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Can sum up the subject of this talk
in three words:

syntax,
syntax,
syntax!
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The mathematics of syntax
Seems of no interest to
mathematicians and of little
interest to logicians. (?)

Vital for computer science —
because of symbolic computation
and automated reasoning.

Has yet to reach an intellectual
fixpoint for syntax involving
name-binding and freshness of
names.
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Plan
Review initial algebra view of
abstract syntax.

Abstract syntax is not abstract
enough for name-binding and
freshness of names.

Category theory to the rescue!

Equivariant initial algebra
semantics for ‘nominal’ signatures.

Applications to metaprogramming.
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How to represent syntax?
∫ x

0

(
∫ y

1

xy dx

)

+ y dy
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How to represent syntax?
\int 0 ^ x ( \int 1 ^ y

{ x y } d x ) + y d y

“Concrete syntax” — sequences of
tokens generated by context free
grammars, etc, etc.

Not structurally abstract.
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How to represent syntax?

∫

0

x

+

∫

1

y

×
x

y
x

y
y

“Abstract syntax” — parse trees.
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Initial algebra semantics
A signature Σ determines a
functorial, sum-of-products
construction on sets X :

X 7→ TΣ(X) ,
∑

F∈Σ Xar(F )
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Initial algebra semantics
A signature Σ determines a
functorial, sum-of-products
construction on sets X :

X 7→ TΣ(X) ,
∑

F∈Σ Xar(F )

single-sorted, for simplicity;
so arity of each operator
F ∈ Σ is just the number
ar(F ) ∈ of its
arguments
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Initial algebra semantics
A signature Σ determines a
functorial, sum-of-products
construction on sets X :

X 7→ TΣ(X) ,
∑

F∈Σ Xar(F )

typical element
(F, (x1, . . . , xn)),
where operator F ∈ Σ
has arity ar(F ) = n
and x1, . . . , xn ∈ X
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Initial algebra semantics
set IΣ , {parse trees over Σ}

bijection TΣ(IΣ) −→ IΣ
between (F, (t1, . . . , tn)) in TΣ(IΣ)
and trees F

t1 · · · tn

in IΣ

are determined uniquely up to
bijection by their
initial algebra property. . .
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Initial algebra property

TΣ(IΣ) IΣ

TΣ(X) X
f

f

∼=

T (f)

For any
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Initial algebra property

TΣ(IΣ) IΣ

TΣ(X) X
f

f

∼=

T (f)there is a unique such that

ICALP 2002 – p.8



Initial algebra property

TΣ(IΣ) IΣ

TΣ(X) X
f

f

∼=

T (f) commutes

f(t) applies f iteratively, according to the
structure of the tree t.
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Initial algebra property
Encompasses useful principles of

structural recursion
and

structural induction

for parse trees over Σ.
(Generalises primitive recursion and
mathematical induction for the natural
numbers.)
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Initial algebra property
Encompasses useful principles of

structural recursion
and

structural induction

for parse trees over Σ.

‘Arrow-theoretic’ rather than
‘element-theoretic’
characterisation of parse
trees—important later.
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Abstract syntax is not
sufficiently abstract

Parse trees take no account of
variable binding.
∫ x

0

(∫ y

1 xy dx
)

+ y dy
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Abstract syntax is not
sufficiently abstract

Parse trees take no account of
variable binding.
∫ x

0

(∫ y

1 xy dx
)

+ y dy
∫ x

0

(∫ y

1 uy du
)

+ y dy

semantically equal expressions,
represented by different, but
α-convertible parse trees.
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Abstract syntax is not
sufficiently abstract

Parse trees take no account of
variable binding.
∫ x

0

(∫ y

1 xy dx
)

+ y dy
∫ x

0

(∫ x

1 ux du
)

