TYPES+PCC 2014

Nominal Sets and Dependent Type Theory

Andrew Pitts

WNIVERSITY OF
Computer Laboratory

Plan

$\left\{\begin{array}{c}\text { Type Theory } \\ \text { presheaf categories }\end{array}\right\}$ audience listens to talk $\{$

Plan

$\left\{\begin{array}{c}\text { Type Theory } \\ \text { presheaf categories }\end{array}\right\}$ audience listens to talk $\{$
$\left.\begin{array}{c}\text { nominal sets: } \\ \text { freshness } \\ \text { name abstraction }\end{array}\right\}$
aim to explain the notions of
freshness and name-abstraction
from the theory of nominal sets and discuss two (on-going) applications involving dependent types:

1. Cubical sets model of Homotopy Type Theory.
2. A version of Type Theory with names, freshness and name-abstraction.

Freshness

What is a fresh name?

Possible definition: name \boldsymbol{a} is fresh if it is not 'stale':
a is not equal to any name in the current (finite) set of used names (and we extend that set with a)

What is a fresh name?

Possible definition: name \boldsymbol{a} is fresh if it is not 'stale':
a is not equal to any name in the current (finite) set of used names (and we extend that set with a)

- need to be able to test names for equality - that is the only attribute we assume names have (atomic names)

What is a fresh name?

Possible definition: name \boldsymbol{a} is fresh if it is not 'stale':
a is not equal to any name in the current (finite) set of used names (and we extend that set with \boldsymbol{a})

- need to be able to test names for equality - that is the only attribute we assume names have (atomic names)
- freshness has a modal character - suggests using Kripke-Beth-Joyal (possible worlds) semantics with. .

Presheaf semantics

II $=$ category of finite ordinals $n=\{0,1, \ldots, n-1\}$ and injective functions
$\mathbf{U} \in[\mathbb{I I}, \mathrm{Set}]$

Presheaf semantics

$\mathbb{I I}=$ category of finite ordinals
$n=\{\mathbf{0}, \mathbf{1}, \ldots, \boldsymbol{n}-\mathbf{1}\}$

and injective functions

$\mathbf{U} \in[\mathbb{I I}, \mathrm{Set}]$

$$
[\mathbb{I I}, \text { Set }]=(\text { covariant }) \text { presheaf category: }
$$

set-valued functors $\boldsymbol{X} \&$ natural transformations.
$\boldsymbol{X} \boldsymbol{n}=$ set of objects (of some type) possibly involving \boldsymbol{n} distinct names

Presheaf semantics

$$
\begin{gathered}
\mathbb{I I}=\text { category of finite ordinals } \\
n=\{0, \mathbf{1}, \ldots, n-\mathbf{1}\} \\
\\
\text { and injective functions }
\end{gathered}
$$

$[$ II, Set $]=$ (covariant) presheaf category:
set-valued functors \boldsymbol{X} \& natural transformations.
$\boldsymbol{X} \boldsymbol{n}=$ set of objects (of some type) possibly involving \boldsymbol{n} distinct names

decidable object

\mathbf{U} is a 'decidable' object of the topos [II, Set] diagonal subobject $\mathbf{U} \hookrightarrow \mathbf{U} \times \mathbf{U}$ has a boolean complement $\neq \longleftrightarrow \mathbf{U} \times \mathbf{U}$

Generic

decidable object

\mathbf{U} is a 'decidable' object of the topos [II, Set]

$$
\begin{aligned}
& a=\mathrm{v} b \wedge \neq(a, b) \Rightarrow \text { false } \\
& \text { true } \Rightarrow a=\mathrm{u} b \vee \neq(a, b)
\end{aligned}
$$

Generic infinite decidable object

\mathbf{U} is a 'decidable' object of the topos [II, Set]

$$
\begin{aligned}
& a=\mathrm{v} b \wedge \neq(a, b) \Rightarrow \text { false } \\
& \text { true } \Rightarrow a=\mathrm{u} b \vee \neq(a, b)
\end{aligned}
$$

but it does not satisfy 'finite inexhaustibility'

$$
\bigwedge_{0 \leq i<j \leq n} \neq\left(a_{i}, a_{j}\right) \Rightarrow \bigvee_{b: U} \bigwedge_{0 \leq i \leq n} \neq\left(b, a_{i}\right)
$$

which we need to model freshness.

