
A New Approach to

Abstract Syntax Involving Binders

Andrew M. Pitts

Joint work with Murdoch Gabbay

Paper: see www.cl.cam.ac.uk/users/ap/papers/

Slides: see www.cl.cam.ac.uk/users/ap/talks/

Heriot-Watt 13/04/99 1

Logical frameworks for specifying/reasoning about

formal languages involving binding operations

The problem:

Classical theory

abstract syntax trees, algebraic data types, initial algebra

semantics, structural recursion/induction, etc

applied to signatures involving binders yields overly concrete

representations—lots of essentially routine constructions/proofs to

do with renaming bound variables & capture avoiding substitution

get done and re-done for each object-language on a case-by-case

basis.

Heriot-Watt 13/04/99 2

Logical frameworks for specifying/reasoning about

formal languages involving binding operations

Desiderata:

1. Alpha-conversion part of the meta-logic, hence no need to

develop it for each object logic separately.

2. Ditto for substitution.

3. Useful forms of structural recursion and induction.

4. Familiarity!—formalise existing practice, e.g.

• support reasoning with names of bound variables

• encompass usual, ‘no-binder’ theory of algebraic

datatypes.

Heriot-Watt 13/04/99 3

Logical frameworks for specifying/reasoning about

formal languages involving binding operations

Conventional wisdom:

Use typed lambda calculi— the higher order abstract syntax

(HOAS) approach. Satisfies desiderata 1 & 2. Makes 3 & 4 very

difficult.

Proposal:

Use ideas from Fraenkel-Mostowski permutation model of set

theory with atoms to fulfil desideratum 1, but not 2. Makes 3 & 4

possible in a really simple way.

Heriot-Watt 13/04/99 4

Permutation actions

• SA = group of permutations of c’tbly infinite set A (of ‘atoms’).

• An action of SA on a class X is a function

SA ×X → X
(π, x) 7→ π · x

satisfying id · x = x and π′ · (π · x) = (π′π) · x.

• SA-class = class + action.

Heriot-Watt 13/04/99 5

Examples of SA-classes

1. A itself, with action π · a = π(a).

2. Set of (abstract syntax trees for) lambda terms

Λ = µX .Var(A) | App(X ×X) | Lam(A×X)

with action

π · Var(a) = Var(π(a))
π · App(M,M ′) = App(π ·M,π ·M ′)
π · Lam(a,M) = Lam(π(a), π ·M).

3. pow(X) = subsets of SA-class X , with action

π · S = {π · x | x ∈ S}.

Heriot-Watt 13/04/99 6

Finite support property

Let X be an SA-class.

S ⊆ A supports x ∈ X if for all π ∈ SA that fix every element of

S, we have π · x = x.

x is finitely supported if exists finite S ⊆ A supporting x. In that

case there is a least such S, the support of x, supp(x) .

Write a# x to mean a /∈ supp(x).

Examples:

• every t ∈ Λ is finitely supported and a# t iff a does not occur in t.

• S ∈ pow(A) is finitely supported iff it is either finite or cofinite.

Heriot-Watt 13/04/99 7

Fraenkel-Mostowski universe, VFM(A)

is the least SA-class X satisfying

X = A+ pow fs(X)

where pow fs(X) is the sub-SA-class of X consisting of subsets

with finite support.

Axiomatics: VFM(A) is a model of ZFA satisfying

A /∈ powfin(A) (‘cos A not finite),

∀x .∃a ∈ A . a# x (‘cos every element has finite support),

and hence also

¬AC (‘cos ∀S ∈ powfin(A).∃a ∈ A.a /∈ S, but no choice function

has finite support).

Heriot-Watt 13/04/99 8

Three versions of variable-renaming for

Λ = µX .Var(A) | App(X ×X) | Lam(A×X)

[a′/a]M = capture-avoiding substitution of a′ for all free

occurrences of a in M (a, a′ ∈ A)

{a′/a}M = textual substitution of a′ for all free occurrences of

a in M

(a′ a) ·M = interchange of all occurrences (be they free,

bound, or binding) of a′ and a in M . (Special case of π ·M for

π ∈ SA the transposition (a′ a).)

Heriot-Watt 13/04/99 9

Recall usual definition of α-conversion, =α, as smallest congruence

relation on Λ containing Lam(a,M) =α Lam(a′, [a′/a]M).