+ x dx

Isn’t this a matter of semantics rather
than syntax? No, because. . .
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Substitution
E.g. in order to respect meaning, the
result of the syntactic operation

substitute 2x for the free
occurrence of y in
∫ 1

0 (x + y)dx

is not
∫ 1

0 (x + 2x)dx, but rather, is
∫ 1

0 (u + 2x)du, where u is fresh.
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Substitution
E.g. in order to respect meaning, the
result of the syntactic operation

substitute 2x for the free
occurrence of y in
∫ 1

0 (x + y)dx = y + 0.5

is not
∫ 1

0 (x + 2x)dx, but rather, is
∫ 1

0 (u + 2x)du, where u is fresh.
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Substitution
E.g. in order to respect meaning, the
result of the syntactic operation

substitute 2x for the free
occurrence of y in
∫ 1

0 (x + y)dx

is not
∫ 1

0 (x + 2x)dx, but rather, is
∫ 1

0 (u + 2x)du, where u is fresh.
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The problem
Hand-coding notions of
free and bound variables,
renaming of bound variables,
freshness of variables
substitution for free variables, etc

is painful and error-prone for complex
languages, or large programs.

Need better mathematical foundations
leading to better automatic support
for these tasks.
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Wanted
Generalisation of initial algebra
semantics yielding useful principles of
structural recursion/induction for
parse trees modulo α-conversion
over a nominal signature.
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Wanted
Generalisation of initial algebra
semantics yielding useful principles of
structural recursion/induction for
parse trees modulo α-conversion
over a nominal signature.

close to informal practice
(cf. “Barendregt Variable
Convention”)

lead to improved languages for
metaprogramming
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Wanted
Generalisation of initial algebra
semantics yielding useful principles of
structural recursion/induction for
parse trees modulo α-conversion
over a nominal signature.

extension of usual notion of
many-sorted algebraic signature to
treat parse trees with lexically scoped
binders modulo α-equivalence
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Nominal signatures
Sorts partitioned in two:
sorts of bindable names (ν)
and sorts of data (δ).

Operators (F ) have arities
τ → δ, where
τ ::= ν | δ | 1 | τ ,τ | ν.τ

ICALP 2002 – p.14



Nominal signatures
Sorts partitioned in two:
sorts of bindable names (ν)
and sorts of data (δ).

Operators (F ) have arities
τ → δ, where
τ ::= ν | δ | 1 | τ ,τ | ν.τ

type of
pairs

type of name-
abstractions
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Nominal signatures
Sorts partitioned in two:
sorts of bindable names (ν)
and sorts of data (δ).

Operators (F ) have arities
τ → δ, where
τ ::= ν | δ | 1 | τ ,τ | ν.τ

here, for simplicity,
we will assume
there’s just one
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Nominal signatures
Closely related notions:

binding signatures of Fiore, Plotkin
& Turi (LICS 1999)

nominal algebras of Honsell,
Miculan & Scagnetto (ICALP
2001)
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Nominal signatures
Closely related notions:

binding signatures of Fiore, Plotkin
& Turi (LICS 1999)

nominal algebras of Honsell,
Miculan & Scagnetto (ICALP
2001)

N.B. all these notions of signature restrict attention to
iterated, but unary name-binding—there are other
kinds of lexically scoped binder.

ICALP 2002 – p.15



Example: π-calculus
sort of bindable names: ν (channels)

sort of data: π (processes)

operators: 0 : 1 → π
Par : π, π → π
Sum : π, π → π

In : ν, (ν.π) → π
Out : ν, ν, π → π
Tau : π → π
Nu : ν.π → π

Guard : ν, ν, π → π
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Example: an untyped FPL
sort of bindable names: var (variables)
sort of data: exp (expressions)

operators: Var : var → exp
App : exp, exp → exp
Fun : var .exp → exp
Let : exp, (var .exp) → exp

Letrec : var .(exp, exp) → exp
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Example: an untyped FPL
sort of bindable names: var (variables)
sort of data: exp (expressions)

operators: Var : var → exp
App : exp, exp → exp
Fun : var .exp → exp
Let : exp, (var .exp) → exp

Letrec : var .(exp, exp) → exp

Let(t, (x.t′))
stands for
let x = t in t′

Letrec(x.(t, t′))
stands for
letrec x = t in t′
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Parse trees and their types over a
nominal signature:

infinitely many atoms a : ν for each
sort ν of bindable names

() : 1 and
t : τ t′ : τ ′

(t, t′) : τ, τ ′

t : τ
a.t : ν.τ

for each atom a : ν

t : τ
F t : δ

if F has arity τ → δ
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α-Equivalence, =α

least congruence identifying
a.t with b.[a 7→b]t if b does
not occur (at all) in t

where
[a7→b]t = rename all free
occurrences of a to be b in t.
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Wanted
Generalisation of initial algebra
semantics yielding useful principles of
structural recursion/induction for
parse trees modulo α-conversion
over a nominal signature.
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Category theory
to the rescue!

