculus with products

named (nominal) terms: bound vars named, free vars named

x : A, y : A ⊢ λy : B. (x, y) : B � A× B
λz : B. (x, z)

3/12

Named, Nameless and Locally Nameless

illustrated by a running example from simply typed λ-calculus with products

named (nominal) terms: bound vars named, free vars named

x : A, y : A ⊢ [λy : B. (x, y)]α : B � A× B not purely inductive

α equiv class

3/12

Named, Nameless and Locally Nameless

illustrated by a running example from simply typed λ-calculus with products

named (nominal) terms: bound vars named, free vars named

x : A, y : A ⊢ [λy : B. (x, y)]α : B � A× B not purely inductive

x : A, y : A, z : C ⊢ [λy : B. (x, y)]α : B � A× B weakening invariant

3/12

Named, Nameless and Locally Nameless

illustrated by a running example from simply typed λ-calculus with products

named (nominal) terms: bound vars named, free vars named

nameless (de Bruijn) terms: bound vars indexed, free vars indexed (dangling)

λB. (2, 0) purely inductive

3/12

Named, Nameless and Locally Nameless

illustrated by a running example from simply typed λ-calculus with products

named (nominal) terms: bound vars named, free vars named

nameless (de Bruijn) terms: bound vars indexed, free vars indexed (dangling)

A,A ⊢ λB. (2, 0) : B � A× B purely inductive

A,A,C ⊢ λB. (2+ 1, 0) : B � A× B not weakening invariant

3/12

Named, Nameless and Locally Nameless

illustrated by a running example from simply typed λ-calculus with products

named (nominal) terms: bound vars named, free vars named

nameless (de Bruijn) terms: bound vars indexed, free vars indexed (dangling)

locally nameless terms: bound vars indexed, free vars named

λB. (x, 0) purely inductive

3/12

Named, Nameless and Locally Nameless

illustrated by a running example from simply typed λ-calculus with products

named (nominal) terms: bound vars named, free vars named

nameless (de Bruijn) terms: bound vars indexed, free vars indexed (dangling)

locally nameless terms: bound vars indexed, free vars named

x : A, y : A ⊢ λB. (x, 0) : B � A× B purely inductive

x : A, y : A, z : C ⊢ λB. (x, 0) : B � A× B weakening invariant

See
Aydemir, Charguéraud, Pierce, Pollack & Weirich, POPL 2008
Charguéraud, J. Automated Reasoning 49(2012)363–408

3/12

https://doi.org/10.1145/1328438.1328443
https://doi.org/10.1007/s10817-011-9225-2

Locally Nameless infrastructure

operations

opening {i�x}t = term obtained from t by replacing
index i with variable x

closing {i�x}t = term obtained from t by replacing
variable x with index i

relations

freshness x # t = variable x does not occur in term t

locally closed
up to a level i ≻ t = all indices in term t are < i

locally closed lc t = 0 ≻ t (i.e. t contains no indices)

4/12

Locally Nameless infrastructure

operations

opening {i�x}t = term obtained from t by replacing
index i with variable x

closing {i�x}t = term obtained from t by replacing
variable x with index i

relations

freshness x # t = variable x does not occur in term t

locally closed
up to a level i ≻ t = all indices in term t are < i

locally closed lc t = 0 ≻ t (i.e. t contains no indices)

By restricting a�ention to locally closed terms, one can avoid error-prone
index-shi�ing operations. E.g. for capture-avoiding substitution of u for x in t

[x � u]t , so long as lc u holds, it is correct to define it at lambda-abstractions by

[x � u](λA t) , λA ([x � u]t)

4/12

Locally nameless infrastructure

The need to restrict to locally closed terms means that a locally closed
binding form such as λA t should not be deconstructed to t (not locally
closed), but rather to {0�x}t with x fresh.

E.g.
Nx, (Γ, x : A ⊢ {0�x}t : B)

Γ ⊢ λA t : A � B

cofinite quantifier

Nx , ϕ(x) = property ϕ(x) holds for all but finitely many variables x

(cf. McKinna-Pollack | Gabbay-AMP nominal freshness quantifier)
Aydemir, Charguéraud, Pierce, Pollack & Weirich, POPL 2008

Charguéraud, J. Automated Reasoning 49(2012)363–408

5/12

https://doi.org/10.1145/1328438.1328443
https://doi.org/10.1007/s10817-011-9225-2

A new syntax-independent theory

Up to now, locally nameless developments depend on the structure of
the object language (case-by-case)

