
Equivariant Syntax
and Semantics
Andrew M. Pitts

Computer Laboratory

ICALP 2002 – p.1

Can sum up the subject of this talk
in three words:

syntax,
syntax,
syntax!

ICALP 2002 – p.2

Can sum up the subject of this talk
in three words:

syntax,

syntax,
syntax!

ICALP 2002 – p.2

Can sum up the subject of this talk
in three words:

syntax,
syntax,

syntax!

ICALP 2002 – p.2

Can sum up the subject of this talk
in three words:

syntax,
syntax,
syntax!

ICALP 2002 – p.2

The mathematics of syntax
Seems of no interest to
mathematicians and of little
interest to logicians. (?)

Vital for computer science —
because of symbolic computation
and automated reasoning.

Has yet to reach an intellectual
fixpoint for syntax involving
name-binding and freshness of
names.

ICALP 2002 – p.3

Plan
Review initial algebra view of
abstract syntax.

Abstract syntax is not abstract
enough for name-binding and
freshness of names.

Category theory to the rescue!

Equivariant initial algebra
semantics for ‘nominal’ signatures.

Applications to metaprogramming.
ICALP 2002 – p.4

How to represent syntax?
∫ x

0

(
∫ y

1

xy dx

)

+ y dy

ICALP 2002 – p.5

How to represent syntax?
\int 0 ^ x (\int 1 ^ y

{ x y } d x) + y d y

“Concrete syntax” — sequences of
tokens generated by context free
grammars, etc, etc.

Not structurally abstract.

ICALP 2002 – p.5

How to represent syntax?

∫

0

x

+

∫

1

y

×
x

y
x

y
y

“Abstract syntax” — parse trees.

ICALP 2002 – p.5

Initial algebra semantics
A signature Σ determines a
functorial, sum-of-products
construction on sets X :

X 7→ TΣ(X) ,
∑

F∈Σ Xar(F)

ICALP 2002 – p.6

Initial algebra semantics
A signature Σ determines a
functorial, sum-of-products
construction on sets X :

X 7→ TΣ(X) ,
∑

F∈Σ Xar(F)

single-sorted, for simplicity;
so arity of each operator
F ∈ Σ is just the number
ar(F) ∈ of its
arguments

ICALP 2002 – p.6

Initial algebra semantics
A signature Σ determines a
functorial, sum-of-products
construction on sets X :

X 7→ TΣ(X) ,
∑

F∈Σ Xar(F)

typical element
(F, (x1, . . . , xn)),
where operator F ∈ Σ
has arity ar(F) = n
and x1, . . . , xn ∈ X

ICALP 2002 – p.6

Initial algebra semantics
set IΣ , {parse trees over Σ}

bijection TΣ(IΣ) −→ IΣ
between (F, (t1, . . . , tn)) in TΣ(IΣ)
and trees F

t1 · · · tn

in IΣ

are determined uniquely up to
bijection by their
initial algebra property. . .

ICALP 2002 – p.7

Initial algebra property

TΣ(IΣ) IΣ

TΣ(X) X
f

f

∼=

T (f)

For any

ICALP 2002 – p.8

Initial algebra property

TΣ(IΣ) IΣ

TΣ(X) X
f

f

∼=

T (f)there is a unique such that

ICALP 2002 – p.8

Initial algebra property

TΣ(IΣ) IΣ

TΣ(X) X
f

f

∼=

T (f) commutes

f(t) applies f iteratively, according to the
structure of the tree t.

ICALP 2002 – p.8

Initial algebra property
Encompasses useful principles of

structural recursion
and

structural induction

for parse trees over Σ.
(Generalises primitive recursion and
mathematical induction for the natural
numbers.)

ICALP 2002 – p.9

Initial algebra property
Encompasses useful principles of

structural recursion
and

structural induction

for parse trees over Σ.

‘Arrow-theoretic’ rather than
‘element-theoretic’
characterisation of parse
trees—important later.

