
Names and Symmetry
in Computer Science

Andrew Pitts

Computer Laboratory

LICS 2015 Tutorial

1/27

An introduction to
nominal techniques

motivated by

Programming language semantics

Automata theory

Constructive type theory

2/27

Compositionality in semantics

The meaning of a compound phrase should be a
well-defined function of the meanings of its constituent
subphrases.

Although one can define behaviour of whole

C/Java/OCaml/Haskell. . . programs

(e.g. via an abstract machine) it’s often more illuminating, but
harder, to give a semantics for individual

C/Java/OCaml/Haskell. . . statement-forming constructs

as operations for composing suitable mathematical structures.

3/27

Compositionality in semantics

The meaning of a compound phrase should be a
well-defined function of the meanings of its constituent
subphrases.

Denotational semantics are compositional:

◮ Each program phrase P is given a denotation
JPK—a mathematical object representing the
contribution of P to the meaning of any complete
program in which it occurs.

◮ The denotation of a phrase is a function of the
denotations of its subphrases.

3/27

Question: are these OCaml expressions behaviourally
equivalent?

let a = ref 42 in

fun x � a := (!a + x) ;

!a

let b = ref(−42) in

fun y � b := (!b − y) ;

−(!b)

4/27

Question: are these OCaml expressions behaviourally
equivalent?

let a = ref 42 in

fun x � a := (!a + x) ;

!a

let b = ref(−42) in

fun y � b := (!b − y) ;

−(!b)

Answer: yes, but devising denotational semantics that exactly match
the execution behaviour of

higher-order functions + locally scoped names (of
storage locations, of exceptions, of . . .)

has proved hard.

Current state-of-the-art: nominal game semantics (see forthcoming
tutorial article by Murawski & Tzevelekos in Foundations & Trends

in Programming Languages).
4/27

Dependence & Symmetry

What does it mean for mathematical structures [needed
for denotational semantics] to

{

depend upon some names?
be independent of some names?

◮ Conventional answer: parameterization (explicit
dependence via functions).
Can lead to ‘weakening hell’.

5/27

Dependence & Symmetry

What does it mean for mathematical structures [needed
for denotational semantics] to

{

depend upon some names?
be independent of some names?

◮ Conventional answer: parameterization (explicit
dependence via functions).
Can lead to ‘weakening hell’.

◮ Nominal techniques answer: independence via
invariance properties of symmetries.

5/27

Name permutations

◮ A = fixed countably infinite set of atomic names
(a,b,. . .)

◮ SA = group of all (finite) permutations of A

Typical elements:

a b c e · · ·

d

(but NOT f g

h

)

6/27

Name permutations

◮ A = fixed countably infinite set of atomic names
(a,b,. . .)

◮ SA = group of all (finite) permutations of A

◮ each π is a bijection A ∼= A (injective and surjective
function)

◮ π finite means: {a ∈ A | π(a) 6= a} is finite.
◮ group: multiplication is composition of functions

π′ ◦ π; identity is identity function id; inverses are
inverse functions π−1.

6/27

Actions
A SA-action on a set X is a function

π ∈ SA, x ∈ X 7→ π · x ∈ X

satisfying

◮ π
′ · (π · x) = (π

′ ◦ π) · x

◮ id · x = x

7/27

Actions
A SA-action on a set X is a function

π ∈ SA, x ∈ X 7→ π · x ∈ X

satisfying

◮ π
′ · (π · x) = (π

′ ◦ π) · x

◮ id · x = x

Simple example: SA acts on sets of names A ⊆ A via

π · A = {π(a) | a ∈ A}

E.g.
(

a b
)

· {c | c 6= a} = {c | c 6= b}

7/27

Support – the key definition

Suppose SA acts on a set X and x ∈ X.

A set of names A ⊆ A supports x if for all π ∈ SA

(∀a ∈ A. π(a) = a) ⇒ π · x = x

X is a nominal set if every x ∈ X has a finite support.
[AMP-Gabbay, LICS 1999]

8/27

Support – the key definition

Suppose SA acts on a set X and x ∈ X.

A set of names A ⊆ A supports x if for all π ∈ SA

(∀a ∈ A. π(a) = a) ⇒ π · x = x

X is a nominal set if every x ∈ X has a finite support.
[AMP-Gabbay, LICS 1999]

E.g. for X = {A | A ⊆ A},

◮ {b | b 6= a} is infinite, but is supported by {a}

because if π(a) = a, then π is a permutation of A −{a}

8/27

Support – the key definition

Suppose SA acts on a set X and x ∈ X.