◮ {i�x}t and {i�x}t defined by recursion over term t

◮ x # t and i ≻ t defined by induction over term t

6/12

A new syntax-independent theory

Up to now, locally nameless developments depend on the structure of
the object language (case-by-case)

New (surprising?) insight
[inspired by “nominal techniques”, ACM SIGLOG News, 3(2016)57-72]

◮ opening/closing operations can be given an
equational axiomatization

◮ freshness and local closedness can be defined in terms of
opening/closing and N, with expected properties with respect to
finitely supported objects

6/12

http://dx.doi.org/10.1145/2893582.2893594

Locally nameless sets

Fix atomic names x, y, z, . . . ∈ A (∼= N) and disjoint indices i, j, k, . . . ∈ N.

Definition. A set S is locally nameless
if it comes equipped with two

(‘opening’ and ’closing’) functions
{_�_}_ {_�_}_ : N � A � S � S

satisfying nine equations
and the finite support property

∀s ∈ S, (Nx, x # s) ∧ (∃i, i ≻ s)

freshness
∀i, {i�x}s = s

local closedness
∀j ≥ i, Nx , {j�x}s = s

7/12

Locally nameless sets

Fix atomic names x, y, z, . . . ∈ A (∼= N) and disjoint indices i, j, k, . . . ∈ N.

Definition. A set S is locally nameless
if it comes equipped with two

(‘opening’ and ’closing’) functions
{_�_}_ {_�_}_ : N � A � S � S
satisfying nine (5 mod duality) equations
and the finite support property

∀s ∈ S, (Nx, x # s) ∧ (∃i, i ≻ s)

{i�x}{i�y}s = {i�y}s

{i�x}{j�x}s = {j�x}s

{i�x}{i�x}s = {i�x}s

{i�x}{i�x}s = {i�x}s

{i�x}{j�y}s = {j�y}{i�x}s (i 6= j)

{i�x}{j�y}s = {j�y}{i�x}s (x 6= y)

{i�x}{j�y}s = {j�y}{i�x}s (i 6= j , x 6= y)

{i�y}{i�x}{j�y}s = {j�y}{j�x}{i�x}s

{j�x}{i�x}{j�y}s = {j�y}{i�y}{i�x}s

7/12

The opening/closing axioms imply that every locally nameless set has well-defined
operations of

renaming

{i�x}a is given

{i�x}a is given

{y�x}a , {i�y}{i�x}a
for some/any i ≻ a

{i�j}a , · · ·

swapping

(x y)a , {j�x}{i�y}{j�y}{i�x}a
for some/any i, j ≻ a with i 6= j

(i j)a , · · ·

(i x)a = (x i)a , · · ·

8/12

The opening/closing axioms imply that every locally nameless set has well-defined
operations of

renaming

{i�x}a is given

{i�x}a is given

{y�x}a , {i�y}{i�x}a
for some/any i ≻ a

{i�j}a , · · ·

swapping

(x y)a , {j�x}{i�y}{j�y}{i�x}a
for some/any i, j ≻ a with i 6= j

(i j)a , · · ·

(i x)a = (x i)a , · · ·

Theorem. Every locally
nameless set is a renset
[Popescu, IJCAR 2022]
and (hence) a nominal set
[AMP, CUP 2013].

Hence get the action of any functionN ∪ A � N ∪ A (because of finite support property).
8/12

https://doi.org/10.1007/978-3-031-10769-6_36
https://www.cambridge.org/gb/academic/subjects/computer-science/programming-languages-and-applied-logic/nominal-sets-names-and-symmetry-computer-science?format=HB&isbn=9781107017788

The category Lns

Theorem.

Isomorphism of categories:

Lns ∼= (SetTω)fs

(Right-hand side is a known topos.)

We get a category Lns of
locally nameless sets by
taking morphisms to be
functions that commute with
the opening/closing functions.

9/12

The category Lns

Theorem.

Isomorphism of categories:

Lns ∼= (SetTω)fs

(Right-hand side is a known topos.)

We get a category Lns of
locally nameless sets by
taking morphisms to be
functions that commute with
the opening/closing functions.

Tω = monoid of all
functions ω � ω

9/12

The category Lns

Theorem.

Isomorphism of categories:

Lns ∼= (SetTω)fs

(Right-hand side is a known topos.)

We get a category Lns of
locally nameless sets by
taking morphisms to be
functions that commute with
the opening/closing functions.

SetTω = category of sets equipped with
an action of Tω

full subcategory whose objects are those Tω-sets
whose elements are finitely supported

9/12

The category Lns

Theorem.