ICALP 2002 – p.9

Abstract syntax is not
sufficiently abstract

Parse trees take no account of
variable binding.
∫ x

0

(∫ y

1 xy dx
)

+ y dy

ICALP 2002 – p.10

Abstract syntax is not
sufficiently abstract

Parse trees take no account of
variable binding.
∫ x

0

(∫ y

1 xy dx
)

+ y dy
∫ x

0

(∫ y

1 uy du
)

+ y dy

semantically equal expressions,
represented by different, but
α-convertible parse trees.

ICALP 2002 – p.10

Abstract syntax is not
sufficiently abstract

Parse trees take no account of
variable binding.
∫ x

0

(∫ y

1 xy dx
)

+ y dy
∫ x

0

(∫ x

1 ux du
)

+ x dx

semantically equal expressions,
represented by different, but
α-convertible parse trees.

ICALP 2002 – p.10

Abstract syntax is not
sufficiently abstract

Parse trees take no account of
variable binding.
∫ x

0

(∫ y

1 xy dx
)

+ y dy
∫ x

0

(∫ x

1 ux du
)

+ x dx

Isn’t this a matter of semantics rather
than syntax? No, because. . .

ICALP 2002 – p.10

Substitution
E.g. in order to respect meaning, the
result of the syntactic operation

substitute 2x for the free
occurrence of y in
∫ 1

0 (x + y)dx

is not
∫ 1

0 (x + 2x)dx, but rather, is
∫ 1

0 (u + 2x)du, where u is fresh.

ICALP 2002 – p.11

Substitution
E.g. in order to respect meaning, the
result of the syntactic operation

substitute 2x for the free
occurrence of y in
∫ 1

0 (x + y)dx = y + 0.5

is not
∫ 1

0 (x + 2x)dx, but rather, is
∫ 1

0 (u + 2x)du, where u is fresh.

ICALP 2002 – p.11

Substitution
E.g. in order to respect meaning, the
result of the syntactic operation

substitute 2x for the free
occurrence of y in
∫ 1

0 (x + y)dx

is not
∫ 1

0 (x + 2x)dx, but rather, is
∫ 1

0 (u + 2x)du, where u is fresh.

ICALP 2002 – p.11

The problem
Hand-coding notions of
free and bound variables,
renaming of bound variables,
freshness of variables
substitution for free variables, etc

is painful and error-prone for complex
languages, or large programs.

Need better mathematical foundations
leading to better automatic support
for these tasks.

ICALP 2002 – p.12

Wanted
Generalisation of initial algebra
semantics yielding useful principles of
structural recursion/induction for
parse trees modulo α-conversion
over a nominal signature.

ICALP 2002 – p.13

Wanted
Generalisation of initial algebra
semantics yielding useful principles of
structural recursion/induction for
parse trees modulo α-conversion
over a nominal signature.

close to informal practice
(cf. “Barendregt Variable
Convention”)

lead to improved languages for
metaprogramming

ICALP 2002 – p.13

Wanted
Generalisation of initial algebra
semantics yielding useful principles of
structural recursion/induction for
parse trees modulo α-conversion
over a nominal signature.

extension of usual notion of
many-sorted algebraic signature to
treat parse trees with lexically scoped
binders modulo α-equivalence

ICALP 2002 – p.13

Nominal signatures
Sorts partitioned in two:
sorts of bindable names (ν)
and sorts of data (δ).

Operators (F) have arities
τ → δ, where
τ ::= ν | δ | 1 | τ ,τ | ν.τ

ICALP 2002 – p.14

Nominal signatures
Sorts partitioned in two:
sorts of bindable names (ν)
and sorts of data (δ).

Operators (F) have arities
τ → δ, where
τ ::= ν | δ | 1 | τ ,τ | ν.τ

type of
pairs

type of name-
abstractions

ICALP 2002 – p.14

Nominal signatures
Sorts partitioned in two:
sorts of bindable names (ν)
and sorts of data (δ).

Operators (F) have arities
τ → δ, where
τ ::= ν | δ | 1 | τ ,τ | ν.τ

here, for simplicity,
we will assume
there’s just one

ICALP 2002 – p.14

Nominal signatures
Closely related notions:

binding signatures of Fiore, Plotkin
& Turi (LICS 1999)

nominal algebras of Honsell,
Miculan & Scagnetto (ICALP
2001)

ICALP 2002 – p.15

Nominal signatures
Closely related notions:

binding signatures of Fiore, Plotkin
& Turi (LICS 1999)

nominal algebras of Honsell,
Miculan & Scagnetto (ICALP
2001)

N.B. all these notions of signature restrict attention to
iterated, but unary name-binding—there are other
kinds of lexically scoped binder.

