A Fresh Approach to Representing Syntax with Static Binders in Functional Programming

Andrew Pitts

Computer Laboratory
(Revised version of 6 November 2001)

Functions Considered Unnecessary

Functions Considered Unnecessary for Representing Variable-Binding

A Fresh Approach to Representing Syntax with Static Binders in Functional Programming

Aims

Make the treatment of [object-level] bound variables in functional programming for syntax-manipulation
(i.e. ML's original domain)

- closer to informal practice
- more declarative.

Aim: make treatment of bound variables closer to informal practice

Aim: make treatment of bound variables closer to informal practice

"Barendregt Variable Convention" (BVC)

Aim: make treatment of bound variables closer to informal practice

"Barendregt Variable Convention" (BVC)

- Operate on α-equivalence classes $[t]_{\alpha}$ of syntax trees via representative trees t, and
- choose names of the bound variables in t to be fresh, i.e. different from each other and from any free variables in the current mathematical context.

Aim: make treatment of bound variables closer to informal practice

"Barendregt Variable Convention" (BVC)

The BVC only makes sense if what we do with the representative t is insensitive to renaming its freshly chosen bound variables (and hence depends only on the class $\left.[t]_{\alpha}\right)$.

Aim: make treatment of bound variables closer to informal practice

"Barendregt Variable Convention" (BVC)

The BVC only makes sense if what we do with the representative t is insensitive to renaming its freshly chosen bound variables (and hence depends only on the class $\left.[t]_{\alpha}\right)$.

Idea (Pitts \& Gabbay, Proc. MPC 2000, SLNCS 1837): Use a type system at compile-time to infer freshness properties of names that guarantee this insensitivity to renaming.

Aim: make treatment of bound variables more declarative

Aim: make treatment of bound variables more declarative

\author{
$\left.\begin{array}{l}\text { ML's datatype } \\ \text { Haskell's data }\end{array}\right\}$ facilities

}
reduce the task of designing data types for a given grammar's syntax trees to a mere act of declaration.

Aim: make treatment of bound variables more declarative

$$
\left.\begin{array}{l}
\text { ML's datatype } \\
\text { Haskell's data }
\end{array}\right\} \text { facilities }
$$

reduce the task of designing data types for a given grammar's syntax trees to a mere act of declaration.

Can we do the same thing for syntax trees modulo α-conversion of bound variables?

Recent research provides semantic underpinnings for doing this. (Gabbay \& Pitts, LICS'99; Fiore, Plotkin \& Turi, LICS'99)

Grammar

```
term ::=
                                    var
                                    | term term
                                    | \lambdavar.term
                                    | let var = term in term
                                    | letrec var = term in term
```

plus
specification of how $\boldsymbol{\lambda}$, let and letrec bind vars (as usual)

datatype term =

var
| term term
\| $\boldsymbol{\lambda}$ var.term
| let var = term in term
| letrec var $=$ term in term
plus
specification of how $\boldsymbol{\lambda}$, let and letrec bind vars (as usual)

datatype term =

 Var of ν| term term
| $\boldsymbol{\lambda}$ var.term
| let var = term in term
| letrec var = term in term
plus
specification of how $\boldsymbol{\lambda}$, let and letrec bind $\boldsymbol{v a r s}$ (as usual)

$$
\begin{aligned}
& \text { datatype term }=\quad \nu \text { is a type of } \\
& \text { Var of }(\nu \longleftarrow \text { bindable names } \\
& \text { | term term (not int, string,...!) } \\
& \text { | } \boldsymbol{\lambda} \text { var.term } \\
& \text { | let var = term in term } \\
& \text { letrec var }=\text { term in term } \\
& \text { plus }
\end{aligned}
$$

specification of how $\boldsymbol{\lambda}$, let and letrec bind vars (as usual)

