
Equivariant Syntax and Semantics
(Abstract of Invited Talk) ?

Andrew M. Pitts

University of Cambridge Computer Laboratory, Cambridge CB3 0FD, UK
Andrew.Pitts@cl.cam.ac.uk

Abstract. The notion of symmetry in mathematical structures is a pow-
erful tool in many branches of mathematics. The talk presents an appli-
cation of this notion to programming language theory.

Algebraic Syntax and Semantics

Since the 1970s at least, universal algebra has played an important role in pro-
gramming language theory (see [17] for a survey). For example, from the point
of view of ‘algebraic semantics’, a programming language is specified by a sig-
nature of sorts and typed function symbols. Then its abstract syntax, i.e. the
set of well-formed parse trees of the language, is given by the initial algebra for
this signature; and a denotational semantics for the language is given by the
unique homomorphism of algebras from the initial algebra to some algebra of
meanings. This algebraic viewpoint has useful computational consequences that
one sees directly in the development of term-rewriting systems [1] and in the no-
tion of user-declared datatype occurring in functional programming languages
such as ML [19] or Haskell [22]. The initial algebra property also has useful
logical consequences, since it gives rise to principles of structural recursion and
induction that are fundamental for proving properties of the programming lan-
guage. The fact that these principles can be automatically generated from the
language’s signature has facilitated incorporating them into general-purpose sys-
tems for machine-assisted reasoning (cf. the inductive sets package of the HOL
system [12], or Coq’s inductive types [4]).

In fact if one dips into the 1985 volume edited by Nivat and Reynolds [20]
representing the state of the art of algebraic semantics when it graduated from
the novel to the routine, one sees that this attractively simple framework is only
adequate for rather simple languages. For example, to see denotational seman-
tics for languages containing recursive features as just algebra homomorphisms,
one must mix universal algebra with domain theory [13] and consider the (in-
teresting!) complications of ‘continuous algebras’. And it is only recently, with
the work of Plotkin and Turi reported in [26], that (certain kinds of) struc-
tural operational semantics [25] have been fitted convincingly into the algebraic
framework.

? Research funded by UK EPSRC grant GR/R07615 and Microsoft Research Ltd.



2 Andrew Pitts

Getting in a Bind

In my opinion, the biggest defect of the algebraic approach to syntax and seman-
tics in its traditional form is that it cannot cope convincingly with programming
language constructs that involve binding. By the latter I mean constructs where
the names of certain entities (such as program variables, or function parame-
ters) can be changed, consistently and subject to freshness constraints within
a certain textual scope, without changing the meaning of the program. Such
‘statically scoped’ binding constructs are very common. Any semantics of them
has to identify programs that only differ up to bound names—α-equivalent pro-
grams, as one says. Furthermore, many transformations on the syntax of such
programs (such as ones involving capture-avoiding substitution) are only really
meaningful up to α-equivalence. Therefore one would really prefer to work with
a representation of syntax that abstracts away from differences caused by named
variants. In the conventional algebraic approach one has to define a suitable no-
tion of α-equivalence language-by-language, and then quotient the algebra of
parse trees by it. In doing so, one looses the initial algebra property and hence
looses automatically generated principles of structural recursion/induction that
apply directly to parse trees modulo α-equivalence.

Because issues to do with binders and α-equivalence are so prevalent, tiresome
and easy to get wrong, it is highly desirable to have a mathematical foundation
for syntax involving binders that enables one to generalise the initial algebra
view of syntax from parse trees to parse trees modulo α-equivalence. Ever since
Church [3], formal systems for total functions, i.e. various forms of typed λ-
calculus, have been used to model variable-binding operations; see [18] for an
excellent recent survey of this so-called higher-order abstract syntax and related
notions. However, this approach does not provide the simple generalisation of
the initial algebra viewpoint one would like. True, it is possible to develop struc-
tural induction/recursion principles for higher-order abstract syntax (see [6], [14]
and [15] for example), but the logical niceties are rather subtle, involving one
or more layers of carefully constrained metalanguage in which syntax represen-
tation, and reasoning about it, have to take place. It reminds me a bit of the
situation for non-standard analysis, whose logical subtleties hindered widespread
take-up by ‘users’.

