Equivariant Syntax and Semantics

Andrew M. Pitts

Computer Laboratory

The mathematics of syntax

- Seems of no interest to mathematicians and of little interest to logicians. (?)
- Vital for computer science because of symbolic computation and automated reasoning.
- Has yet to reach an intellectual fixpoint for syntax involving name-binding and freshness of names.

Plan

- Review initial algebra view of abstract syntax.
- Abstract syntax is not abstract enough for name-binding and freshness of names.
- Category theory to the rescue!
- Equivariant initial algebra semantics for 'nominal' signatures.
- Applications to metaprogramming.

How to represent syntax?

 $\int_0^x \left(\int_1^y xy\,dx\right) + y\,dy$

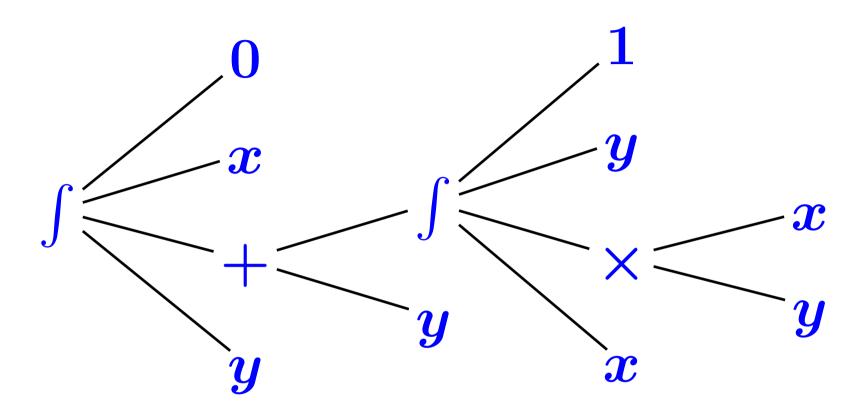
How to represent syntax?

\int _ 0 î x (\int _ 1 î y { x y } d x) + y d y

"Concrete syntax" — sequences of tokens generated by context free grammars, etc, etc.

Not structurally abstract.

How to represent syntax?



"Abstract syntax" — parse trees.

Initial algebra semantics

A signature Σ determines a functorial, sum-of-products construction on sets X:

 $X\mapsto T_{\Sigma}(X) riangleq \sum_{F\in\Sigma}X^{\operatorname{ar}(F)}$

Initial algebra semantics

A signature Σ determines a functorial, sum-of-products construction on sets X:

 $X\mapsto T_{\Sigma}(X) riangleq \sum_{F\in \Sigma} X^{\operatorname{ar}(F)}$

single-sorted, for simplicity; so arity of each operator $F \in \Sigma$ is just the number $ar(F) \in IN$ of its arguments

Initial algebra semantics

A signature Σ determines a functorial, sum-of-products - construction on sets X:

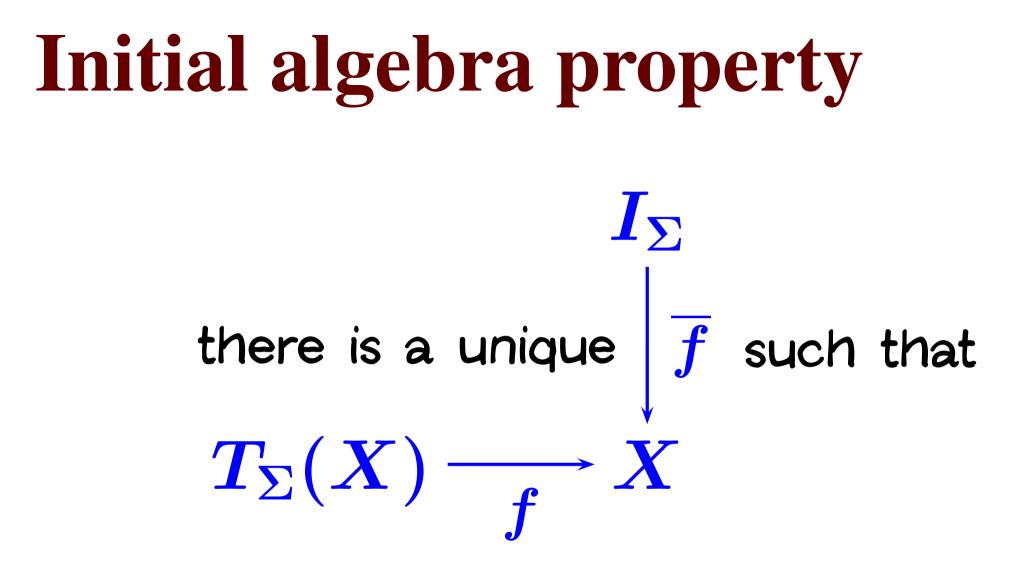
 $X\mapsto T_{\Sigma}(X) riangleq \sum_{F\in \Sigma} X^{\operatorname{ar}(F)}$

