A New Approach to
Abstract Syntax Involving Binders

Andrew M. Pitts
Joint work with Murdoch Gabbay

‘B UNIVERSITY OF

S
x
i*ll

Paper: see www.cl.cam.ac.uk/users/ap/papers/
Slides: see www.cl.cam.ac.uk/users/ap/talks/

Heriot-Watt 13/04/99

Logical frameworks for specifying/reasoning about
formal languages involving binding operations

The problem:
Classical theory

abstract syntax trees, algebraic data types, initial algebra
semantics, structural recursion/induction, etc

applied to signatures involving binders yields overly concrete
representations—Iots of essentially routine constructions/proofs to
do with renaming bound variables & capture avoiding substitution
get done and re-done for each object-language on a case-by-case
basis.

Heriot-Watt 13/04/99

Logical frameworks for specifying/reasoning about
formal languages involving binding operations

Desiderata:

1. Alpha-conversion part of the meta-logic, hence no need to
develop it for each object logic separately.

2. Ditto for substitution.

3. Useful forms of structural recursion and induction.

4. Familiarity!—formalise existing practice, e.g.

® support reasoning with names of bound variables

® encompass usual, ‘no-binder’ theory of algebraic
datatypes.

Heriot-Watt 13/04/99

Logical frameworks for specifying/reasoning about
formal languages involving binding operations

Conventional wisdom:;

Use typed lambda calculi— the higher order abstract syntax
(HOAS) approach. Satisfies desiderata 1 & 2. Makes 3 & 4 very
difficult.

Proposal:

Use ideas from Fraenkel-Mostowski permutation model of set
theory with atoms to fulfil desideratum 1, but not 2. Makes 3 & 4
possible in a really simple way.

Heriot-Watt 13/04/99

Permutation actions

e S, = group of permutations of c'tbly infinite set A (of ‘atoms’).

e An of Sx on aclass X is a function

SAXX — X

(r,x) +— mW-x

satisfying id -z =x and 7' (7w-z) = (7'm) - x.

e S, -class = class + action.

Heriot-Watt 13/04/99

Examples of Sy-classes

1. A itself, with action 7 - a = 7(a).

2. Set of (abstract syntax trees for) lambda terms
A= pX . Var(A) | App(X x X) | Lam(A x X)

7 - Var(a) = Var(m(a))
with action § 7 - App(M, M") = App(m - M, 7 - M)
7 -Lam(a, M) = Lam(nw(a), 7 - M).

3. pow(X') = subsets of Sy-class X, with action
- S={n-x|xeS}

Heriot-Watt 13/04/99

Finite support property

Let X’ be an S -class.

S C A supports x € X ifforall m € Sy that fix every element of
S, we have 7 - = .

x is finitely supported if exists finite S C A supporting . In that

case there is a least such .S, the support of , | supp(x) |

Write | @ # x |to mean a & supp(x).

Examples:
e everyt € Aisfinitely supported and a # t iff a does not occur in t.

e S € pow (A) IS finitely supported iff it is either finite or cofinite.

Heriot-Watt 13/04/99

Fraenkel-Mostowski universe, Vg (A)

is the least Sy -class X satisfying
X = A+ pwas(X)

where pow, (X') is the sub-Sy-class of X consisting of subsets
with finite support.

Axiomatics: Vpn(A) is a model of ZFA satisfying

A ¢ powg,(A) (cos A not finite),

Vr.da € A.a# x (‘cos every element has finite support),
and hence also

—AC (cos VS € powg,(A).da € A.a ¢ S, but no choice function
has finite support).

Heriot-Watt 13/04/99

Three versions of variable-renaming for

A= pX . Var(A) | App(X x X) | Lam(A x X)

[a’ /a] M | = capture-avoiding substitution of a’ for all free

occurrences of a in M (a,a’ € A)

{a' /a} M | = textual substitution of a’ for all free occurrences of
ain M

(@’ a) - M |=interchange of all occurrences (be they free,

bound, or binding) of @’ and a in M. (Special case of 7 - M for
7 € S, the transposition (a’ a).)