Generic infinite decidable object

\mathbf{U} is a 'decidable' object of the topos [II, Set]

$$
\begin{aligned}
& a=\mathrm{v} b \wedge \neq(a, b) \Rightarrow \text { false } \\
& \text { true } \Rightarrow a=\mathrm{u} b \vee \neq(a, b)
\end{aligned}
$$

but it does not satisfy 'finite inexhaustibility'

$$
\bigwedge_{0 \leq i<j \leq n} \neq\left(a_{i}, a_{j}\right) \Rightarrow \bigvee_{b: U} \bigwedge_{0 \leq i \leq n} \neq\left(b, a_{i}\right)
$$

FACT: we get this form of infinity (in a geometrically generic way) if we cut down to the Schanuel topos:

Sch $\subseteq[I I$, Set $]$ is the full subcategory consisting of functors $\mathbb{I} \rightarrow$ Set that preserve pullbacks

Generic infinite decidable object

\mathbf{U} is a 'decidable' object of the topos [II, Set]

$$
\begin{aligned}
& a=\mathrm{v} b \wedge \neq(a, b) \Rightarrow \text { false } \\
& \text { true } \Rightarrow a=\mathrm{u} b \vee \neq(a, b)
\end{aligned}
$$

but it does not satisfy 'finite inexhaustibility'

$$
\bigwedge_{0 \leq i<j \leq n} \neq\left(a_{i}, a_{j}\right) \Rightarrow \bigvee_{b: U} \bigwedge_{0 \leq i \leq n} \neq\left(b, a_{i}\right)
$$

FACT: we get this form of infinity (in a geometrically generic way) if we cut down to the Schanuel topos.

> What is the history of this notion? (Kuratowski?)

From Sch to Nom

The category of nominal sets Nom is 'merely' an equivalent presentation of the category Sch:
An analogy:

$\frac{\text { Nom }}{\text { Sch }} \sim \frac{\text { named bound variables }}{\text { de Bruijn indexes (levels) }}$

Step 1: fix a countably infinite set \mathbb{A} (of atomic names) and modify Sch up to equivalence by replacing II by the equivalent category whose objects are finite subsets $I \in \mathrm{P}_{\text {fin }} \mathbb{A}$ and whose morphisms are injective functions.

From Sch to Nom

The category of nominal sets Nom is 'merely' an equivalent presentation of the category Sch:
Step 2: make the dependence of each $\boldsymbol{X} \in \mathbf{S c h}$ on 'possible worlds' $A \in \mathrm{P}_{\text {fin }} \mathbb{A}$ implicit by taking the colimit \tilde{X} of the directed system of sets and (injective) functions

$$
A \subseteq B \in \mathbf{P}_{\mathrm{fin}} \mathbb{A} \mapsto(X A \rightarrow X B)
$$

Each set \tilde{X} carries an action of \mathbb{A}-permutations

From Sch to Nom

The category of nominal sets Nom is 'merely' an equivalent presentation of the category Sch:
Step 2: make the dependence of each $\boldsymbol{X} \in \mathbf{S c h}$ on 'possible worlds' $A \in \mathrm{P}_{\text {fin }} \mathbb{A}$ implicit by taking the colimit \tilde{X} of the directed system of sets and (injective) functions

$$
A \subseteq B \in \mathrm{P}_{\mathrm{fin}} \mathbb{A} \mapsto(X A \rightarrow X B)
$$

Each set \tilde{X} carries an action of \mathbb{A}-permutations with finite support property, and every such arises this way up to iso.

Finite support property

Suppose Perm \mathbb{A} ($=$ group of all (finite) permutations of \mathbb{A}) acts on a set X and that $x \in X$
A set of names $A \subseteq \mathbb{A}$ supports x if permutations π that fix every $a \in A$ also fix x (i.e. $\pi \cdot x=x$). X is a nominal set if every $x \in X$ has a finite support.

Nom $=$ category of nominal sets and functions that preserve the permutation action $(f(\pi \cdot x)=\pi \cdot(f x))$.

FACT: Nom and Sch are equivalent categories.
Within Nom, objects are 'set-like' and the modal character of freshness becomes implicit...