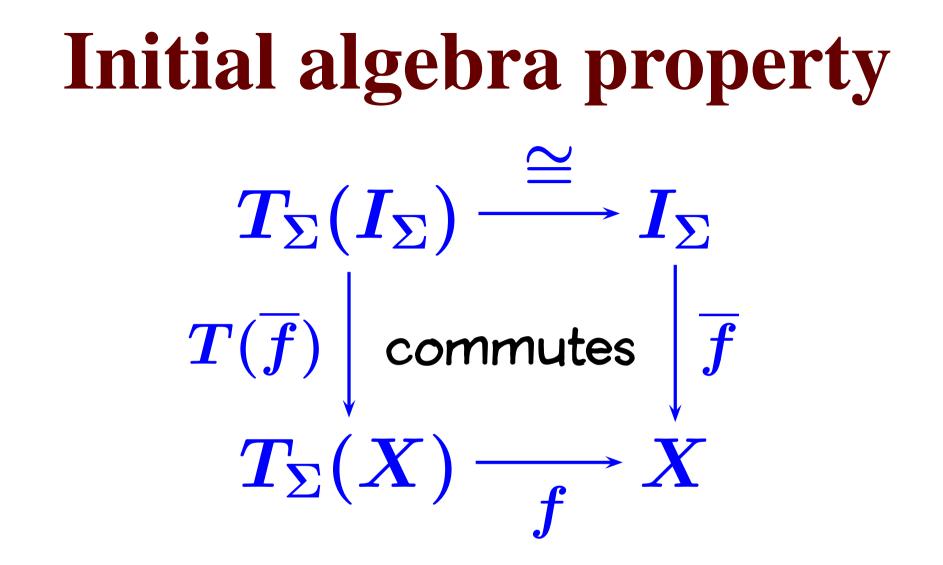
typical element $(F, (x_1, \ldots, x_n))$, where operator $F \in \Sigma$ has arity $\operatorname{ar}(F) = n$ and $x_1, \ldots, x_n \in X$ **Initial algebra semantics** \blacksquare set $I_{\Sigma} \triangleq \{$ parse trees over $\Sigma \}$ bijection $T_{\Sigma}(I_{\Sigma}) \longrightarrow I_{\Sigma}$ between $(F, (t_1, \ldots, t_n))$ in $T_{\Sigma}(I_{\Sigma})$ and trees in I_{Σ}

are determined uniquely up to bijection by their initial algebra property...

Initial algebra property

For any $T_{\Sigma}(X) \xrightarrow{f} X$





 $\overline{f}(t)$ applies f iteratively, according to the structure of the tree t.

Initial algebra property Encompasses useful principles of structural recursion and structural induction

for parse trees over Σ .

(Generalises primitive recursion and mathematical induction for the natural numbers.)

Initial algebra property Encompasses useful principles of structural recursion and structural induction for parse trees over Σ . Arrow-theoretic' rather than 'element-theoretic' characterisation of parse trees—important later.

Parse trees take no account of variable binding.

 $\int_0^x \left(\int_1^y xy\,dx\right) + y\,dy$

Parse trees take no account of variable binding.

$$\int_0^x \left(\int_1^y xy\,dx\right) + y\,dy$$

$$\int_0^x \left(\int_1^y uy \, du\right) + y \, dy$$

semantically equal expressions, represented by different, but α -convertible parse trees.

Parse trees take no account of variable binding.

$$\int_0^x \left(\int_1^y xy\,dx\right) + y\,dy$$

$$\int_0^x \left(\int_1^x ux \, du \right) + x \, dx$$

semantically equal expressions, represented by different, but α -convertible parse trees.

Parse trees take no account of variable binding.

$$\int_0^x \left(\int_1^y xy\,dx
ight) + y\,dy$$

 $\int_0^x \left(\int_1^x ux \, du \right) + x \, dx$

Isn't this a matter of semantics rather than syntax? No, because...