The notions underlying initial algebra
semantics have purely
arrow-theoretic definitions, so . . .
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Category theory
to the rescue!

The notions underlying initial algebra
semantics have purely
arrow-theoretic definitions, so

. . .

change category from Set to one
with a suitable functorial construction
for modelling name-abstraction ν.τ

ICALP 2002 – p.21



Category theory
to the rescue!

The notions underlying initial algebra
semantics have purely
arrow-theoretic definitions, so

. . .

change category from Set to one
with a suitable functorial construction
for modelling name-abstraction ν.τ

not a new idea—cf. initial algebra
semantics in categories of domains,
in order to treat fixpoint recursion
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Two candidates to replace the
category of sets and functions
(both in Proc. LICS’99):

Fiore-Plotkin-Turi: category of
presheaves on finite sets &
functions
—nice categorical analysis of de Bruijn
indices/levels; not so nice (?) for
applications
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Two candidates to replace the
category of sets and functions
(both in Proc. LICS’99):

Fiore-Plotkin-Turi: category of
presheaves on finite sets &
injections

Gabbay-AMP: category of
FM-sets (' ‘Schanuel topos’)
—a semantics for name-abstraction and
freshness of names via use of
permutation actions
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Why use name-
permutation/swapping?
Problem of ‘capture’: as a total
operation on parse trees, [a 7→b](−)
doesn’t respect =α, so can’t be part
of a theory of terms modulo =α.

E.g. b.a =α c.a, but applying [a7→b]

[a7→b](b.a) = b.b 6=α c.b = [a7→b](c.a).

A nice alternative: use a less
complicated form of renaming

(a b)·t = swap all occurrences
of a and b in t

Unlike for [a7→b](−), do have
t =α t′ implies (a b)·t =α (a b)·t′.
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Why use name-
permutation/swapping?
Problem of ‘capture’: as a total
operation on parse trees, [a 7→b](−)
doesn’t respect =α, so can’t be part
of a theory of terms modulo =α.

Traditional solution: replace [a 7→b]t by
a more complicated, capture-avoiding
form of renaming (and substitution).

A nice alternative: use a less
complicated form of renaming

(a b)·t = swap all occurrences
of a and b in t

Unlike for [a7→b](−), do have
t =α t′ implies (a b)·t =α (a b)·t′.
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Inductive definition of =α
a =α a

() =α ()
t1 =α t′

1
t2 =α t′

2

(t1, t2) =α (t′
1
, t′

2
)

t =α t′

a.t =α a.t′

a′ 6= a

a′ # t
(a a′)·t =α t′

a.t =α a′.t′

t =α t′

F t =α F t′
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Inductive definition of =α
a =α a

() =α ()
t1 =α t′

1
t2 =α t′

2

(t1, t2) =α (t′
1
, t′

2
)

t =α t′

a.t =α a.t′

a′ 6= a

a′ # t
(a a′)·t =α t′

a.t =α a′.t′

t =α t′

F t =α F t′ Freshness: “a′ does not
occur in t”
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Category of FM-sets
Fix an infinite set of ‘atoms’ a, b, c . . .

Objects: sets X equipped with an
-permutation action, all of
whose elements have the
finite support property
each x ∈ X satisfies (a b)·x = x
for all but finitely many a, b ∈ .
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Category of FM-sets
Fix an infinite set of ‘atoms’ a, b, c . . .

Objects: sets X equipped with an
-permutation action, all of
whose elements have the
finite support property

Morphisms: equivariant functions
f((a b)·x) = (a b)·(f x)
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Category of FM-sets
Fix an infinite set of ‘atoms’ a, b, c . . .

Objects: sets X equipped with an
-permutation action, all of
whose elements have the
finite support property

Morphisms: equivariant functions

Freshness a # x (“a is fresh for x”)
is a derived notion:
a # x iff (a b)·x = x for all but
finitely many b ∈ .
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Atom-abstractions, .X
quotient of × X by equivalence
relation identifying (a, x) and (a′, x′)
iff either a = a′ and x = x′,
or a′ # x and (a a′)·x = x′.