datatype term =

$$
\operatorname{Var} \text { of } \nu
$$

| App of term * term
\| 入var.term
| let var $=$ term in term
| letrec var $=$ term in term
plus
specification of how $\boldsymbol{\lambda}$, let and letrec bind vars (as usual)

datatype term =

$$
\operatorname{Var} \text { of } \nu
$$

| App of term * term
| Lam of ν. term
| let var $=$ term in term
| letrec var $=$ term in term
plus
specification of how $\boldsymbol{\lambda}$, let and letrec bind vars (as usual)
in general, $\boldsymbol{\nu} . \alpha$ is a type of name-abstractions
datatype term =
Var of ν
over values of type $\boldsymbol{\alpha}$
(not ν * α, or $\nu \rightarrow \boldsymbol{\alpha}$!)

$$
\text { letrec } v a r=\text { term in term }
$$

plus
specification of how $\boldsymbol{\lambda}$, let and letrec bind vars (as usual)

datatype term =

$$
\operatorname{Var} \text { of } \nu
$$

| App of term * term
| Lam of ν.term
| Let of term * (ν. term)
| letrec var $=$ term in term
plus
specification of how $\boldsymbol{\lambda}$, let and letrec bind vars (as usual)

datatype term =

Var of ν
| App of term * term
| Lam of ν. term
| Let of term * (ν. term)
| Letrec of ν. (term*term)
plus
specification of how $\boldsymbol{\lambda}$, let and letrec bind vars (as usual)
datatype term =
Var of ν
| App of term * term
| Lam of ν. term
| Let of term* (ν. term)
| Letrec of ν. (term*term)

datatype term =

Var of ν
| App of term * term
| Lam of ν. term
| Let of term * (ν. term)
| Letrec of ν. (term*term)
(In [Pitts \& Gabbay, 2000]
ν is written as atm and $\nu . \alpha$ written as $[\nu] \alpha$.)

What is a type of "bindable names"?

- ν is like ML's unit ref - an equality type providing a generative supply of fresh names.

What is a type of "bindable names"?

- ν is like ML's unit ref - an equality type providing a generative supply of fresh names.
- Fresh names are locally scoped via

$$
\text { fresh } x: \nu \text { in exp end }
$$

an expression analogous to
let val x : unit ref $=$ ref() in exp end

What is a type of "bindable names"?

- ν is like ML's unit ref - an equality type providing a generative supply of fresh names.
- Fresh names are locally scoped via

$$
\text { fresh } x: \nu \text { in exp end }
$$

an expression analogous to

$$
\text { let val } x \text { : unit ref }=r e f() \text { in exp end }
$$

- The type system is used to "tame" the side-effects of dynamic name-generation...

ML Dynamic Semantics 101

$$
\exp \Rightarrow v
$$

- exp = expression to be evaluated
- $v=$ semantic value of the expression

ML Dynamic Semantics 101

$$
E \vdash \exp \Rightarrow v
$$

- exp = expression to be evaluated
- $v=$ semantic value of the expression
- $\boldsymbol{E}=$ environment

ML Dynamic Semantics 101

$$
s, E \vdash \exp \Rightarrow v, s^{\prime}
$$

- exp = expression to be evaluated
- $v=$ semantic value of the expression
- $\boldsymbol{E}=$ environment
- $s=$ global memory state before evaluation
- $s^{\prime}=$ global memory state after evaluation

In ML, evaluation of

$$
\text { let val } x=r e f() \text { in exp end }
$$

requires sequentially threaded memory states s :

$$
\begin{aligned}
& a \notin \operatorname{dom}(s) \\
& s \cup\{a\}, E[x \mapsto a] \vdash \exp \Rightarrow v, s^{\prime} \\
& s, E \vdash(\text { let val } x=\operatorname{ref}() \text { in exp end }) \Rightarrow v, s^{\prime}
\end{aligned}
$$

In ML, evaluation of

$$
\text { let val } x=r e f() \text { in exp end }
$$

requires sequentially threaded memory states s :

$$
\begin{aligned}
& a \notin \operatorname{dom}(s) \\
& s \cup\{a\}, E[\mathrm{x} \mapsto a] \vdash \exp \Rightarrow v, s^{\prime} \\
& s, E \vdash(\text { let val } \mathrm{x}=\operatorname{ref}() \text { in exp end }) \Rightarrow v, s^{\prime}
\end{aligned}
$$

This has bad consequences for program calculation (e.g. function expressions no longer satisfy extensionality).