Theorem. =α coincides with the relation∼⊆ Λ×Λ inductively

generated by the axioms and rules

Var(a) ∼ Var(a)

M1 ∼M ′1 M2 ∼M ′2
App(M1,M2) ∼ App(M ′1,M

′
2)

(a′′ a) ·M ∼ (a′′ a′) ·M ′

Lam(a,M) ∼ Lam(a′,M ′)
if a′′ #M,M ′

Heriot-Watt 13/04/99 10

A quantifier for ‘freshness’

Define Na ∈ A . φ to be ‘{a ∈ A | φ} is a cofinite subset of A’.

Fact: if fv(φ) ⊆ {a, ~x}, then fv(Na ∈ A . φ) ⊆ {~x} and

∃a ∈ A . a# ~x & φ

⇔ Na ∈ A . φ ⇔
∀a ∈ A . a# ~x⇒ φ

Here φ is a formula of ZFA and we make use of the

equivariance property of such formulas:

if fv(φ) ⊆ {~x}, then ∀π, ~x . (φ(~x) ⇔ φ(π · ~x)).

So can read Na ∈ A . φ as

‘for some/any fresh atom a, it is the case that φ’.

Heriot-Watt 13/04/99 11

Alpha-conversion of sets in VFM(A)

Write [a]x for∼-equivalence class of (a, x) ∈ A× VFM(A),

where

(a, x) ∼ (a′, x′) def⇔ Na′′ ∈ A . (a′′ a) · x = (a′′ a′) · x′

Fact: [a]x ∈ VFM(A) with supp([a]x) = supp(x) \ {a}.
Define the subclass Abs(A) ⊆ VFM(A) of A-abstractions to

be

Abs(A) def= {[a]x | a ∈ A & x ∈ VFM(A)}.

Heriot-Watt 13/04/99 12

A-abstractions as functions

Fact: each f ∈ Abs(A) is a unary functional relation, i.e.

(a, x) ∈ f & (a, x′) ∈ f ⇒ x = x′

with dom(f) = A \ supp(f).

Hence can apply f ∈ Abs(A) to any a satisfying a# f to

obtain f(a)—a concretion of the A-abstraction f .

Fact: each A-abstraction is uniquely determined by some/any of

its concretions: for all f, f ′ ∈ Abs(A)

(Na ∈ A . f(a) = f ′(a)) ⇒ f = f ′.

Heriot-Watt 13/04/99 13

The A-abstraction set-former, [A](−)

Given X ∈ VFM(A) \ A, define

[A]X def= {f ∈ Abs(A) | Na ∈ A . f(a) ∈ X}.

Fact: [A](−) is monotone for⊆ and preserves unions of
countable ascending chains in VFM(A).

Hence can use [A](−) in combination with× and + to form inductively

defined sets in VFM(A) via usual Tarski construction:

µX .F (X) =
⋃
n∈N

Fn(∅).

Moreover such F (−) are functors ([A](−) extends to a functor), and

µX .F (X) is an initial algebra for it.

Heriot-Watt 13/04/99 14

Λ/=α is an algebraic datatype in VFM(A)

Recall: Λ = µX .Var(A) | App(X ×X) | Lam(A×X).

Theorem. InVFM(A), quotient set of lambda terms mod alpha-

conversion, Λ/=α, is in bijection with the inductive set

Λα
def= µX .Varα(A) | Appα(X ×X) | Lamα([A]X).

Fact: Λα is initial algebra for the functor

F (−) = A+ (−×−) + [A](−)

i.e. for every f : F (X)→X there is a unique f : Λα→X
s.t.. . .

To get useful structural recursion/induction principles from the initial

algebra property, need to analyse nature of functions out of [A]X. . .

Heriot-Watt 13/04/99 15

Lemma

Given f : A×X → Y in VFM(A),

∃!f ′ s.t. Na ∈ A .∀x ∈ X . f ′([a]x) = f(a, x)

[a]x (a, x)�oo

[A]X

f ′
""

A×Xo

f

��
Y

iff f satisfies Na ∈ A .∀x ∈ X . a# f(a, x).

