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Abstract. The notion of symmetry in mathematical structures is a pow-
erful tool in many branches of mathematics. The talk presents an appli-
cation of this notion to programming language theory.

Algebraic Syntax and Semantics

Since the 1970s at least, universal algebra has played an important role in pro-
gramming language theory (see [17] for a survey). For example, from the point
of view of ‘algebraic semantics’, a programming language is specified by a sig-
nature of sorts and typed function symbols. Then its abstract syntax, i.e. the
set of well-formed parse trees of the language, is given by the initial algebra for
this signature; and a denotational semantics for the language is given by the
unique homomorphism of algebras from the initial algebra to some algebra of
meanings. This algebraic viewpoint has useful computational consequences that
one sees directly in the development of term-rewriting systems [1] and in the no-
tion of user-declared datatype occurring in functional programming languages
such as ML [19] or Haskell [22]. The initial algebra property also has useful
logical consequences, since it gives rise to principles of structural recursion and
induction that are fundamental for proving properties of the programming lan-
guage. The fact that these principles can be automatically generated from the
language’s signature has facilitated incorporating them into general-purpose sys-
tems for machine-assisted reasoning (cf. the inductive sets package of the HOL
system [12], or Coq’s inductive types [4]).

In fact if one dips into the 1985 volume edited by Nivat and Reynolds [20]
representing the state of the art of algebraic semantics when it graduated from
the novel to the routine, one sees that this attractively simple framework is only
adequate for rather simple languages. For example, to see denotational seman-
tics for languages containing recursive features as just algebra homomorphisms,
one must mix universal algebra with domain theory [13] and consider the (in-
teresting!) complications of ‘continuous algebras’. And it is only recently, with
the work of Plotkin and Turi reported in [26], that (certain kinds of) struc-
tural operational semantics [25] have been fitted convincingly into the algebraic
framework.
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Getting in a Bind

In my opinion, the biggest defect of the algebraic approach to syntax and seman-
tics in its traditional form is that it cannot cope convincingly with programming
language constructs that involve binding. By the latter I mean constructs where
the names of certain entities (such as program variables, or function parame-
ters) can be changed, consistently and subject to freshness constraints within
a certain textual scope, without changing the meaning of the program. Such
‘statically scoped’ binding constructs are very common. Any semantics of them
has to identify programs that only differ up to bound names—α-equivalent pro-
grams, as one says. Furthermore, many transformations on the syntax of such
programs (such as ones involving capture-avoiding substitution) are only really
meaningful up to α-equivalence. Therefore one would really prefer to work with
a representation of syntax that abstracts away from differences caused by named
variants. In the conventional algebraic approach one has to define a suitable no-
tion of α-equivalence language-by-language, and then quotient the algebra of
parse trees by it. In doing so, one looses the initial algebra property and hence
looses automatically generated principles of structural recursion/induction that
apply directly to parse trees modulo α-equivalence.

Because issues to do with binders and α-equivalence are so prevalent, tiresome
and easy to get wrong, it is highly desirable to have a mathematical foundation
for syntax involving binders that enables one to generalise the initial algebra
view of syntax from parse trees to parse trees modulo α-equivalence. Ever since
Church [3], formal systems for total functions, i.e. various forms of typed λ-
calculus, have been used to model variable-binding operations; see [18] for an
excellent recent survey of this so-called higher-order abstract syntax and related
notions. However, this approach does not provide the simple generalisation of
the initial algebra viewpoint one would like. True, it is possible to develop struc-
tural induction/recursion principles for higher-order abstract syntax (see [6], [14]
and [15] for example), but the logical niceties are rather subtle, involving one
or more layers of carefully constrained metalanguage in which syntax represen-
tation, and reasoning about it, have to take place. It reminds me a bit of the
situation for non-standard analysis, whose logical subtleties hindered widespread
take-up by ‘users’.

A Fresh Approach

In fact it is possible to have a mathematical foundation for syntax involving
binders which directly generalises the classical initial algebra view of syntax from
parse trees to parse trees modulo α-equivalence. The papers by Fiore, Plotkin
and Turi [7] and Gabbay and myself [10, 11] present two different solutions
within the general framework of (pre)sheaf toposes [16] (although the connec-
tion with sheaf theory is not to the fore in the second work, which chooses to
present a set-theoretical version of its model). The work by Fiore et al provides
a very nice, syntax-independent and algebraic treatment of the notion of name-
less, or de Bruijn terms [5]; whereas that by Gabbay and myself hinges upon
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a syntax-independent characterisation of freshness of bound names in terms of
permutative renaming. Both approaches can characterise parse trees modulo
α-equivalence as initial algebras. But as for the work on higher-order abstract
syntax mentioned above, workers in ‘applied semantics’ will ask to what ex-
tent the logical (and in this case category- and set-theoretic) subtleties hinder
the take-up of these ideas in, say, systems for machine-assisted reasoning about
syntax and semantics, or in logic- and functional-programming languages for
metaprogramming?

In the talk I will try to give a positive answer to this question. I will show
that the model of abstract syntax with binders in [10, 11] can be formulated as
quite a simple and (I hope) appealing generalisation of the classical initial alge-
bra treatment of syntax without binders; and that this generalisation has good
logical and computational properties. The presentation is based on the notion of
nominal set from [23]. The whole approach stems from the somewhat surprising
observation that all of the concepts we need (α-equivalence, freshness, name-
binding, . . . ) can be—and, I would claim, should be—defined purely in terms
of the operation of swapping pairs of names. Thus the mathematical framework
takes into account certain symmetries on objects induced by name-swapping;
and the the notion equivariance, i.e. of invariance for these symmetries, plays a
prominent role in the theory.

The talk will introduce nominal sets and their use for modelling abstract
syntax with binders. I will survey some of the logical and computational con-
sequences of this ‘equivariant syntax and semantics’ that have been produced
so far: Gabbay’s packages for FM-set theory and higher order logic [8, 9] in
Isabelle [21]; a functional programming language incorporating our notion of
binding and freshness [24] currently being implemented by Shinwell; a ‘nominal’
version of first-order equational logic, unification and term-rewriting (work in
progress by Gabbay, Urban and myself); domain theory in nominal sets (work
in progress by Shinwell); the use of name swapping and quantification over fresh
names in a spatial logic for concurrent processes by Caires and Cardelli [2].
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