Evaluation of well-typed

fresh x : ν in exp end

requires no sequential state:

$$
\begin{aligned}
& n \notin \mathrm{FN}(E) \\
& E[\mathrm{x} \mapsto n] \vdash \exp \Rightarrow v \\
& E \vdash(\text { fresh } x: \nu \text { in exp end }) \Rightarrow v
\end{aligned}
$$

Evaluation of well-typed

fresh $x: \nu$ in exp end

requires no sequential state:

$$
\begin{array}{ll}
n \notin(\operatorname{FN}(E) & \text { set of free } \\
E[x \mapsto n] \vdash \exp \Rightarrow v & \text { names of } E \\
E \vdash(\text { fresh } x: \nu \text { in exp end }) \Rightarrow v
\end{array}
$$

Evaluation of well-typed

fresh x : ν in exp end

requires no sequential state:

$$
\begin{aligned}
& n \notin \mathrm{FN}(E) \\
& E[\mathrm{x} \mapsto n] \vdash \exp \Rightarrow v \\
& E \vdash(\text { fresh } x: \nu \text { in exp end }) \Rightarrow v
\end{aligned}
$$

```
fresh x : \nu in exp end
```

requires no sequential state:

```
    n\not\in FN(E)
E[x\mapston]\vdash\operatorname{exp}=>v
E\vdash(fresh x : \nu in exp end) =>v
```

```
fresh x : \nu in exp end
```

requires no sequential state:

Whichever name $n \notin \operatorname{FN}(\boldsymbol{E})$ is used,

```
fresh x : \nu in exp end
```

requires no sequential state:

```
n\not\in FN(E)
E[x\mapston]\vdash\operatorname{exp}=>v
E\vdash(fresh x : \nu in exp end) }=>
```

Whichever name $n \notin \mathrm{FN}(\boldsymbol{E})$ is used, get the same v provided the implementation identifies semantic values v differing only in bound names.

Why do semantic values contain bound names?

They are introduced by evaluating name-abstraction expressions x. exp

Why do semantic values contain bound names?

They are introduced by evaluating name-abstraction expressions x . exp
statics:

$$
\begin{aligned}
& \Gamma \ni(x: \nu) \\
& \Gamma \vdash \exp : \tau \\
& \hline \Gamma \vdash x \cdot \exp : \nu \cdot \tau
\end{aligned}
$$

Why do semantic values contain bound names?

They are introduced by evaluating name-abstraction expressions x . exp
statics:
$\Gamma \ni(x: \nu)$
$\Gamma \vdash \exp : \tau$
$\Gamma \vdash x \cdot \exp : \nu \cdot \tau$
dynamics:

$$
\begin{aligned}
& E \ni(x \mapsto n) \\
& E \vdash \exp \Rightarrow v \\
& E \vdash x \cdot \exp \Rightarrow n \cdot v
\end{aligned}
$$

Why do semantic values contain bound names?

They are introduced by evaluating name-abstraction expressions x . exp
statics:

$$
\begin{aligned}
& \Gamma \ni(x: \nu) \\
& \Gamma \vdash \exp : \tau \\
& \Gamma \vdash x \cdot \exp : \nu . \tau
\end{aligned}
$$

dynamics:

$$
\begin{aligned}
& E \ni(x \mapsto n) \\
& E \vdash \exp \Rightarrow v \\
& E \vdash x \cdot \exp \Rightarrow n \cdot v
\end{aligned}
$$

Subtle point: expression-former \mathbf{x}. [-] is not a binder, whereas semantic-value-former $n \cdot[-]$ is. For example...