ICALP 2002 – p.15

Example: π-calculus
sort of bindable names: ν (channels)

sort of data: π (processes)

operators: 0 : 1 → π
Par : π, π → π
Sum : π, π → π

In : ν, (ν.π) → π
Out : ν, ν, π → π
Tau : π → π
Nu : ν.π → π

Guard : ν, ν, π → π

ICALP 2002 – p.16

Example: an untyped FPL
sort of bindable names: var (variables)
sort of data: exp (expressions)

operators: Var : var → exp
App : exp, exp → exp
Fun : var .exp → exp
Let : exp, (var .exp) → exp

Letrec : var .(exp, exp) → exp

ICALP 2002 – p.17

Example: an untyped FPL
sort of bindable names: var (variables)
sort of data: exp (expressions)

operators: Var : var → exp
App : exp, exp → exp
Fun : var .exp → exp
Let : exp, (var .exp) → exp

Letrec : var .(exp, exp) → exp

Let(t, (x.t′))
stands for
let x = t in t′

Letrec(x.(t, t′))
stands for
letrec x = t in t′

ICALP 2002 – p.17

Parse trees and their types over a
nominal signature:

infinitely many atoms a : ν for each
sort ν of bindable names

() : 1 and
t : τ t′ : τ ′

(t, t′) : τ, τ ′

t : τ
a.t : ν.τ

for each atom a : ν

t : τ
F t : δ

if F has arity τ → δ

ICALP 2002 – p.18

α-Equivalence, =α

least congruence identifying
a.t with b.[a 7→b]t if b does
not occur (at all) in t

where
[a7→b]t = rename all free
occurrences of a to be b in t.

ICALP 2002 – p.19

Wanted
Generalisation of initial algebra
semantics yielding useful principles of
structural recursion/induction for
parse trees modulo α-conversion
over a nominal signature.

ICALP 2002 – p.20

Category theory
to the rescue!

The notions underlying initial algebra
semantics have purely
arrow-theoretic definitions, so . . .

ICALP 2002 – p.21

Category theory
to the rescue!

The notions underlying initial algebra
semantics have purely
arrow-theoretic definitions, so

. . .

change category from Set to one
with a suitable functorial construction
for modelling name-abstraction ν.τ

ICALP 2002 – p.21

Category theory
to the rescue!

The notions underlying initial algebra
semantics have purely
arrow-theoretic definitions, so

. . .

change category from Set to one
with a suitable functorial construction
for modelling name-abstraction ν.τ

not a new idea—cf. initial algebra
semantics in categories of domains,
in order to treat fixpoint recursion

ICALP 2002 – p.21

Two candidates to replace the
category of sets and functions
(both in Proc. LICS’99):

Fiore-Plotkin-Turi: category of
presheaves on finite sets &
functions
—nice categorical analysis of de Bruijn
indices/levels; not so nice (?) for
applications

ICALP 2002 – p.22

Two candidates to replace the
category of sets and functions
(both in Proc. LICS’99):

Fiore-Plotkin-Turi: category of
presheaves on finite sets &
injections

Gabbay-AMP: category of
FM-sets (' ‘Schanuel topos’)
—a semantics for name-abstraction and
freshness of names via use of
permutation actions

ICALP 2002 – p.22

Why use name-
permutation/swapping?
Problem of ‘capture’: as a total
operation on parse trees, [a 7→b](−)
doesn’t respect =α, so can’t be part
of a theory of terms modulo =α.

E.g. b.a =α c.a, but applying [a7→b]

[a7→b](b.a) = b.b 6=α c.b = [a7→b](c.a).

A nice alternative: use a less
complicated form of renaming

(a b)·t = swap all occurrences
of a and b in t

Unlike for [a7→b](−), do have
t =α t′ implies (a b)·t =α (a b)·t′.