Isomorphism of categories:

Lns ∼= (SetTω)fs

(Right-hand side is a known topos.)

Proof involves several ingredients, one of which is a known presentation of
finite full transformation monoids Tn [Iwahori & Iwahori, J. Comb. Theory (A), 16(1974)147–158].

9/12

https://doi.org/10.1016/0097-3165(74)90040-5

The category Lns

Theorem.

Isomorphism of categories:

Lns ∼= (SetTω)fs

(Right-hand side is a known topos.)

Corollary of the theorem’s proof
is that various categories that
have been used to model
renaming [Staton 2007;
Gabbay & Hofmann 2008;
Popescu 2022] are all equivalent
to each other and to the category
Lns of locally nameless sets.

9/12

https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-688.pdf
https://doi.org/10.1007/978-3-540-89439-1_11
https://doi.org/10.1007/978-3-031-10769-6_36

Locally nameless sets

Fix atomic names x, y, z, . . . ∈ A (∼= N) and disjoint indices i, j, k, . . . ∈ N.

Definition. A set S is locally nameless
if it comes equipped with two

(‘opening’ and ’closing’) functions
{_�_}_ {_�_}_ : N � A � S � S

satisfying nine equations
and the finite support property

∀s ∈ S, (Nx, x # s) ∧ (∃i, i ≻ s)

The abstract versions of
{�}, {�},# and ≻
agree with the usual concrete
recursive/inductive definitions
when A is an inductively
defined set giving the locally
nameless representation of
some language.
So what did we gain?

10/12

Consequences

Binding has a generic, language-independent definition as a “shi�”
functor ↑ : Lns � Lns given by shi�ing indices.

↑ S ∼= S
abs {i�x}(abs s) , abs({i+1�x}s)

{i�x}(abs s) , abs({i+1�x}s)

11/12

Consequences

Binding has a generic, language-independent definition as a “shi�”
functor ↑ : Lns � Lns given by shi�ing indices.

◮ Initial algebras for functors combining ↑ with + and × recover
locally nameless finitary syntax (see paper for details).

E.g. initial algebra for functor S 7→ (N∪A) + (S × S) + ↑ S is isomorphic to usual
locally nameless datatype for untyped λ-terms.

11/12

Consequences

Binding has a generic, language-independent definition as a “shi�”
functor ↑ : Lns � Lns given by shi�ing indices.

◮ Initial algebras for functors combining ↑ with + and × recover
locally nameless finitary syntax (see paper for details).

◮ There are lots of non-syntactic locally nameless sets.

E.g. S , ((N∪A � R) � R)fs, which has a binding operation ↑ S � S if there is a

function (R � R) � R.

Potential for “locally nameless semantics” (applications to NBE?)

11/12

Consequences

Binding has a generic, language-independent definition as a “shi�”
functor ↑ : Lns � Lns given by shi�ing indices.

◮ Initial algebras for functors combining ↑ with + and × recover
locally nameless finitary syntax (see paper for details).

◮ Potential for “locally nameless semantics” (applications to NBE?)

◮ [to do] Simple automation of locally nameless “boilerplate” within
interactive theorem provers
(Cf. LNgen (ott�Coq) and Autosubst (Coq library for nameless).)

11/12

Consequences

Binding has a generic, language-independent definition as a “shi�”
functor ↑ : Lns � Lns given by shi�ing indices.

◮ Initial algebras for functors combining ↑ with + and × recover
locally nameless finitary syntax (see paper for details).

◮ Potential for “locally nameless semantics” (applications to NBE?)
◮ [to do] Simple automation of locally nameless “boilerplate” within

interactive theorem provers

data S : Set where

var : (N+ A) � S
app : S × S � S
lam : ↑ S � S

deriving LocallyNameless
11/12

Summary

◮ New insight: locally nameless can be founded on an
algebra of opening/closing operations, independent of any
object-level language.

◮ Cofinite quantification plays a key role.
◮ Mathematical status of the axioms.
◮ Data generic functor for binding.

Before: locally nameless syntax.
Now: locally nameless syntax and semantics.

◮ Potential for typeclass-style automation of locally nameless boiler
plate.

12/12

Summary

◮ New insight: locally nameless can be founded on an
algebra of opening/closing operations, independent of any
object-level language.

◮ Cofinite quantification plays a key role.
◮ Mathematical status of the axioms.
◮ Data generic functor for binding.

Before: locally nameless syntax.
Now: locally nameless syntax and semantics.

◮ Potential for typeclass-style automation of locally nameless boiler
plate.

End
12/12