$x \cdot[-]$ is not a binder

If it were, $\operatorname{Lam}(x \cdot \operatorname{Var} z)$ and $\operatorname{Lam}(y \cdot \operatorname{Var} z)$ would be contextually equivalent- but they are not.

For example:

```
fresh x in
    fresh y in
        Lam(x . let val z=x in
            [ ]
        end)
    end
end
```


$x \cdot[-]$ is not a binder

If it were, $\operatorname{Lam}(x \cdot \operatorname{Var} z)$ and $\operatorname{Lam}(y \cdot \operatorname{Var} z)$ would be contextually equivalent- but they are not.

For example:

```
fresh x in
    fresh y in
        Lam(x. let val z=x in
            Lam(x . Varz)
        end)
    end
end
```


$x \cdot[-]$ is not a binder

If it were, $\operatorname{Lam}(x \cdot \operatorname{Var} z)$ and $\operatorname{Lam}(y \cdot \operatorname{Var} z)$ would be contextually equivalent-but they are not.

For example:
fresh x in
fresh y in
Lam(x. let val $z=x$ in
Lam (x.Varz)
end)
end
end
evaluates to $\operatorname{Lam}(n \cdot \operatorname{Lam}(n \cdot \operatorname{Var} n))$

$x \cdot[-]$ is not a binder

If it were, $\operatorname{Lam}(x \cdot \operatorname{Var} z)$ and $\operatorname{Lam}(y \cdot \operatorname{Var} z)$ would be contextually equivalent- but they are not.

For example:

```
fresh x in
    fresh y in
        Lam(x . let val z=x in
            [ ]
        end)
    end
end
```


$x \cdot[-]$ is not a binder

If it were, $\operatorname{Lam}(x \cdot \operatorname{Var} z)$ and $\operatorname{Lam}(y \cdot \operatorname{Var} z)$ would be contextually equivalent- but they are not.

For example:

```
fresh x in
    fresh y in
        Lam(x. let val z = x in
            Lam(y.Varz)
        end)
    end
end
```


$x \cdot[-]$ is not a binder

If it were, $\operatorname{Lam}(x \cdot \operatorname{Var} z)$ and $\operatorname{Lam}(y \cdot \operatorname{Var} z)$ would be contextually equivalent- but they are not.

For example:
fresh x in
fresh y in
$\operatorname{Lam}(x$. let val $z=x$ in
$\operatorname{Lam}(y \cdot \operatorname{Var} z)$
end)
end
end
evaluates to $\operatorname{Lam}\left(n \cdot \operatorname{Lam}\left(n^{\prime} \cdot \operatorname{Var} n\right)\right)$

How do we ensure semantic values get identified up to renaming of bound names?

Implement name-binding in the syntax of semantic values using de Bruijn indices.

How do we ensure semantic values get identified up to renaming of bound names?

Implement name-binding in the syntax of semantic values using de Bruijn indices.

This makes something automatic that was not so before:
the language syntax provides a "nameful" interface for manipulating the general-purpose, system-level "de Bruijnery", obviating the need for users-do-it-themselves de Bruijnery
(unless they want to do it themselves for reasons of efficiency...).

Case-analysis of name-abstractions using pattern matching

$$
\begin{aligned}
& E \vdash \exp \Rightarrow n \cdot v \\
& n \notin \mathrm{FN}(E) \\
& E[x \mapsto n, y \mapsto v] \vdash \exp ^{\prime} \Rightarrow v^{\prime} \\
& E \vdash\left(\text { case exp of } x \cdot y=>\exp ^{\prime}\right) \Rightarrow v^{\prime}
\end{aligned}
$$