Functor .(−) : FM-Set → FM-Set
has excellent properties—in particular
it can be used with sums and
products in inductive definitions of
FM-sets.

ICALP 2002 – p.26



Atom-abstractions, .X
quotient of × X by equivalence
relation identifying (a, x) and (a′, x′)
iff either a = a′ and x = x′,
or a′ # x and (a a′)·x = x′.

Functor .(−) : FM-Set → FM-Set
has excellent properties—in particular
it can be used with sums and
products in inductive definitions of
FM-sets.
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Theorem
For nominal signature Σ,

{parse trees over Σ}/=α
with its natural FM-sets structure
is initial algebra for associated functor
TΣ : FM-Set → FM-Set.
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Theorem
For nominal signature Σ,

{parse trees over Σ}/=α
with its natural FM-sets structure
is initial algebra for associated functor
TΣ : FM-Set → FM-Set.

for simplicity, assume Σ has a
single data sort δ and a single
sort of bindable names ν
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Theorem
For nominal signature Σ,

{parse trees over Σ}/=α
with its natural FM-sets structure
is initial algebra for associated functor
TΣ : FM-Set → FM-Set.

Lemma: support of α-equivalence
class of a parse tree coincides with
the set of free names of (any
representative) parse tree.
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Theorem
For nominal signature Σ,

{parse trees over Σ}/=α
with its natural FM-sets structure
is initial algebra for associated functor
TΣ : FM-Set → FM-Set.

generalises usual ‘sum-of-products’ functor
by interpreting name-abstraction arities
ν.(−) as atom-abstraction functors .(−)
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Wanted
Generalisation of initial algebra
semantics yielding useful principles of
structural recursion/induction for
parse trees modulo α-conversion
over a nominal signature.

close to informal practice
(“Barendregt Variable
Convention”)

lead to improved languages for
metaprogramming
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Close to informal practice
FM-Set models classical logic
+ ZFA + ¬AC.

Equivariance becomes part of the
implicit mathematical infra-
structure—no need to prove it
case-by-case.

Initial algebra property ⇒
structural induction involving
freshness quantifier—formalises a
common informal logical pattern.
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Close to informal practice
FM-Set models classical logic
+ ZFA + ¬AC.

Equivariance becomes part of the
implicit mathematical infra-
structure—no need to prove it
case-by-case.

Initial algebra property ⇒
structural induction involving
freshness quantifier—formalises a
common informal logical pattern.

“for some/any fresh name. . . ”
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Close to informal practice
FM-Set models classical logic
+ ZFA + ¬AC.

Equivariance becomes part of the
implicit mathematical infra-
structure—no need to prove it
case-by-case.

Initial algebra property ⇒
structural induction involving
freshness quantifier—formalises a
common informal logical pattern.

See it at work in the Cardelli-Caires
spatial process logic (TACS 2001 &
CONCUR 2002)
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Applications to
metaprogramming

Shinwell, Gabbay, AMP: FreshML
= ML +

bindable names and
name-abstraction types

name-abstraction patterns

static freshness checking,
guarantees run-time behaviour
respects =α
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Applications to
metaprogramming

Shinwell, Gabbay, AMP: FreshML

See
〈www.cl.cam.ac.uk/users/amp12/freshml/〉
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Applications to
metaprogramming

Urban, Gabbay, AMP:
extension of first-order unification to
parse trees mod =α over a nominal
signature

with applications to term-rewriting &
logic programming (work in progress).
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‘Syntax modulo’
Here: initial algebra semantics for
syntax modulo =α.

Use of name-permutation (rather
than renaming) leads to a rich theory
with good structural
recursion/induction principles for
syntax modulo =α.

Other important ways of making
syntax more abstract:

quotient by ‘structural
congruence’ in process calculus
(cf. the ‘Chemical abstract machine’)

graph structures
(e.g. semistructured data with
references)

Are there useful notions of structural
recursion/induction for these?
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‘Syntax modulo’
Other important ways of making
syntax more abstract:

quotient by ‘structural
congruence’ in process calculus
(cf. the ‘Chemical abstract machine’)

graph structures
(e.g. semistructured data with
references)

Are there useful notions of structural
recursion/induction for these?

ICALP 2002 – p.32



Final

¡Gracias por su atención!
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