Substitution

E.g. in order to respect meaning, the result of the syntactic operation

substitute 2x for the free occurrence of y in $\int_0^1 (x+y) dx$

Substitution

E.g. in order to respect meaning, the result of the syntactic operation

substitute 2x for the free occurrence of y in $\int_0^1 (x+y) dx = y + 0.5$

Substitution

E.g. in order to respect meaning, the result of the syntactic operation

substitute 2x for the free occurrence of y in $\int_0^1 (x+y) dx$

is not $\int_0^1 (x+2x) dx$, but rather, is $\int_0^1 (u+2x) du$, where u is fresh.

The problem

Hand-coding notions of

free and bound variables, renaming of bound variables, freshness of variables substitution for free variables, etc is painful and error-prone for complex languages, or large programs.

Need better mathematical foundations leading to better automatic support for these tasks.

Wanted

Generalisation of initial algebra semantics yielding useful principles of structural recursion/induction for parse trees modulo α -conversion over a nominal signature.

Wanted

Generalisation of initial algebra semantics yielding useful principles of structural recursion/induction for parse trees modulo α -conversion over a nominal signature.

close to informal practice (cf. "Barendregt Variable Convention")

lead to improved languages for metaprogramming

Wanted

Generalisation of initial algebra semantics yielding useful principles of structural recursion/induction for parse trees modulo α -conversion over a nominal signature.

extension of usual notion of many-sorted algebraic signature to treat parse trees with lexically scoped binders modulo α -equivalence

- Sorts partitioned in two: sorts of bindable names (ν) and sorts of data (δ) .
- Operators (F) have arities $\tau \rightarrow \delta$, where $\tau := \nu | \delta | 1 | \tau, \tau | \nu. \tau$

Sorts partitioned in two: sorts of bindable names (ν) and sorts of data (δ) .

Operators (F) have arities $\tau \rightarrow \delta$, where $\tau ::= \nu | \delta | 1 | \tau, \tau | \nu, \tau$ type of pairs type of nameabstractions

Sorts partitioned in two: sorts of bindable names (ν) and sorts of data (δ).

Operators (F) have arities $\tau \rightarrow \delta$, where $\tau := \nu |\delta| |\tau, \tau| \nu. \tau$

> here, for simplicity, we will assume there's just one

Closely related notions:

binding signatures of Fiore, Plotkin & Turi (LICS 1999)

nominal algebras of Honsell, Miculan & Scagnetto (ICALP 2001)

Closely related notions:

binding signatures of Fiore, Plotkin & Turi (LICS 1999)

nominal algebras of Honsell, Miculan & Scagnetto (ICALP 2001)

N.B. all these notions of signature restrict attention to iterated, but *unary* name-binding—there are other kinds of lexically scoped binder.

Example: π -calculus

sort of bindable names: ν (channels) sort of data: π (processes) operators: $0:1 \rightarrow \pi$ $Par:\pi,\pi o \pi$ $Sum:\pi,\pi \to \pi$ $In:
u, (
u.\pi) \to \pi$ $Out:
u,
u, \pi
ightarrow \pi$ $Tau: \pi \to \pi$ $Nu: \nu. \pi \to \pi$ $Guard: \nu, \nu, \pi \to \pi$

Example: an untyped FPL

sort of bindable names: var (variables) sort of data: exp (expressions) operators: $Var: var \rightarrow exp$ $App: exp, exp \rightarrow exp$ $Fun: var.exp \rightarrow exp$ $Let: exp, (var.exp) \rightarrow exp$ $Letrec: var.(exp, exp) \rightarrow exp$

Example: an untyped FPL

sort of bindable names: var (variables)

 $\begin{array}{c} \textbf{Let}(t,(x.t')) \\ \textbf{stands for} \\ \textbf{let} \ x = t \ \textbf{in} \ t' \\ \textbf{p} : exp, exp \rightarrow exp \\ \hline Fun : var.exp \rightarrow exp \\ \hline Let : exp, (var.exp) \rightarrow exp \\ \hline Letrec : var.(exp, exp) \rightarrow exp \end{array}$

 $\frac{Letrec(x.(t,t'))}{\text{stands for}}$ $\frac{letrec \ x = t \ in \ t'}{}$

Parse trees and their types over a nominal signature:

infinitely many atoms $a:\nu$ for each sort ν of bindable names

():1 and
$$rac{t: au \ t': au'}{(t,t'): au, au'}$$

$$\begin{array}{c} t:\tau\\ \hline a.t:\nu.\tau \end{array}$$

for each atom $a: \nu$

$$\begin{array}{|c|c|c|c|}\hline t : \tau \\ \hline F t : \delta \end{array} \ \ \text{if} \ F \ \text{has arity} \ \tau \to \delta \end{array}$$

α -Equivalence, $=_{\alpha}$

least congruence identifying a.t with $b.[a \mapsto b]t$ if b does not occur (at all) in t

where

 $[a \mapsto b]t = rename$ all free occurrences of a to be b in t.