Case-analysis of name-abstractions using pattern matching

$$
\begin{array}{lr}
E \vdash \exp \Rightarrow n \cdot v & \begin{array}{l}
\text { given } n \cdot v, \text { can always satisfy } \\
\text { this, because semantic values }
\end{array} \\
\text { are identified up to } \alpha \text {-equiv. } \\
E[\mathrm{x} \mapsto \boldsymbol{\mathrm { xN }}(\boldsymbol{E}) & \text { an,y } \mapsto v] \vdash \exp ^{\prime} \Rightarrow v^{\prime} \\
\hline E \vdash\left(\text { case exp of } \mathrm{x} \cdot \boldsymbol{y}=>\exp ^{\prime}\right) \Rightarrow v^{\prime}
\end{array}
$$

Case-analysis of name-abstractions using pattern matching

$$
\begin{aligned}
& \quad \begin{array}{l}
E \vdash \exp \Rightarrow n \cdot v \\
\\
n \notin \mathrm{FN}(E) \\
\frac{E[x \mapsto n, y \mapsto v] \vdash \exp ^{\prime} \Rightarrow v^{\prime}}{E \vdash\left(\text { case exp of } x \cdot y=>\exp ^{\prime}\right) \Rightarrow v^{\prime}} \\
\text { Well-typing of case }
\end{array}
\end{aligned}
$$

Case-analysis of name-abstractions using pattern matching

$$
\begin{aligned}
& E \vdash \exp \Rightarrow n \cdot v \\
& n \notin \mathrm{FN}(\boldsymbol{E}) \\
& E[\mathbf{x} \mapsto n, y \mapsto v] \vdash \exp ^{\prime} \Rightarrow v^{\prime} \\
& E \vdash\left(\text { case exp of } x \cdot y=>\exp ^{\prime}\right) \Rightarrow v^{\prime} \\
& \text { Well-typing of case guarantees that the value } v^{\prime} \text { is } \\
& \text { independent of the choice of name } n \notin \mathrm{FN}(\boldsymbol{E}) \text {. }
\end{aligned}
$$

Example: capture-avoiding substitution

datatype term $=$ Var of ν
| App of term * term
| Lam of ν. term
| Let of term * (ν. term)
| Letrec of ν. (term* term)

Example: capture-avoiding substitution

datatype term = Var of ν
| App of term * term
| Lamof ν. term
| Let of term * (ν. term)
| Letrecof ν. (term* term)
fun sbtx $(\operatorname{Var} y)=$ if $x=y$ then $t e l s e \operatorname{Var} y$
$\mid s b t \times(\operatorname{App}(u, v))=\operatorname{App}(s b t \times u, s b t \times v)$
|sbtx $(\operatorname{Lam}(y \cdot u))=\operatorname{Lam}(y \cdot s b t x u)$
| sbtx (Let(u, y.v)) =
Let (sbtxu, \boldsymbol{y}. sbtxv)
| sbtx (Letrec (y. (u, v)) = Letrec (y. (sbtxu, sbtxv))

- new forms of type
- new forms of type
- type system with "freshness inference"
- new forms of type
- type system with "freshness inference"
- bound names in semantic values...
- new forms of type
- type system with "freshness inference"
- bound names in semantic values...
- ...but name-abstraction isn't a binder
- new forms of type
- type system with "freshness inference"
- bound names in semantic values...
- ...but name-abstraction isn't a binder
- new form of pattern for name-abstraction
- new forms of type
- type system with "freshness inference"
- bound names in semantic values...
- ...but name-abstraction isn't a binder
- new form of pattern for name-abstraction

\relax

Key properties

- Correctness: α-equivalence classes of [closed] syntax trees for a grammar with binders are in bijection with [closed] values of the corresponding data type.

Key properties

- Correctness: α-equivalence classes of [closed] syntax trees for a grammar with binders are in bijection with [closed] values of the corresponding data type.
- Calculation: nice laws-because syntax-manipulation remains effect-free despite the "gensym-feel" of the approach.