Heriot-Watt 13/04/99 16

Λα structural recursion

Given f : A→X , g : X ×X × Λα × Λα→X ,

and h : A×X × Λα→X in VFM(A) with h satisfying

Na ∈ A .∀x ∈ X . ∀t ∈ Λα . a# h(a, x, t)(†)

then there is a unique k : Λα→X such that

∀a ∈ A . k(Varα(a)) = f(a)

∀t, t′ ∈ Λα . k(Appα(t, t′)) = g(k(t), k(t′), t, t′)

Na ∈ A .∀t ∈ Λα . k(Lamα([a]t)) = h(a, k(t), t).

Also, supp(k) = supp(X) ∪ supp(f) ∪ supp(g) ∪ supp(h).

Heriot-Watt 13/04/99 17

Example: capture-avoiding substitution

Given a ∈ A and t ∈ Λα, can use structural recursion for Λα to

define [t/a](−) to be unique k : Λα→ Λα in VFM(A)
satisfying

∀a′ ∈ A . k(Varα(a′)) = (if a′ = a then t else Varα(a′))

∀t′, t′′ ∈ Λα . k(Appα(t′, t′′)) = Appα(k(t′), k(t′′))

Na′ ∈ A .∀t′ ∈ Λα . k(Lamα([a′]t′)) = Lamα([a′]k(t′)).

N.B. condition (†) satisfied in this case because a′ # [a′]t′.

Heriot-Watt 13/04/99 18

Example: set of free variables

Can use structural recursion for Λα to deduce existence of

function fv : Λα→ powfin(A) in VFM(A) satisfying

∀a ∈ A . fv(Varα(a)) = {a}
∀t, t′ ∈ Λα . fv(Appα(t, t′)) = fv(t) ∪ fv(t′)

∀a ∈ A .∀t ∈ Λα . fv(Lamα([a]t)) = fv(t) \ {a}

N.B. used fact that supp(fv) = ∅ to replace Nby ∀ in last clause.

Condition (†) satisfied in this case because a# S \ {a} (any

S ∈ powfin(A)).

Can prove ∀t ∈ Λα . fv(t) = supp(t)
by using structural induction for Λα. . .

Heriot-Watt 13/04/99 19

Λα structural induction

Given a subset S ⊆ Λα in VFM(A), to prove that S is the whole

of Λα it suffices to show

∀a ∈ A .Varα(a) ∈ S
∀t, t′ ∈ S .Appα(t, t′) ∈ S

Na ∈ A .∀t ∈ S . Lamα([a]t) ∈ S.

Heriot-Watt 13/04/99 20

Non-example: set of bound variables

There is no function bv : Λα→ powfin(A) in VFM(A)
satisfying

∀a ∈ A . bv(Varα(a)) = ∅
∀t, t′ ∈ Λα . bv(Appα(t, t′)) = bv(t) ∪ bv(t′)
∀a ∈ A .∀t ∈ Λα . bv(Lamα([a]t)) = {a} ∪ bv(t).

(Can’t use structural recursion to define bv , because condition (†) not

satisfied—a# ({a} ∪ S) fails.)

Proof. If such a bv existed, choose a 6= a′ not in its support.

Then for t = Lamα([a]Varα(a)) have a, a′ # bv(t), so

{a′} = (a′ a) · a = (a′ a) · bv(t) = bv(t) = {a}
contradicting a 6= a′.

Heriot-Watt 13/04/99 21

Summary

Can extend initial algebra semantics of algebraic (no-binders)

signatures to Plotkin’s ‘binding signatures’ using inductive sets in

VFM(A).

∃ other ways of achieving this (cf. recent use of presheaf

categories by Fiore-Plotkin-Turi, and by Hofmann), but VFM(A)
has some advantages:

• Our notion of abstraction co-exists with classical logic.

• Notion of finite support supports logical forms (#-relation and

N-quantifier) that seem to capture common informal

reasoning about bound names.

• Straightforward principles of structural recursion/induction.

Heriot-Watt 13/04/99 22

Further directions

‘Equivariant’ structural operational semantics: use of
N-quantifier in inductively defined relations.

FM type theory: Na ∈ A . (−) corresponds to dependently
typed A-abstraction under Curry-Howard.

[a ∈ A]X(a) = {f ∈ Abs(A) | Na ∈ A . f(a) ∈ X(a)}

Metaprogramming: user-declared data types involving [A](−);

inference about support via type system; pattern-matching

with ‘binding patterns’ [a]p.

Heriot-Watt 13/04/99 23