ICALP 2002 – p.23

Why use name-
permutation/swapping?
Problem of ‘capture’: as a total
operation on parse trees, [a 7→b](−)
doesn’t respect =α, so can’t be part
of a theory of terms modulo =α.

Traditional solution: replace [a 7→b]t by
a more complicated, capture-avoiding
form of renaming (and substitution).

A nice alternative: use a less
complicated form of renaming

(a b)·t = swap all occurrences
of a and b in t

Unlike for [a7→b](−), do have
t =α t′ implies (a b)·t =α (a b)·t′.

ICALP 2002 – p.23

Why use name-
permutation/swapping?
Problem of ‘capture’: as a total
operation on parse trees, [a 7→b](−)
doesn’t respect =α, so can’t be part
of a theory of terms modulo =α.

A nice alternative: use a less
complicated form of renaming

(a b)·t = swap all occurrences
of a and b in t

Unlike for [a7→b](−), do have
t =α t′ implies (a b)·t =α (a b)·t′.

ICALP 2002 – p.23

Inductive definition of =α
a =α a

() =α ()
t1 =α t′

1
t2 =α t′

2

(t1, t2) =α (t′
1
, t′

2
)

t =α t′

a.t =α a.t′

a′ 6= a

a′ # t
(a a′)·t =α t′

a.t =α a′.t′

t =α t′

F t =α F t′

ICALP 2002 – p.24

Inductive definition of =α
a =α a

() =α ()
t1 =α t′

1
t2 =α t′

2

(t1, t2) =α (t′
1
, t′

2
)

t =α t′

a.t =α a.t′

a′ 6= a

a′ # t
(a a′)·t =α t′

a.t =α a′.t′

t =α t′

F t =α F t′ Freshness: “a′ does not
occur in t”

ICALP 2002 – p.24

Category of FM-sets
Fix an infinite set of ‘atoms’ a, b, c . . .

Objects: sets X equipped with an
-permutation action, all of
whose elements have the
finite support property
each x ∈ X satisfies (a b)·x = x
for all but finitely many a, b ∈ .

ICALP 2002 – p.25

Category of FM-sets
Fix an infinite set of ‘atoms’ a, b, c . . .

Objects: sets X equipped with an
-permutation action, all of
whose elements have the
finite support property

Morphisms: equivariant functions
f((a b)·x) = (a b)·(f x)

ICALP 2002 – p.25

Category of FM-sets
Fix an infinite set of ‘atoms’ a, b, c . . .

Objects: sets X equipped with an
-permutation action, all of
whose elements have the
finite support property

Morphisms: equivariant functions

Freshness a # x (“a is fresh for x”)
is a derived notion:
a # x iff (a b)·x = x for all but
finitely many b ∈ .

ICALP 2002 – p.25

Atom-abstractions, .X
quotient of × X by equivalence
relation identifying (a, x) and (a′, x′)
iff either a = a′ and x = x′,
or a′ # x and (a a′)·x = x′.

Functor .(−) : FM-Set → FM-Set
has excellent properties—in particular
it can be used with sums and
products in inductive definitions of
FM-sets.

ICALP 2002 – p.26

Atom-abstractions, .X
quotient of × X by equivalence
relation identifying (a, x) and (a′, x′)
iff either a = a′ and x = x′,
or a′ # x and (a a′)·x = x′.

Functor .(−) : FM-Set → FM-Set
has excellent properties—in particular
it can be used with sums and
products in inductive definitions of
FM-sets.

ICALP 2002 – p.26

Theorem
For nominal signature Σ,

{parse trees over Σ}/=α
with its natural FM-sets structure
is initial algebra for associated functor
TΣ : FM-Set → FM-Set.

ICALP 2002 – p.27

Theorem
For nominal signature Σ,

{parse trees over Σ}/=α
with its natural FM-sets structure
is initial algebra for associated functor
TΣ : FM-Set → FM-Set.

for simplicity, assume Σ has a
single data sort δ and a single
sort of bindable names ν

ICALP 2002 – p.27

Theorem
For nominal signature Σ,

{parse trees over Σ}/=α
with its natural FM-sets structure
is initial algebra for associated functor
TΣ : FM-Set → FM-Set.

Lemma: support of α-equivalence
class of a parse tree coincides with
the set of free names of (any
representative) parse tree.