Wanted

Generalisation of initial algebra semantics yielding useful principles of structural recursion/induction for parse trees modulo α -conversion over a nominal signature.

Category theory to the rescue!

The notions underlying initial algebra semantics have purely arrow-theoretic definitions, so ...

Category theory to the rescue!

The notions underlying initial algebra semantics have purely arrow-theoretic definitions, so change category from <u>Set</u> to one with a suitable functorial construction for modelling name-abstraction ν . τ

Category theory to the rescue!

The notions underlying initial algebra semantics have purely arrow-theoretic definitions, so -change category from Set to one with a suitable functorial construction for modelling name-abstraction ν . τ

not a new idea—cf. initial algebra semantics in categories of domains, in order to treat fixpoint recursion Two candidates to replace the category of sets and functions (both in Proc. LICS'99):

Fiore-Plotkin-Turi: category of presheaves on finite sets & functions

-nice categorical analysis of de Bruijn indices/levels; not so nice (?) for applications Two candidates to replace the category of sets and functions (both in Proc. LICS'99):

Fiore-Plotkin-Turi: category of presheaves on finite sets & injections

Gabbay-AMP: category of FM-sets (~ 'Schanuel topos') —a semantics for name-abstraction and freshness of names via use of permutation actions

Why use namepermutation/swapping?

Problem of 'capture': as a total operation on parse trees, $[a \mapsto b](-)$ doesn't respect $=_{\alpha}$, so can't be part of a theory of terms modulo $=_{\alpha}$.

E.g. $b.a =_{\alpha} c.a$, but applying $[a \mapsto b]$ $[a \mapsto b](b.a) = b.b \neq_{\alpha} c.b = [a \mapsto b](c.a).$

Why use namepermutation/swapping?

Problem of 'capture': as a total operation on parse trees, $[a \mapsto b](-)$ doesn't respect $=_{\alpha}$, so can't be part of a theory of terms modulo $=_{\alpha}$.

Traditional solution: replace $[a \mapsto b]t$ by a more complicated, capture-avoiding form of renaming (and substitution).

Why use namepermutation/swapping?

Problem of 'capture': as a total operation on parse trees, $[a \mapsto b](-)$ doesn't respect $=_{\alpha}$, so can't be part of a theory of terms modulo $=_{\alpha}$.

A nice alternative: use a less complicated form of renaming

 $(a b) \cdot t = swap all occurrences$ of a and b in t

Inductive definition of $=_{\alpha}$

 $a =_{\alpha} a$

$$() =_{\alpha} () \qquad \frac{t_1 =_{\alpha} t'_1 \quad t_2 =_{\alpha} t'_2}{(t_1, t_2) =_{\alpha} (t'_1, t'_2)}$$

$$t =_{\alpha} t'$$
$$a.t =_{\alpha} a.t'$$

 $egin{array}{c} t =_lpha t' \ \overline{F \, t} =_lpha F \, t' \end{array}$

$$a' \neq a$$

 $a' \# t$
 $(a a') \cdot t =_{\alpha} t'$
 $a.t =_{\alpha} a'.t'$

Inductive definition of $=_{\alpha}$

 $a =_{\alpha} a$

$$() =_{\alpha} () \qquad \frac{t_1 =_{\alpha} t'_1 \quad t_2 =_{\alpha} t'_2}{(t_1, t_2) =_{\alpha} (t'_1, t'_2)}$$

$$\frac{t =_{\alpha} t'}{a.t =_{\alpha} a.t'}$$

$$\frac{t =_{\alpha} t'}{F t =_{\alpha} F t'}$$

$$a' \neq a$$

$$a' \# t$$

$$(a a') \cdot t =_{\alpha} t'$$

$$a.t =_{\alpha} a'.t'$$
Freshness: "a' does occur in t"

Category of FM-sets

Fix an infinite set A of 'atoms' a, b, c ...

Objects: sets X equipped with an A-permutation action, all of whose elements have the finite support property each $x \in X$ satisfies $(a \ b) \cdot x = x$ for all but finitely many $a, b \in A$.

Category of FM-sets

Fix an infinite set A of 'atoms' a, b, c ...