Key properties

- Correctness: α-equivalence classes of [closed] syntax trees for a grammar with binders are in bijection with [closed] values of the corresponding data type.
- Calculation: nice laws-because syntax-manipulation remains effect-free despite the "gensym-feel" of the approach.
- Convenience: makes treatment of bound variables closer to informal practice.

Key properties

- Correctness: α-equivalence classes of [closed] syntax trees for a grammar with binders are in bijection with [closed] values of the corresponding data type.
- Calculation: nice laws-because syntax-manipulation remains effect-free despite the "gensym-feel" of the approach.
- Convenience: makes treatment of bound variables closer to informal practice.

Claim: these three Cs are not mutually Contradictory!

Key properties

- Correctness: α-equivalence classes of [closed] syntax trees for a grammar with binders are in bijection with [closed] values of the corresponding data type.
- Calculation: nice laws-because syntax-manipulation remains effect-free despite the "gensym-feel" of the approach.
- Convenience: makes treatment of bound variables closer to informal practice.

Correctness and Calculation properties established via a denotational semantics of names and name-abstraction given by FM-sets model (Gabbay \& Pitts, LICS'99) — joint work with Gabbay \& Shinwell.

Difficulties

As well as conventional typing judgements, static type system uses
freshness judgements $\mathbf{x} \# \exp$
whose intended meaning is
"name bound to identifier \boldsymbol{x} is not free in the semantic value to which exp evaluates (if any)"
That's not decidable! So the static type system only gives an approximation to it.

Difficulties

- It seems hard to devise decidable freshness rules for function expressions that get very close to the intended dynamic meaning.
(Our current freshness rule for functions is sound, but weak.)

Difficulties

- It seems hard to devise decidable freshness rules for function expressions that get very close to the intended dynamic meaning.
(Our current freshness rule for functions is sound, but weak.)
- It's easy to go wrong, even though we have a mathematical model (FM-sets) to guide us.
(E.g. original, "substituted-in" operational semantics was
type-unsound - environment-style is OK, though.)

To do

- Try to implement this approach as an extension of a complete ML system.
But how does freshness inference interact with polymorphism, exceptions, abstract types, references, ...?

To do

- Try to implement this approach as an extension of a complete ML system.
But how does freshness inference interact with polymorphism, exceptions, abstract types, references, ...?
- What about a lazy version?

To do

- Try to implement this approach as an extension of a complete ML system.
But how does freshness inference interact with polymorphism, exceptions, abstract types, references, ...?
- What about a lazy version?

For more information: FreshML project page〈www.cl.cam.ac.uk/users/amp12/freshml/〉.
"Every lecture should make only one main point" Gian-Carlo Rota Ten Lessons I wish I Had Been Taught Notices AMS 44(1997)22-25
"Every lecture should make only one main point"
Gian-Carlo Rota
Ten Lessons I wish I Had Been Taught
Notices AMS 44(1997)22-25
Mine is:
Familiar informal conventions about freshness of bound names in syntax-manipulating algorithms can be enforced automatically in pure functional programming via a static type system.

OUT-TAKES

Examples of typing and non-typing

datatype term = Var of ν
| App of term * term
| Lam of ν. term
| Let of term * (ν. term)
| Letrec of ν. (term* term)
val id $=$ fresh $x: \nu$ in Lam(x. $\operatorname{Var} x)$ end

- id : term and id $\Rightarrow \operatorname{Lam}(n \cdot \operatorname{Var} n)$ for any name n (but note that $\operatorname{Lam}(n \cdot \operatorname{Var} n)=\operatorname{Lam}\left(n^{\prime} \cdot \operatorname{Var} n^{\prime}\right)$, any n, n^{\prime})

Examples of typing and non-typing

datatype term $=$ Var of ν

> | App of term * term
| Lamof ν. term
| Let of term * (ν. term)
| Letrec of ν. (term * term)
val new_var $=$ fresh $\mathrm{x}: \nu$ in Var x end

- new_var is not well-typed.
good! - because it evaluates non-deterministically to Var n, any n