A set of names A ⊆ A supports x if for all π ∈ SA

(∀a ∈ A. π(a) = a) ⇒ π · x = x

X is a nominal set if every x ∈ X has a finite support.
[AMP-Gabbay, LICS 1999]

E.g. for X = {A | A ⊆ A},

◮ {b | b 6= a} is infinite, but is supported by {a}

◮ no finite set of names supports {a0, a2, a4, . . .} (supposing
a0, a1, a2, a3, . . . enumerates A), so {A | A ⊆ A} is not a nominal set

◮ {A ⊆ A | A finite, or A − A finite} is a nominal set

8/27

Support – the key definition

Suppose SA acts on a set X and x ∈ X.

A set of names A ⊆ A supports x if for all π ∈ SA

(∀a ∈ A. π(a) = a) ⇒ π · x = x

X is a nominal set if every x ∈ X has a finite support.
[AMP-Gabbay, LICS 1999]

E.g. for λ-terms with (free & bound) variables from A

t ::= a | t t | λa.t modulo α-equivalence

with SA-action:

π · a = π(a)
π · (t t′) = (π · t)(π · t′)

π · (λa.t) = λπ(a).(π · t)

FACT: each t is supported by its finite set of free variables.
8/27

Category of nominal sets, Nom

objects are nominal sets
= sets equipped with an action of all (finite)
permutations of A, all of whose elements have finite
support

morphisms are equivariant functions
= functions preserving the permutation action.

identities and composition
= as usual for functions

9/27

Why use category theory?

◮ equivalence of categories from different
mathematical realms (or even just functors between
them) can tell us a lot.
For example, the following are all equivalent:

◮ Nom
◮ the Schanuel topos

(from Grothendieck’s generalized Galois theory)

◮ the category of named sets
(from the work of Montanari et al on model-checking π-calculus)

◮ universal properties (adjoint functors) can
characterize a mathematical construction uniquely
up to isomorphism and help predict its properties.
For example. . .

10/27

Nominal exponentials

X �fs Y ,
{

f ∈ YX

∣

∣

∣

∣

f is finitely supported w.r.t. the action

π · f = λx � π · (f(π
−1 · x))

}

This is characterised uniquely up to isomorphism by the fact that it
give the right adoint to (_)× X : Nom � Nom:

Z × X → Y

Z → (X �
fs

Y)

(Products in Nom are created by the forgetful functor to the
category of sets.)

11/27

Nominal exponentials

X �fs Y ,
{

f ∈ YX

∣

∣

∣

∣

f is finitely supported w.r.t. the action

π · f = λx � π · (f(π
−1 · x))

}

This is characterised uniquely up to isomorphism by the fact that it
give the right adoint to (_)× X : Nom � Nom:

Z × X → Y

Z → (X �
fs

Y)

(Products in Nom are created by the forgetful functor to the
category of sets.)

N.B. permutations have inverses

11/27

Name abstraction

Each X ∈ Nom yields a nominal set [A]X of

name-abstractions 〈a〉x are ∼-equivalence classes of
pairs (a, x) ∈ A × X, where

(a, x) ∼ (a′, x′) ⇔ ∃ b # (a, x, a′ , x′)
(b a) · x = (b a′) · x′

12/27

Name abstraction

Each X ∈ Nom yields a nominal set [A]X of

name-abstractions 〈a〉x are ∼-equivalence classes of
pairs (a, x) ∈ A × X, where

(a, x) ∼ (a′, x′) ⇔ ∃ b # (a, x, a′ , x′)
(b a) · x = (b a′) · x′

Freshness relation: a # x means a /∈ A for some finite support A for x

The freshness relation gives a
well-behaved, syntax-independent

notion of freeness, or non-occurrence.

12/27

Name-abstraction

Name abstraction [A](_) : Nom � Nom is right
adjoint to adjoint ‘separated tensor’ _ ∗ A

X ∗ A , {(x, a) ∈ X × A | a # x}

X ∗ A → Y

X → [A]Y

So [A]X is a kind of (affine) linear function space from A to X,
but with great properties – e.g. it too has a right adjoint

([A]X) → Y

X → { f ∈ YA | (∀a ∈ A) a # f(a)}

13/27

Name-abstraction

Name abstraction [A](_) : Nom � Nom is right
adjoint to adjoint ‘separated tensor’ _ ∗ A

X ∗ A , {(x, a) ∈ X × A | a # x}

X ∗ A → Y

X → [A]Y

So [A]X is a kind of (affine) linear function space from A to X,
but with great properties – e.g. it too has a right adjoint

 an initial algebra semantics for syntax with binders
using [A](_) to model binding operations

with user-friendly inductive/recursive properties. . .