Finite support property

Suppose Perm \mathbb{A} ($=$ group of all (finite) permutations of \mathbb{A}) acts on a set X and that $x \in X$
A set of names $A \subseteq \mathbb{A}$ supports x if permutations π that fix every $a \in A$ also fix x (i.e. $\pi \cdot x=x$).
X is a nominal set if every $x \in X$ has a finite support.
Freshness, nominally, is a binary relation
$a \# x \triangleq a \notin A$ for some finite A supporting x.
'name \boldsymbol{a} is fresh for \boldsymbol{x} '

Finite support property

Suppose Perm \mathbb{A} ($=$ group of all (finite) permutations of \mathbb{A}) acts on a set X and that $x \in X$
A set of names $A \subseteq \mathbb{A}$ supports x if permutations π that fix every $a \in A$ also fix x (i.e. $\pi \cdot x=x$).
X is a nominal set if every $x \in X$ has a finite support.
Freshness, nominally, is a binary relation
$a \# x \triangleq a \notin A$ for some finite A supporting x.
satisfying $\forall x . \exists a \cdot a \neq x$ (not Skolemizable!)

Name abstraction

Name abstraction

Each $X \in$ Nom yields a nominal set $[\mathbb{A}] X$ of name-abstractions $\langle\boldsymbol{a}\rangle \boldsymbol{x}$ are \sim-equivalence classes of pairs $(a, x) \in \mathbb{A} \times X$, where

Name abstraction

Each $X \in$ Nom yields a nominal set $[\mathbb{A}] X$ of name-abstractions $\langle\boldsymbol{a}\rangle \boldsymbol{x}$ are \sim-equivalence classes of pairs $(a, x) \in \mathbb{A} \times X$, where

$$
\begin{aligned}
&(a, x) \sim\left(a^{\prime}, x^{\prime}\right) \Leftrightarrow \exists b \#\left(a, x, a^{\prime}, x^{\prime}\right) \\
&(b a) \cdot x=\left(b a^{\prime}\right) \cdot x^{\prime}
\end{aligned}
$$

Action of name permutations on $[\mathbb{A}] X$ is well-defined by

$$
\pi \cdot\langle a\rangle x=\langle\pi a\rangle(\pi \cdot x)
$$

and for this action, $A-\{a\}$ supports $\langle a\rangle x$ if A supports x.