ICALP 2002 – p.27

Theorem
For nominal signature Σ,

{parse trees over Σ}/=α
with its natural FM-sets structure
is initial algebra for associated functor
TΣ : FM-Set → FM-Set.

generalises usual ‘sum-of-products’ functor
by interpreting name-abstraction arities
ν.(−) as atom-abstraction functors .(−)

ICALP 2002 – p.27

Wanted
Generalisation of initial algebra
semantics yielding useful principles of
structural recursion/induction for
parse trees modulo α-conversion
over a nominal signature.

close to informal practice
(“Barendregt Variable
Convention”)

lead to improved languages for
metaprogramming

ICALP 2002 – p.28

Close to informal practice
FM-Set models classical logic
+ ZFA + ¬AC.

Equivariance becomes part of the
implicit mathematical infra-
structure—no need to prove it
case-by-case.

Initial algebra property ⇒
structural induction involving
freshness quantifier—formalises a
common informal logical pattern.

ICALP 2002 – p.29

Close to informal practice
FM-Set models classical logic
+ ZFA + ¬AC.

Equivariance becomes part of the
implicit mathematical infra-
structure—no need to prove it
case-by-case.

Initial algebra property ⇒
structural induction involving
freshness quantifier—formalises a
common informal logical pattern.

“for some/any fresh name. . . ”

ICALP 2002 – p.29

Close to informal practice
FM-Set models classical logic
+ ZFA + ¬AC.

Equivariance becomes part of the
implicit mathematical infra-
structure—no need to prove it
case-by-case.

Initial algebra property ⇒
structural induction involving
freshness quantifier—formalises a
common informal logical pattern.

See it at work in the Cardelli-Caires
spatial process logic (TACS 2001 &
CONCUR 2002)

ICALP 2002 – p.29

Applications to
metaprogramming

Shinwell, Gabbay, AMP: FreshML
= ML +

bindable names and
name-abstraction types

name-abstraction patterns

static freshness checking,
guarantees run-time behaviour
respects =α

ICALP 2002 – p.30

Applications to
metaprogramming

Shinwell, Gabbay, AMP: FreshML

See
〈www.cl.cam.ac.uk/users/amp12/freshml/〉

ICALP 2002 – p.30

Applications to
metaprogramming

Urban, Gabbay, AMP:
extension of first-order unification to
parse trees mod =α over a nominal
signature

with applications to term-rewriting &
logic programming (work in progress).

ICALP 2002 – p.31

‘Syntax modulo’
Here: initial algebra semantics for
syntax modulo =α.

Use of name-permutation (rather
than renaming) leads to a rich theory
with good structural
recursion/induction principles for
syntax modulo =α.

Other important ways of making
syntax more abstract:

quotient by ‘structural
congruence’ in process calculus
(cf. the ‘Chemical abstract machine’)

graph structures
(e.g. semistructured data with
references)

Are there useful notions of structural
recursion/induction for these?

ICALP 2002 – p.32

‘Syntax modulo’
Other important ways of making
syntax more abstract:

quotient by ‘structural
congruence’ in process calculus
(cf. the ‘Chemical abstract machine’)

graph structures
(e.g. semistructured data with
references)

Are there useful notions of structural
recursion/induction for these?

ICALP 2002 – p.32

Final

¡Gracias por su atención!

ICALP 2002 – p.33

	Equivariant Syntax\ and Semantics
	
	The mathematics of syntax
	Plan
	How to represent syntax?
	Initial algebra semantics
	Initial algebra semantics
	Initial algebra property
	Initial algebra property
	Abstract syntax is not sufficiently abstract
	Substitution
	The problem
	Wanted
	Nominal signatures
	Nominal signatures
	Example: $pi $-calculus
	Example: an untyped FPL
	
	$alpha $-Equivalence, $aeq $
	Wanted
	Category theory\ to the rescue!
	
	Why use name-permutation/swapping?
	Inductive definition of $aeq $
	Category of FM-sets
	Atom-abstractions, smath {Atoms abs X}
	Theorem
	Wanted
	Close to informal practice
	Applications to metaprogramming
	Applications to metaprogramming
	`Syntax modulo'
	