13/27

Initial algebras

◮ [A](_) can be combined with _× _ and _+ _ to
give functors T : Nom → Nom that have
initial algebras I : T D → D

T D

I

T X

Ffor all

D X

14/27

Initial algebras

◮ [A](_) can be combined with _× _ and _+ _ to
give functors T : Nom → Nom that have
initial algebras I : T D → D

T D T F̂

I

T X

F

D
F̂

exists unique
X

14/27

Initial algebras

◮ [A](_) can be combined with _× _ and _+ _ to
give functors T : Nom → Nom that have
initial algebras I : T D → D

◮ For a wide class of such functors (‘nominal algebraic
functors’) the initial algebra D coincides with
sets of abstract syntax trees modulo α-equivalence.

E.g. the initial algebra for

T(_) ,A + (_ × _) + [A](_)

is the usual set of untyped λ-terms and the initial-algebra

universal property yields. . . .

14/27

α-Structural recursion
Theorem.

Given any X ∈ Nom and

f1 ∈ A �fs X
f2 ∈ X × X �fs X
f3 ∈ [A]X �

fs
X

∃! f̂ ∈ Λ �
fs

X

f̂ a = f1 a

f̂ (t1 t2)= f2(f̂ t1, f̂ t2)
f̂ (λa.t) = f3(〈a〉(f̂ t)) if a # (f1, f2, f3)

untyped λ-terms:
t ::= a | t t | λa.t

15/27

α-Structural recursion
Theorem.

Given any X ∈ Nom and

f1 ∈ A �fs X
f2 ∈ X × X �fs X
f3 ∈ A × X �

fs
X

s.t.

(∀a) a # (f1, f2, f3) ⇒ (∀x) a # f3(a, x) (FCB)

∃! f̂ ∈ Λ �fs X

f̂ a = f1 a

f̂ (t1 t2)= f2(f̂ t1, f̂ t2)
f̂(λa.t) = f3(a, f̂ t) if a # (f1, f2, f3)

15/27

α-Structural recursion
Theorem.

Given any X ∈ Nom and

f1 ∈ A �fs X
f2 ∈ X × X �fs X
f3 ∈ A × X �

fs
X

s.t.

(∀a) a # (f1, f2, f3) ⇒ (∀x) a # f3(a, x) (FCB)

∃! f̂ ∈ Λ �fs X

f̂ a = f1 a

f̂ (t1 t2)= f2(f̂ t1, f̂ t2)
f̂(λa.t) = f3(a, f̂ t) if a # (f1, f2, f3)

E.g. capture-avoiding substitution (_)[t′/a′] is the f̂ for

f1 a , if a = a′ then t′ else a

f2(t1, t2) , t1 t2

f3(a, t) , λa.t

for which (FCB) holds, since a # λa.t
15/27

Nominal System T

The notion of ‘α-structural recursion’ generalizes
smoothly from λ-terms to any nominal algebraic
signature, giving a version of Gödel’s System T for
nominal data types [J ACM 53(2006)459–506].

Urban & Berghofer’s Nominal package for Isabelle/HOL
(interactive theorem prover for classical higher-order
logic) implements this, and more.

Seems to capture informal practice quite well.

16/27

Applications: PL semantics

◮ operational semantics of ‘nominal’ calculi

◮ game semantics; domain theory

◮ equational logic & rewriting modulo α-equivalence

◮ logic programming (Cheney-Urban: αProlog)

◮ functional metaprogramming (AMP-Shinwell: Fresh
Ocaml)

Take-home message: permutation comes before

substitution when dealing with the meta-theory of
names and binding operations in syntactical structures.

17/27

An introduction to
nominal techniques

motivated by

Programming language semantics

Automata theory

Constructive type theory

18/27

Support – the key definition

Suppose SA acts on a set X and x ∈ X.

A set of names A ⊆ A supports x if for all π ∈ SA

(∀a ∈ A. π(a) = a) ⇒ π · x = x

X is a nominal set if every x ∈ X has a finite support.
[AMP-Gabbay, LICS 1999]

Consider replacing SA by a subgroup G
i.e. use a more restrictive notion of symmetry

19/27

Different symmetries

Three interesting examples:

1. Equality: G = all (finite) permutations.

2. Linear order: A = Q and G = order-preserving perms.

3. Graphs: A = vertices of the Rado graph and G = graph
automorphisms.

20/27

Different symmetries

Three interesting examples:

1. Equality: G = all (finite) permutations.

2. Linear order: A = Q and G = order-preserving perms.

3. Graphs: A = vertices of the Rado graph and G = graph
automorphisms.

In general [Bojańczyk, Klin, Lasota]:

A = Carrier of the universal homogeneous structure
(Fraïssé limit) for a finite relational signature

G = automorphisms w.r.t. the signature

yields a universe U = Pfs (A +U) with interesting
applications for nominal computation.