If you want to know more about nominal sets. . .

```
Nominal
Sets

\section*{Nominal Sets}

Names and Symmetry in
Computer Science
Cambridge Tracts in Theoretical
Computer Science, Vol. 57
(CUP, 2013)

\section*{Nom and dependent types}

\section*{Families of nominal sets}

Family over \(X \in\) Nom is specified by:
- family of sets \(\left(E_{x} \mid x \in X\right)\)
- dependently type permutation action
\[
\prod_{\pi \in \operatorname{Perm} \mathbb{A}} \prod_{x \in X}\left(E_{x} \rightarrow E_{\pi \cdot x}\right)
\]
with dependent version of finite support property: for all \(x \in X, e \in E_{x}\) there is a finite set \(A\) of names supporting \(x\) in \(X\) and such that any \(\pi\) fixing each \(a \in A\) satisfies \(\pi \cdot e=e \in E_{\pi \cdot x}=E_{x}\).

\section*{Families of nominal sets}

Family over \(X \in\) Nom is specified by. . .
Get a category with families (cwf) [Dybjer] modelling extensional MLTT...

This cwf is relatively unexplored, so far.
But what's it good for? Two possible applications:
1. higher-dimensional type theory
2. meta-programming/proving with name-binding structures

\title{
Bezem-Coquand-Huber cubical sets model of HoTT
}
(just the connection with the nominal sets notion of name abstraction)

One can view cubical sets as nominal sets \(X\) equipped with some extra structure, whose names \(a, b, c \ldots \in \mathbb{A}\) we think of as names of cartesian directions


One can view cubical sets as nominal sets \(X\) equipped with some extra structure, whose names \(a, b, c \ldots \in \mathbb{A}\) we think of as names of cartesian directions


One can view cubical sets as nominal sets \(X\) equipped with some extra structure, namely face maps
\[
x \in X \mapsto(i / a) x \in X, \text { for } i=0,1
\]


One can view cubical sets as nominal sets \(X\) equipped with some extra structure,
satisfying
(binding: \(\boldsymbol{a} \#(i / a) x\) - follows from the type of \(d_{i}\) )
degeneracy: \(a \# x \Rightarrow(i / a) x=x\)
independence: \(a \neq b \Rightarrow(i / a)(j / b) x=(j / b)(i / a) x\)
\(\mathbf{C u b}=\) category of nominal sets equipped with face maps + functions preserving name-permutation action and face maps.
Theorem (Staton). Cub is equivalent to the presheaf category [C, Set] originally used by Bezem, Coquand \& Huber.
\(\mathbb{C}\) is [equivalent to] the category whose objects are finite ordinals and whose morphisms are given by:
\[
\begin{array}{r}
\mathbb{C}(m, n)=\{f \in \operatorname{Set}(m+2, n+2) \mid f 0=0 \wedge f 1=1 \wedge \\
\forall i, j>1 . f i=f j>1 \Rightarrow i=j\}
\end{array}
\]

Name abstractions \(\langle\boldsymbol{a}\rangle \boldsymbol{x}\) as paths (proofs of identity) from \((0 / a) x\) to \((1 / a) x\) :


Can these be the formation and introduction for an (intensional) identity type \(I d_{X}\) for cubical set \(X\) ?

Name abstractions \(\langle\boldsymbol{a}\rangle \boldsymbol{x}\) as paths (proofs of identity) from \((0 / a) x\) to \((1 / a) x\) :


Can these be the formation and introduction for an (intensional) identity type \(I d_{X}\) for cubical set \(X\) ?
Bezen-Coquand-Huber: yes (albeit with propositional eliminator), if we take the 'fibrant' families to be given by cubical sets satisfying a uniform Kan filling condition

Name abstractions \(\langle\boldsymbol{a}\rangle \boldsymbol{x}\) as paths (proofs of identity) from \((0 / a) x\) to \((1 / a) x\) :


Can these be the formation and introduction for an (intensional) identity type \(I d_{X}\) for cubical set \(X\) ?
Bezen-Coquand-Huber: yes (albeit with propositional eliminator), if we take the 'fibrant' families to be given by cubical sets satisfying a uniform Kan filling condition and one also gets a Voevodsky (univalent) universe.

Name abstractions \(\langle\boldsymbol{a}\rangle \boldsymbol{x}\) as paths (proofs of identity) from \((0 / a) x\) to \((1 / a) x\) :


Can these be the formation and introduction for an (intensional) identity type \(I d_{X}\) for cubical set \(X\) ?
Bezen-Coquand-Huber: yes (albeit with propositional eliminator), if we take the 'fibrant' families to be given by cubical sets satisfying a uniform Kan filling condition and one also gets a Voevodsky (univalent) universe.
Why use Kan-Cub rather than Kan-[C, Set]? Variations on Kan filling? 'Nominal' simplicial sets?

\title{
Type Theory with names, freshness and name-abstraction
}
(joint work with Justus Matthiesen)

\section*{Families of nominal sets}

Family over \(X \in\) Nom is specified by. . .
Get a category with families (cwf) [Dybjer] modelling extensional MLTT, plus


\section*{Families of nominal sets}

Family over \(X \in\) Nom is specified by. . .
Get a category with families (cwf) [Dybjer] modelling extensional MLTT, plus


Original motivation for Gabbay \& AMP to introduce nominal sets and name abstraction:
\([\mathbb{A}]\left(\_\right)\)can be combined with \(\times\)and + to give functors Nom \(\rightarrow\) Nom that have initial algebras coinciding with sets of abstract syntax trees modulo \(\alpha\)-equivalence.
E.g. the initial algebra for \(\mathbb{A}+\left(\_\times \_\right)+[\mathbb{A}]\left(\_\right)\)is isomorphic to the usual set of untyped \(\boldsymbol{\lambda}\)-terms.

Original motivation for Gabbay \& AMP to introduce nominal sets and name abstraction. . .

Initial-algebra universal property \(\Rightarrow\) recursion/induction principles for syntax involving name-binding operations [see JACM 53(2006)459-506].
- Exploited in impure functional programming language FreshML [Shinwell, Gabbay \& AMP] - recursion only.
- Pure total (recursive) functions and proof (by induction): how to solve the analogy:
\[
\frac{\text { Coq }}{\text { OCaml }} \sim \frac{\text { Agda }}{\text { Haskell }} \sim \frac{?}{\text { FreshML }}
\]

\section*{Requirements for 'FreshAgda'}
- User-declared sorts of names (possibly with parameters) + user-defined inductive types, with name-abstraction types used to indicate binding constructs. E.g.
```