- Objects: sets X equipped with an A-permutation action, all of whose elements have the finite support property
- Morphisms: equivariant functions $f((a b) \cdot x) = (a b) \cdot (f x)$

Category of FM-sets

Fix an infinite set A of 'atoms' a, b, c ...

- Objects: sets X equipped with an A-permutation action, all of whose elements have the finite support property
- Morphisms: equivariant functions
- Freshness a # x ("a is fresh for x") is a derived notion: a # x iff $(a b) \cdot x = x$ for all but finitely many $b \in A$.

Atom-abstractions, A.X

quotient of $\mathbb{A} \times X$ by equivalence relation identifying (a, x) and (a', x')

iff either a = a' and x = x', or a' # x and $(a a') \cdot x = x'$.

Atom-abstractions, A.X

quotient of $\mathbb{A} \times X$ by equivalence relation identifying (a, x) and (a', x')

iff either a = a' and x = x', or a' # x and $(a a') \cdot x = x'$.

Functor A.(-): FM-Set \rightarrow FM-Set has excellent properties—in particular it can be used with sums and products in inductive definitions of FM-sets.

For nominal signature Σ ,

{parse trees over Σ }/= $_{\alpha}$ with its natural FM-sets structure is initial algebra for associated functor T_{Σ} : FM-Set \rightarrow FM-Set.

For nominal signature Σ ,

{parse trees over Σ }/= $_{\alpha}$ with its natural FM-sets structure is initial algebra for associated functor T_{Σ} : FM-Set \rightarrow FM-Set.

for simplicity, assume Σ has a single data sort δ and a single sort of bindable names ν

For nominal signature Σ ,

{parse trees over Σ }/= $_{\alpha}$ with its natural FM-sets structure is initial algebra for associated functor T_{Σ} : FM-Set \rightarrow FM₇Set.

> Lemma: support of α -equivalence class of a parse tree coincides with the set of free names of (any representative) parse tree.

For nominal signature Σ ,

{parse trees over Σ }/= $_{\alpha}$ with its natural FM-sets structure

is initial algebra for associated functor T_{Σ} : FM-Set \rightarrow FM-Set.

generalises usual 'sum-of-products' functor by interpreting name-abstraction arities ν .(-) as atom-abstraction functors Al.(-)

Wanted

Generalisation of initial algebra semantics yielding useful principles of structural recursion/induction for parse trees modulo α -conversion over a nominal signature.

close to informal practice ("Barendregt Variable Convention")

lead to improved languages for metaprogramming

Close to informal practice

FM-Set models classical logic $+ ZFA + \neg AC$.

Equivariance becomes part of the implicit mathematical infrastructure—no need to prove it case-by-case.

■ Initial algebra property ⇒ structural induction involving freshness quantifier—formalises a common informal logical pattern.

Close to informal practice

FM-Set models classical logic $+ ZFA + \neg AC$.

Equivariance becomes part of the implicit mathematical infrastructure—no need to prove it case-by-case.

"for some/any fresh name..." structural induction involving freshness quantifier—formalises a common informal logical pattern.

Close to informal practice

FM-Set models classical logic $+ ZFA + \neg AC$.

Equivariance becomes part of the implicit mathematical infrastructure—no need to prove it

See it at work in the Cardelli-Caires spatial process logic (TACS 2001 & CONCUR 2002)

HACKARA MAGGON MACHINE

 freshness quantifier—formalises a common informal logical pattern.

Applications to metaprogramming

- Shinwell, Gabbay, AMP: FreshML = ML +
 - bindable names and name-abstraction types
 - name-abstraction patterns
 - static freshness checking, guarantees run-time behaviour respects $=_{\alpha}$

Applications to metaprogramming

Shinwell, Gabbay, AMP: FreshML

See

{www.cl.cam.ac.uk/users/amp12/freshml/>

Applications to metaprogramming

Urban, Gabbay, AMP: extension of first-order unification to parse trees mod $=_{\alpha}$ over a nominal signature

with applications to term-rewriting & logic programming (work in progress).

'Syntax modulo'

Here: initial algebra semantics for syntax modulo $=_{\alpha}$.

Use of name-permutation (rather than renaming) leads to a rich theory with good structural recursion/induction principles for syntax modulo $=_{\alpha}$.

'Syntax modulo'

Other important ways of making syntax more abstract:

- quotient by 'structural congruence' in process calculus (cf. the 'Chemical abstract machine')
- graph structures (e.g. semistructured data with references)

Are there useful notions of structural recursion/induction for these?

Final

¡Gracias por su atención!