A New Approach to
 Abstract Syntax Involving Binders

Andrew M. Pitts
Joint work with Murdoch Gabbay

Paper: see www.cl.cam.ac.uk/users/ap/papers/
Slides: see www.cl.cam.ac.uk/users/ap/talks/

Logical frameworks for specifying/reasoning about formal languages involving binding operations

The problem:

Classical theory
abstract syntax trees, algebraic data types, initial algebra semantics, structural recursion/induction, etc
applied to signatures involving binders yields overly concrete representations-lots of essentially routine constructions/proofs to do with renaming bound variables \& capture avoiding substitution get done and re-done for each object-language on a case-by-case basis.

Logical frameworks for specifying/reasoning about formal languages involving binding operations

Desiderata:

1. Alpha-conversion part of the meta-logic, hence no need to develop it for each object logic separately.
2. Ditto for substitution.
3. Useful forms of structural recursion and induction.
4. Familiarity!-formalise existing practice, e.g.

- support reasoning with names of bound variables
- encompass usual, 'no-binder’ theory of algebraic datatypes.

Logical frameworks for specifying/reasoning about formal languages involving binding operations

Conventional wisdom:
Use typed lambda calculi- the higher order abstract syntax (HOAS) approach. Satisfies desiderata $1 \& 2$. Makes 3 \& 4 very difficult.

Proposal:

Use ideas from Fraenkel-Mostowski permutation model of set theory with atoms to fulfil desideratum 1, but not 2. Makes 3 \& 4 possible in a really simple way.

Permutation actions

- $S_{\mathbb{A}}=$ group of permutations of c'tbly infinite set \mathbb{A} (of 'atoms').
- An action of $S_{\mathbb{A}}$ on a class \mathcal{X} is a function

$$
\begin{array}{ccc}
S_{\mathbb{A}} \times \mathcal{X} & \rightarrow & \mathcal{X} \\
(\pi, x) & \mapsto & \pi \cdot x
\end{array}
$$

satisfying $i d \cdot x=x \quad$ and $\quad \pi^{\prime} \cdot(\pi \cdot x)=\left(\pi^{\prime} \pi\right) \cdot x$.

- S_{A}-class $=$ class + action.

Examples of $S_{\mathbb{A}}$-classes

1. \mathbb{A} itself, with action $\pi \cdot a=\pi(a)$.
2. Set of (abstract syntax trees for) lambda terms

$$
\begin{gathered}
\qquad \Lambda=\mu X \cdot \operatorname{Var}(\mathbb{A})|\operatorname{App}(X \times X)| \operatorname{Lam}(\mathbb{A} \times X) \\
\text { with action }\left\{\begin{array}{l}
\pi \cdot \operatorname{Var}(a)=\operatorname{Var}(\pi(a)) \\
\pi \cdot \operatorname{App}\left(M, M^{\prime}\right)=\operatorname{App}\left(\pi \cdot M, \pi \cdot M^{\prime}\right) \\
\pi \cdot \operatorname{Lam}(a, M)=\operatorname{Lam}(\pi(a), \pi \cdot M)
\end{array}\right.
\end{gathered}
$$

3. pow $(\mathcal{X})=$ subsets of $S_{\mathbb{A}}$-class \mathcal{X}, with action

$$
\pi \cdot S=\{\pi \cdot x \mid x \in S\}
$$

Finite support property

Let \mathcal{X} be an $S_{\mathbb{A}}$-class.
$S \subseteq \mathbb{A}$ supports $x \in \mathcal{X}$ if for all $\pi \in S_{\mathbb{A}}$ that fix every element of S, we have $\pi \cdot x=x$.
x is finitely supported if exists finite $S \subseteq \mathbb{A}$ supporting x. In that case there is a least such S, the support of $x, \operatorname{supp}(x)$. Write $a \# x$ to mean $a \notin \operatorname{supp}(x)$.

Examples:

- every $t \in \Lambda$ is finitely supported and $a \# t$ iff a does not occur in t.
- $S \in \operatorname{pow}(\mathbb{A})$ is finitely supported iff it is either finite or cofinite.
is the least $S_{\mathbb{A}}$-class \mathcal{X} satisfying

$$
\mathcal{X}=\mathbb{A}+\operatorname{pow}_{\mathrm{fs}}(\mathcal{X})
$$

where $\operatorname{pow}_{\mathrm{fs}}(\mathcal{X})$ is the sub- $S_{\mathbb{A}}$-class of \mathcal{X} consisting of subsets with finite support.