names Var:Set
data Term:Set where
V : Var -> Term
A:Term -> Term -> Term
L : ([Var]Term) -> Term
data Fresh(X:Set)(x:X) : Var -> Set where
fr : [a:Var](Fresh X x a)

```

\section*{Requirements for 'FreshAgda'}
- User-declared sorts of names (possibly with parameters) + user-defined inductive types, with name-abstraction tvpes used to indicate binding constructs. E.g. set of \(\lambda\)-terms \(\bmod \alpha\)

\author{
names Var: Set
}
data Term:Set where
V:Var -> Term
A: Term -> Term -> Term
L: ([Var]Term) -> Term
data Fresh(X:Set) (x:X) : Var \(\rightarrow\) Set where
fr: [a:Var] (Fresh X x a)
set of proofs that a is fresh for \(\mathrm{x}: \mathrm{X}\)

\section*{Requirements for 'FreshAgda'}
- User-declared sorts of names (possibly with parameters) + user-defined inductive types, with name-abstraction types used to indicate binding constructs.
- Extend (dependent) pattern-matching with name-abstraction patterns. E.g.
\[
\begin{aligned}
& \text { _/ Term }->\text { Var }->\text { Term }->\text { Term } \\
& (t / x)(V y) \\
& (t / x)(A \text { t1 } t 2)=\text { if } x==y \text { then } t \text { else } V y \\
& (t / x)(L\langle x\rangle t 1)=L\langle x\rangle((t / x) t 1)
\end{aligned}
\]

\section*{Requirements for 'FreshAgda'}
- User-declared sorts of names (possibly with parameters) + user-defined inductive types, with name-abstraction types used to indicate binding constructs.
- Extend (dependent) pattern-matching with name-abstraction patterns.
\[
\begin{aligned}
& \text { _/ Term }->\text { Var }->\text { Term }->\text { Term } \\
& (t / x)(V y) \\
& (t / x)(A \text { t1 } t 2)=\text { if } x==\mathrm{y}((\mathrm{t} / \mathrm{x}) \mathrm{t} 1)((\mathrm{t} / \mathrm{x}) \mathrm{t} 2) \\
& (\mathrm{t} / \mathrm{x})(\mathrm{L}\langle\mathrm{x}\rangle \mathrm{t} 1) \\
& =\mathrm{L}\langle\mathrm{x}\rangle((\mathrm{t} / \mathrm{x}) \mathrm{t} 1)
\end{aligned}
\]
- Automatically respect \(\alpha\)-equivalence:

FreshML uses impure generativity to ensure this. How to do it while maintaining Curry-Howard?

Fact: name abstraction functor
\[
[\mathbb{A}]\left(\_\right): \text {Nom } \rightarrow \text { Nom }
\]
is right adjoint to 'separated product' functor
\[
\left(\_\right) * \mathbb{A}: \text { Nom } \rightarrow \text { Nom }
\]
where \(X * \mathbb{A} \triangleq\{(x, a) \mid a \# x\} \subseteq X \times \mathbb{A}\).

\section*{so \([\mathbb{A}] \boldsymbol{X}\) is a kind of (affine) function space (with a right adjoint!)}

\section*{\([\mathbb{A}]\left(\_\right):\)Nom \(\rightarrow\) Nom}
is right adjoint to 'separated product' functor
\[
\left(\_\right) * \mathbb{A}: \text { Nom } \rightarrow \text { Nom }
\]

Counit of the adjunction is 'concretion' of an abstraction
\[
\text { _@_: }([\mathbb{A}] X) * \mathbb{A} \rightarrow X
\]
defined by computation rule:
\[
(\langle a\rangle x) @ b=(b a) \cdot x, \text { if } b \#\langle a\rangle x
\]

\section*{Locally fresh names}

For example, here are some isomorphisms, described in an informal pseudocode:
\[
\begin{aligned}
i:[\mathbb{A}](X+Y) \cong & {[\mathbb{A}] X+[\mathbb{A}] Y } \\
i(z)= & \text { fresh } a \text { in case } z @ a \text { of } \\
& \operatorname{inl}(x) \rightarrow\langle a\rangle x \\
& \mid \operatorname{inr}(y) \rightarrow\langle a\rangle y
\end{aligned}
\]

\section*{Locally fresh names}

For example, here are some isomorphisms, described in an informal pseudocode:
\[
\begin{aligned}