20/27

Applications: automata theory

Automata over infinite alphabets:

◮ HD-automata: π-calculus verification [Montanari el al]

◮ fresh-register automata [Tzevelekos] (extending finite-memory
automata of Kaminski & Francez): verifying programs with
local names

◮ automata & Turing machines in sets with atoms
[Bojańczyk et al]; CSP with atoms [Klin et al, LICS 2015]; . . .

21/27

Applications: automata theory

Automata over infinite alphabets:

◮ HD-automata: π-calculus verification [Montanari el al]

◮ fresh-register automata [Tzevelekos] (extending finite-memory
automata of Kaminski & Francez): verifying programs with
local names

◮ automata & Turing machines in sets with atoms
[Bojańczyk et al]; CSP with atoms [Klin et al, LICS 2015]; . . .

General approach: try to do ‘ordinary’ computation
theory inside the universe/category of nominal sets (for a
Fraïssé symmetry), but replace finite-state notions by
orbit-finite ones. . .

21/27

Orbit finiteness

= having finitely many equivalence classes for

x ∼ y , ∃π. π · x = y

E.g. for the equality symmetry, An is orbit-finite, A∗ is not.

22/27

Orbit finiteness

= having finitely many equivalence classes for

x ∼ y , ∃π. π · x = y

E.g. for the equality symmetry, An is orbit-finite, A∗ is not.

Orbit-finite elements of U have good closure properties, except for
powerset. Nominal automata (NA) satisfy:

◮ deterministic (D) 6= non-deterministic (ND)

◮ emptiness for ND-NA is decidable

◮ equivalence for D-NA is decidbale

◮ D-NAs can be minimized

See [Bojańczyk-Klin-Lasota, LMCS 10(3) 2014].
22/27

An introduction to
nominal techniques

motivated by

Programming language semantics

Automata theory

Constructive type theory

23/27

Nominal System T

Questions:

◮ Martin-Löf Type Theory generalizes Gödel’s System T to

inductively defined families of dependent types.

What is the right version of the notions of nominal

set, freshness and name abstraction within
constructive type theory?

Stark-Schöpp CSL 2004 [extensional]
Cheney LMCS 2012 [missing locally scoped names]
AMP-Matthiesen-Derikx LSFA 2014 [locally scoped, judgementally fresh
names]

24/27

Applications:
Homotopy Type Theory

Cubical sets [Bezem-Coquand-Huber] model of
Voevodsky’s axiom of univalence can be described using
nominal sets equipped with an operation of substitution
x 7→ x(i/a) where i ∈ {0, 1}.

◮ names are names of directions (cartesian axes)

(so e.g., if an object has support {a, b, c} it is 3-dimensional)

◮ freshness (a # x) = degeneracy (x(i/a) = x)

◮ identity types are modelled by name-abstraction: 〈a〉x is a proof that
x(0/a) is equal to x(1/a).

HoTT is about (proof-relevant) mathematical foundations (a topic no longer
very popular with mathematicians). That’s where the mathematics of nominal
sets came from. . .

25/27

Impact can take a long time

The mathematics behind nominal sets goes back a long way. . .

Abraham Fraenkel, Der Begriff “definit” und die

Unabhängigkeit des Auswahlsaxioms, Sitzungsberichte der
Preussischen Akademie der Wissenschaften,
Physikalisch-mathematische Klasse (1922), 253–257.

Andrzej Mostowski, Uber die Unabhängigkeit des

Wohlordnungssatzes vom Ordnungsprinzip, Fundamenta
Mathematicae 32 (1939), 201–252.

26/27

Impact can take a long time

The mathematics behind nominal sets goes back a long way. . .

. . . and it’s still too early to tell what will be the impact of the

applications of it to CS developed over the last 15 years.

Take-home messages:

◮ Computation modulo symmetry deserves further
exploration.

◮ Permutation comes before substitution and (hence)
name-abstraction before lambda-abstraction. . . but
it seems that constructive type theory and nominal
techniques can coexist (wts).

26/27

Homework

Nominal Sets

Names and Symmetry in

Computer Science

Cambridge Tracts in Theoretical
Computer Science, Vol. 57
(CUP, 2013)

27/27