Heriot-Watt 13/04/99

Recall usual definition of cav-conversion, =, as smallest congruence

relation on A containing Lam(a, M) =, Lam(d’, [a’/a|M).

Theorem. =, coincides with the relation ~C A X A inductively
generated by the axioms and rules

Var(a) ~ Var(a)

My ~ M| My ~ M
App(Mi, My) ~ App(M7, My)

(a// a) . M ~ (a//a/) . M/
Lam(a, M) ~ Lam(a’, M")

ita” 4 M, M’

Heriot-Watt 13/04/99

10

A quantifier for ‘freshness’

Define Nla € A . ¢ tobe {a € A | ¢} is a cofinite subset of A,

Fact: if fu(¢) C {a, T}, then fu(Wla € A . ¢) C {Z} and

JaeA.a#Hx & P
&S Naeldh. 9o &
Va e A.a# 1T = ¢

Here ¢ is a formula of ZFA and we make use of the

equivariance property of such formulas:

if fu(¢) C {T}, thenVr,Z. (¢(Z¥) & (7 - T)).

Socanread Vla € A . ¢ as

‘for some/any fresh atom a, it is the case that ¢'.

Heriot-Watt 13/04/99

11

Alpha-conversion of setsin Vi (A)

Write | |a]x | for ~-equivalence class of (a,z) € A X Ve (A),

(a,x) ~ (a', 2" E Na" € A (a"a) -z =(a"a) o

Fact: [a|lz € Vem(A) with supp(|alx) = supp(x) \ {a}.

Define the subclass Abs(A) C Ve (A) of A-abstractions to
be

Abs(A) € {[alz | a € A & z € Venm(A)}.

Heriot-Watt 13/04/99

12

A-abstractions as functions

Fact: each f € Abs(A) is a unary functional relation, i.e.

(a,z) € f& (a,2") e f = =1

with dom(f) = A\ supp(f).

Hence can apply f € Abs(A) to any a satisfying a # f to
obtain f(a)—a of the A-abstraction f.

Fact: each A-abstraction is uniquely determined by some/any of
its concretions: for all f, f' € Abs(A)

Na€eA. f(a)=f(a) = f=T["

Heriot-Watt 13/04/99

13

The A-abstraction set-former, [A](_)

Given X € Vpn(A) \ A, define

AX ¥ fe Abs(A) | Vac A, f(a) € X}

Fact: [A](—) is monotone for C and preserves unions of
countable ascending chains in Ve (A).

Hence can use [A](—) in combination with X and + to form inductively
defined sets in Vpp(A) via usual Tarski construction:

pX F(X)= | F"(0).
neN

Moreover such F'(—) are functors (|A|(—) extends to a functor), and
uX . F(X) is an initial algebra for it.

Heriot-Watt 13/04/99 14

A /=, is an algebraic datatype in Vppi(A)

Recal: A = uX .Var(A) | App(X x X) | Lam(A x X).

Theorem. In Vryi(A), quotient set of lambda terms mod alpha-
conversion, A /=, is in bijection with the inductive set

Ao ¥ X Varg(A) | App, (X x X) | Lamg ([A]X).

Fact: A, is initial algebra for the functor
F(=)=A+(—x—)+[Al(-)

i.e. forevery f : F(X) — X thereisaunique f : Ay, — X
S.t....

To get useful structural recursion/induction principles from the initial
algebra property, need to analyse nature of functions out of [A] X . . .

Heriot-Watt 13/04/99 15

Lemma

Given f : A X X =Y in Ve (A),
' st Na € AV € X. f/([a]x) = f(a,z)

la|x (0. 2)
AlX Ax X
)

iff f satisfies la € A.Vx € X .a# f(a,x).