& i:[\mathbb{A}](X+Y) \cong[\mathbb{A}] X+[\mathbb{A}] Y \\
& i(z)=\text { fresh } a \text { in case } z @ a \text { of } \\
& \operatorname{inl}(x) \rightarrow\langle a\rangle x \\
& \operatorname{inr}(y) \rightarrow\langle a\rangle y \\
& \text { given } f \in \operatorname{Nom}(X * \mathbb{A}, Y) \\
& \text { satisfying } a \# x \Rightarrow a \# f(x, a) \text {, } \\
& \text { we get } \hat{f} \in \operatorname{Nom}(X, Y) \text { well-defined by: } \\
& \hat{f}(x)=f(x, a) \text { for some/any } a \# x \text {. } \\
& \text { Notation: fresh } a \text { in } f(x, a) \triangleq \hat{f}(x)
\end{aligned}
\]

\section*{Locally fresh names}

For example, here are some isomorphisms, described in an informal pseudocode:
\[
\begin{aligned}
i:[\mathbb{A}](X+Y) \cong & {[\mathbb{A}] X+[\mathbb{A}] Y } \\
i(z)= & \text { fresh } a \text { in case } z @ a \text { of } \\
& \quad \operatorname{inl}(x) \rightarrow\langle a\rangle x \\
& \mid \operatorname{inr}(y) \rightarrow\langle a\rangle y \\
j:([\mathbb{A}] X \rightarrow[\mathbb{A}] Y) \cong & {[\mathbb{A}](X \rightarrow Y) } \\
j(f)= & \text { fresh } a \text { in } \\
& \langle a\rangle(\lambda x . f(\langle a\rangle x) @ a)
\end{aligned}
\]

Can one turn the pseudocode into terms in a formal 'nominal' \(\lambda\)-calculus?

\title{
Aim: extend (dependently typed) \(\boldsymbol{\lambda}\)-calculus with
}

\section*{names \(a\)}
name swapping swap \(\boldsymbol{a}, \boldsymbol{b}\) in \(\boldsymbol{t}\)
name abstraction \(\langle\boldsymbol{a}\rangle \boldsymbol{t}\) and concretion \(\boldsymbol{t} @ \boldsymbol{a}\)
locally fresh names fresh \(\boldsymbol{a}\) in \(t\)
name equality if \(t=a\) then \(t_{1}\) else \(t_{2}\)

Aim: extend (dependently typed) \(\lambda\)-calculus with
names \(\boldsymbol{a}\)
name swapping \(\operatorname{swap} \boldsymbol{a}, \boldsymbol{b}\) in \(\boldsymbol{t}\)
name abstraction \(\langle\boldsymbol{a}\rangle \boldsymbol{t}\) and concretion \(\boldsymbol{t} @ a\)
locally fresh names fresh \(a\) in \(t\)
name equality if \(t=a\) then \(t_{1}\) else \(t_{2}\)
Prior art:
- Stark-Schöpp [CSL 2004] - bunched contexts (+), extensional \& undecidable (-)
- Westbrook-Stump-Austin [LFMTP 2009] CNIC - semantics/expressivity?
- Cheney [LMCS 2012] DNTT - bunched contexts (+), no local fresh names (-)
- Crole-Nebel [MFPS 2013] - simple types (-), definitional freshness (+)

Aim: extend (dependently typed) \(\lambda\)-calculus with
names \(\boldsymbol{a}\)
name swapping swap \(\boldsymbol{a}, \boldsymbol{b}\) in \(\boldsymbol{t}\)
name abstraction \(\langle\boldsymbol{a}\rangle \boldsymbol{t}\) and concretion \(\boldsymbol{t} @ a\)
locally fresh names fresh \(a\) in \(t\) name equality if \(t=\boldsymbol{a}\) then \(\boldsymbol{t}_{1}\) else \(\boldsymbol{t}_{2}\)

Prior art:
- Stark-Schöpp [CSL 2004] - bunched contexts (+), extensional \& undecidable (-)
- Westbrook-Stump-Austin [LFMTP 2009] CNIC - semantics/expressivity?
- Cheney [LMCS 2012] DNTT - bunched contexts (+), no local fresh names (-)
- Crole-Nebel [MFPS 2013] - simple types (-), definitional freshness (+)

We cherry pick, aiming for user-friendliness.

Aim: extend (dependently typed) \(\boldsymbol{\lambda}\)-calculus with

\section*{names \(\boldsymbol{a}\)}
name swapping swap \(\boldsymbol{a}, \boldsymbol{b}\) in \(\boldsymbol{t}\)
name abstraction \(\langle\boldsymbol{a}\rangle \boldsymbol{t}\) and concretion \(\boldsymbol{t} @ \boldsymbol{a}\)