A Fresh Approach

In fact it is possible to have a mathematical foundation for syntax involving
binders which directly generalises the classical initial algebra view of syntax from
parse trees to parse trees modulo α-equivalence. The papers by Fiore, Plotkin
and Turi [7] and Gabbay and myself [10, 11] present two different solutions
within the general framework of (pre)sheaf toposes [16] (although the connec-
tion with sheaf theory is not to the fore in the second work, which chooses to
present a set-theoretical version of its model). The work by Fiore et al provides
a very nice, syntax-independent and algebraic treatment of the notion of name-
less, or de Bruijn terms [5]; whereas that by Gabbay and myself hinges upon



Equivariant Syntax and Semantics 3

a syntax-independent characterisation of freshness of bound names in terms of
permutative renaming. Both approaches can characterise parse trees modulo
α-equivalence as initial algebras. But as for the work on higher-order abstract
syntax mentioned above, workers in ‘applied semantics’ will ask to what ex-
tent the logical (and in this case category- and set-theoretic) subtleties hinder
the take-up of these ideas in, say, systems for machine-assisted reasoning about
syntax and semantics, or in logic- and functional-programming languages for
metaprogramming?

In the talk I will try to give a positive answer to this question. I will show
that the model of abstract syntax with binders in [10, 11] can be formulated as
quite a simple and (I hope) appealing generalisation of the classical initial alge-
bra treatment of syntax without binders; and that this generalisation has good
logical and computational properties. The presentation is based on the notion of
nominal set from [23]. The whole approach stems from the somewhat surprising
observation that all of the concepts we need (α-equivalence, freshness, name-
binding, . . . ) can be—and, I would claim, should be—defined purely in terms
of the operation of swapping pairs of names. Thus the mathematical framework
takes into account certain symmetries on objects induced by name-swapping;
and the the notion equivariance, i.e. of invariance for these symmetries, plays a
prominent role in the theory.

The talk will introduce nominal sets and their use for modelling abstract
syntax with binders. I will survey some of the logical and computational con-
sequences of this ‘equivariant syntax and semantics’ that have been produced
so far: Gabbay’s packages for FM-set theory and higher order logic [8, 9] in
Isabelle [21]; a functional programming language incorporating our notion of
binding and freshness [24] currently being implemented by Shinwell; a ‘nominal’
version of first-order equational logic, unification and term-rewriting (work in
progress by Gabbay, Urban and myself); domain theory in nominal sets (work
in progress by Shinwell); the use of name swapping and quantification over fresh
names in a spatial logic for concurrent processes by Caires and Cardelli [2].

References

[1] F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge University
Press, 1998.

[2] L. Caires and L. Cardelli. A spatial logic for concurrency (part I). In N. Kobayashi
and B. C. Pierce, editors, Theoretical Aspects of Computer Software, 4th Interna-
tional Symposium, TACS 2001, Sendai, Japan, October 29-31, 2001, Proceedings,
volume 2215 of Lecture Notes in Computer Science, pages 1–38. Springer-Verlag,
Berlin, 2001.

[3] A. Church. A formulation of the simple theory of types. Journal of Symbolic
Logic, 5:56–68, 1940.

[4] The Coq proof assistant. Institut National de Recherche en Informatique et en
Automatique, France, 〈coq.inria.fr〉.

[5] N. G. de Bruijn. Lambda calculus notation with nameless dummies, a tool for
automatic formula manipulation, with application to the Church-Rosser theorem.
Indag. Math., 34:381–392, 1972.



4 Andrew Pitts

[6] J. Despeyroux, F. Pfenning, and C. Schürmann. Primitive recursion for higher-
order abstract syntax. In Typed Lambda Calculus and Applications, 3rd Inter-
national Conference, volume 1210 of Lecture Notes in Computer Science, pages
147–163. Springer-Verlag, Berlin, 1997.

[7] M. P. Fiore, G. D. Plotkin, and D. Turi. Abstract syntax and variable binding.
In 14th Annual Symposium on Logic in Computer Science, pages 193–202. IEEE
Computer Society Press, Washington, 1999.

[8] M. J. Gabbay. A Theory of Inductive Definitions with α-Equivalence: Semantics,
Implementation, Programming Language. PhD thesis, University of Cambridge,
2000.