Heriot-Watt 13/04/99

16

A, structural recursion

Given f:A— X, g: X xX XA, xA,— X,
and h : A x X x Ay, — X in Vey(A) with h satisfying

© Na e A Ve e X.Vte A,.a# h(a,x,t)

then there is a unique k : A, — X such that

Va € A . k(Vary(a)) = f(a)
Vt, t' € Ao . k(App,(t, ") = g(k(t), k(t'),t,t)
Na € A .Vt € Ay . k(Lamya([a]t)) = h(a, k(t),t).

Also, supp(k) = supp(X) U supp(f) U supp(g) U supp(h).

Heriot-Watt 13/04/99 17

Example: capture-avoiding substitution

Givena € A andt € A, can use structural recursion for A, to
define |t/a](—) to be unique k : Ay, — Ay in Vi (A)
satisfying

Va' € A . k(Var,(a')) = (if a’ = athentelse Var,(a'))
Vt' 1" € Ao k(Appy (1, ")) = Appa (k(t), k("))
Na' € AVt € A, . k(Lamy([d]t) = Lama ([a/k().

N.B. condition (}) satisfied in this case because a’ # |a'|t’.

Heriot-Watt 13/04/99

18

Example: set of free variables

Can use structural recursion for A, to deduce existence of
function fv : Ay — powgy, (A) in Vey(A) satisfying

Va € A. fu(Vary(a)) = {a}

Vi, t' € Ao . fu(App,(t,t')) = fo(t) U fu(t)
Va € AVt € Ay . fu(Lamy([alt) = fu(t) \ {a}

N.B. used fact that supp(fv) = () to replace W by V in last clause.

Condition (}) satisfied in this case because a # S \ {a} (any
S € powg, (A)).

Can prove |Vt € A, . fu(t) = supp(t)
by using structural induction for Ag. . .

Heriot-Watt 13/04/99

19

A, structural induction

Given a subset S C A, in Vrn(A), to prove that S is the whole
of A, it suffices to show

Va € A .Vary(a) € S
vt,t' € S.App,(t,t') € S
Na € A.Vt € S.Lamy(lalt) € S.

Heriot-Watt 13/04/99

Non-example: set of bound variables

There is no function bv : A, — powse, (A) in Ven(A)
satisfying

Va € A . bv(Vary(a)) =0
Vi, t' € Ay . bu(App,(t,t')) = bu(t) U bu(t)
Va € A.Vt € Ay . bu(Lama([a]t)) = {a} U bu(t).

(Can't use structural recursion to define bv, because condition (}) not
satisfied—a # ({a} U S) fails.)

Proof. If such a bv existed, choose a # a’ not in its support.
Then for t = Lam,([a]Var,(a)) have a,a’ # bu(t), so

{a'} = (d'a) -a=(da) bv(t) = bv(t) ={a}
contradicting a # a’.

Heriot-Watt 13/04/99

21

Summary

Can extend initial algebra semantics of algebraic (no-binders)
signatures to Plotkin’s ‘binding signatures’ using inductive sets in

VEM (A)

3 other ways of achieving this (cf. recent use of
by Fiore-Plotkin-Turi, and by Hofmann), but Ve (A)
has some advantages:

e Our notion of abstraction co-exists with classical logic.

e Notion of finite support supports logical forms (#-relation and
I-quantifier) that seem to capture common informal
reasoning about bound names.

e Straightforward principles of structural recursion/induction.

Heriot-Watt 13/04/99

22

Further directions

‘Equivariant’ structural operational semantics: use of
/lI-quantifier in inductively defined relations.

FM type theory: Wa € A . (—) corresponds to dependently
typed A-abstraction under Curry-Howard.

la € AlX (a) ={f € Abs(A) | la € A . f(a) € X(a)}

Metaprogramming: user-declared data types involving [A](—);
Inference about support via type system; pattern-matching
with ‘binding patterns’ |a|p.

Heriot-Watt 13/04/99 23