locally fresh names fresh \(\boldsymbol{a}\) in \(t\)
name equality if \(t=a\) then \(t_{1}\) else \(\boldsymbol{t}_{2}\)
Difficulty: concretion and locally fresh names are partially defined - have to check freshness conditions.
\[
\begin{aligned}
& \text { e.g. for fresh } a \text { in } f(x, a) \\
& \text { to be well-defined, we need } \\
& a \equiv x \Rightarrow a \# f(x, a)
\end{aligned}
\]

\section*{Definitional freshness}

In a nominal set of (higher-order) functions, proving \(a\) \# \(f\) can be tricky (undecidable). Common proof pattern:

Given \(a, f, \ldots\), pick a fresh name \(\boldsymbol{b}\) and prove \((a b) \cdot f=f\). (For functions, equivalent to proving \(\forall x\). \((a b) \cdot f(x)=f((a b) \cdot x)\).)

\section*{Definitional freshness}

In a nominal set of (higher-order) functions, proving \(a\) \# \(f\) can be tricky (undecidable). Common proof pattern:

Given \(a, f, \ldots\), pick a fresh name \(\boldsymbol{b}\) and prove \((a b) \cdot f=f\).
Since by choice of \(b\) we have \(b\) \# \(f\), we also get \(a=(a b) \cdot b \#(a b) \cdot f=f\), QED.

\section*{Definitional freshness}

In a nominal set of (higher-order) functions, proving \(a \# f\) can be tricky (undecidable). Common proof pattern:
\[
\Gamma \vdash a \# T \quad \Gamma \vdash t: T
\]


\section*{Definitional freshness}

In a nominal set of (higher-order) functions, proving \(a \# f\) can be tricky (undecidable). Common proof pattern:
\[
\begin{gathered}
\Gamma \vdash a \# T \quad \Gamma \vdash t: T \\
\Gamma \#(b: \mathbb{A}) \vdash(\operatorname{swap} a, b \text { in } t)=t: T \\
\Gamma \vdash a \# t: T
\end{gathered}
\]

Freshness info in bunched contexts gets used via:
\[
\frac{\Gamma(x: T) \Gamma^{\prime} \text { ok } \quad a, b \in \Gamma^{\prime}}{\Gamma(x: T) \Gamma^{\prime} \vdash(\operatorname{swap} a, b \text { in } x)=x: T}
\]

\section*{Definitional freshness}

In a nominal set of (higher-order) functions, proving \(a \# f\) can be tricky (undecidable). Common proof pattern:
\[
\begin{gathered}
\begin{array}{c}
\Gamma \vdash a \# T \quad \Gamma \vdash t: T \\
\Gamma \#(b: \mathbb{A}) \nmid \hat{~}(\operatorname{swap} a, b \text { in } t)=t: T \\
\Gamma \vdash a \# t: T
\end{array} \frac{\Gamma}{\Gamma \vdash t}
\end{gathered}
\]
definitional freshness for types:
\[
\Gamma \vdash T \quad a \in \Gamma
\]
\(\frac{\Gamma \#(b: \mathbb{A}) \vdash(\operatorname{swap} a, b \text { in } T)=T}{\Gamma \vdash a \# T}\)

\section*{A type theory}


\section*{To do}
- Decidability of typing \& definitional equality judgements (normal forms and algorithmic version of the type system).
- Inductively defined types involving \([a: \mathbb{A}]\left(\_\right)\) (e.g. propositional freshness \& nominal logic).
- Dependently typed pattern-matching with name-abstraction patterns.
- Implementation.

\section*{Conclusions}
1. Nom vs Sch, Cub vs \([\mathbb{C}\), Set \(]\) : names are convenient! (because unlike indexes, they survive weakening).
2. Possibility of a 'nominal' treatment of dimensions in higher-dimensional type theory \& category theory seems intriguing: e.g. what are \(\infty\)-groupoids when \(\infty=\) finitely inexhaustible?
3. Nominal sets notion of implicit dependence does not sit easily with explicit functional dependence in type theory. (Permutations are mathematically pleasant, but not computationally pleasant?)```