[9] M. J. Gabbay. FM-HOL, a higher-order theory of names. In Thirty Five years of
Automath, Heriot-Watt University, Edinburgh. Informal proceedings, 2002.

[10] M. J. Gabbay and A. M. Pitts. A new approach to abstract syntax involving
binders. In 14th Annual Symposium on Logic in Computer Science, pages 214–
224. IEEE Computer Society Press, Washington, 1999.

[11] M. J. Gabbay and A. M. Pitts. A new approach to abstract syntax with variable
binding. Formal Aspects of Computing. Special issue in honour of Rod Burstall.
To appear.

[12] M. J. C. Gordon and T. F. Melham. Introduction to HOL. A theorem proving
environment for higher order logic. Cambridge University Press, 1993.

[13] C. A. Gunter and D. S. Scott. Semantic domains. In J. van Leeuwen, editor, Hand-
book of Theoretical Computer Science, volume B, pages 633–674. North-Holland,
1990.

[14] M. Hofmann. Semantical analysis of higher-order abstract syntax. In 14th An-
nual Symposium on Logic in Computer Science, pages 204–213. IEEE Computer
Society Press, Washington, 1999.

[15] F. Honsell, M. Miculan, and I. Scagnetto. An Axiomatic Approach to Meta-
reasoning on Nominal Algebras in HOAS. In 28th International Colloquium on
Automata, Languages and Programming, ICALP 2001, Crete, Greece, July 2001,
Proceedings, volume 2076 of Lecture Notes in Computer Science, pages 963–978.
Springer-Verlag, Heidelberg, 2001.

[16] S. MacLane and I. Moerdijk. Sheaves in Geometry and Logic. A First Introduction
to Topos Theory. Springer-Verlag, New York, 1992.

[17] K. Meinke and J. V. Tucker. Universal algebra. In S. Abramsky, D. M. Gabbay,
and T. S. E. Maibaum, editors, Handbook of Logic in Computer Science, volume 1,
pages 189–411. Oxford University Press, 1992.

[18] D. Miller. Abstract syntax for variable binders: An overview. In John Lloyd et al,
editors, Computational Logic - CL 2000 First International Conference London,
UK, July 24-28, 2000 Proceedings, volume 1861 of Lecture Notes in Artificial
Intelligence, pages 239–253. Springer-Verlag, 2000.

[19] R. Milner, M. Tofte, R. Harper, and D. MacQueen. The Definition of Standard
ML (Revised). MIT Press, 1997.

[20] M. Nivat and J. C. Reynolds, editors. Algebraic Methods in Semantics. Cambridge
University Press, 1985.

[21] L. C. Paulson. Isabelle: A Generic Theorem Prover, volume 828 of Lecture Notes
in Computer Science. Springer-Verlag, Berlin, 1994.

[22] S. L. Peyton Jones et al, editors. Report on the Programming Language Haskell
98. A Non-strict Purely Functional Language. February 1999. Available from
<www.haskell.org>.



Equivariant Syntax and Semantics 5

[23] A. M. Pitts. Nominal logic, a first order theory of names and binding. Submit-
ted for publication (a preliminary version appeared in the Proceedings of the 4th
International Symposium on Theoretical Aspects of Computer Software (TACS
2001), LNCS 2215, Springer-Verlag, 2001, pp 219–242), March 2002.

[24] A. M. Pitts and M. J. Gabbay. A metalanguage for programming with bound
names modulo renaming. In R. Backhouse and J. N. Oliveira, editors, Mathemat-
ics of Program Construction. 5th International Conference, MPC2000, Ponte de
Lima, Portugal, July 2000. Proceedings, volume 1837 of Lecture Notes in Com-
puter Science, pages 230–255. Springer-Verlag, Heidelberg, 2000.

[25] G. D. Plotkin. A structural approach to operational semantics. Technical Report
DAIMI FN-19, Aarhus University, 1981.

[26] D. Turi and G. D. Plotkin. Towards a mathematical operational semantics. In
12th Annual Symposium on Logic in Computer Science, pages 280–291. IEEE
Computer Society Press, Washington, 1997.