Axiomatics: $\mathcal{V}_{\mathrm{FM}}(\mathbb{A})$ is a model of ZFA satisfying
$\mathbb{A} \notin \operatorname{pow}_{\mathrm{fin}}(\mathbb{A}) \quad$ ('cos \mathbb{A} not finite),
$\forall x . \exists a \in \mathbb{A} . a \# x \quad$ ('cos every element has finite support),
and hence also
$\neg \mathrm{AC} \quad$ ('cos $\forall S \in \operatorname{pow}_{\text {fin }}(\mathbb{A}) . \exists a \in \mathbb{A} . a \notin S$, but no choice function has finite support).

Three versions of variable-renaming for

$$
\Lambda=\mu X \cdot \operatorname{Var}(\mathbb{A})|\operatorname{App}(X \times X)| \operatorname{Lam}(\mathbb{A} \times X)
$$

$\left[a^{\prime} / a\right] M=$ capture-avoiding substitution of a^{\prime} for all free
occurrences of a in $M\left(a, a^{\prime} \in \mathbb{A}\right)$
$\begin{aligned} & \left\{a^{\prime} / a\right\} M \\ & a \text { in } M\end{aligned}=$ textual substitution of a^{\prime} for all free occurrences of
$\left(a^{\prime} a\right) \cdot M=$ interchange of all occurrences (be they free, bound, or binding) of a^{\prime} and a in M. (Special case of $\pi \cdot M$ for $\pi \in S_{\mathbb{A}}$ the transposition $\left(a^{\prime} a\right)$.)

Recall usual definition of α-conversion, $={ }_{\alpha}$, as smallest congruence relation on Λ containing $\operatorname{Lam}(a, M)={ }_{\alpha} \operatorname{Lam}\left(a^{\prime},\left[a^{\prime} / a\right] M\right)$.

Theorem. $={ }_{\alpha}$ coincides with the relation $\sim \subseteq \Lambda \times \Lambda$ inductively generated by the axioms and rules

$$
\begin{gathered}
\operatorname{Var}(a) \sim \operatorname{Var}(a) \\
\frac{M_{1} \sim M_{1}^{\prime} \quad M_{2} \sim M_{2}^{\prime}}{\operatorname{App}\left(M_{1}, M_{2}\right) \sim \operatorname{App}\left(M_{1}^{\prime}, M_{2}^{\prime}\right)} \\
\frac{\left(a^{\prime \prime} a\right) \cdot M \sim\left(a^{\prime \prime} a^{\prime}\right) \cdot M^{\prime}}{\operatorname{Lam}(a, M) \sim \operatorname{Lam}\left(a^{\prime}, M^{\prime}\right)} \text { if } a^{\prime \prime} \# M
\end{gathered}
$$

A quantifier for 'freshness'

Define $И a \in \mathbb{A} . \phi$ to be ' $\{a \in \mathbb{A} \mid \phi\}$ is a cofinite subset of \mathbb{A} '. Fact: if $f v(\phi) \subseteq\{a, \vec{x}\}$, then $f v(И a \in \mathbb{A} . \phi) \subseteq\{\vec{x}\}$ and

$$
\exists a \in \mathbb{A} \cdot a \# \vec{x} \& \phi
$$

$$
\Leftrightarrow И a \in \mathbb{A} \cdot \phi \Leftrightarrow
$$

$$
\forall a \in \mathbb{A} \cdot a \# \vec{x} \Rightarrow \phi
$$

Here ϕ is a formula of ZFA and we make use of the
equivariance property of such formulas:
if $f v(\phi) \subseteq\{\vec{x}\}$, then $\forall \pi, \vec{x} .(\phi(\vec{x}) \Leftrightarrow \phi(\pi \cdot \vec{x}))$.

So can read $И a \in \mathbb{A} . \phi$ as
'for some/any fresh atom a, it is the case that ϕ '.

Alpha-conversion of sets in $\mathcal{V}_{\mathrm{FM}}(\mathbb{A})$

Write $[a] x$ for \sim-equivalence class of $(a, x) \in \mathbb{A} \times \mathcal{V}_{\mathrm{FM}}(\mathbb{A})$, where

$$
(a, x) \sim\left(a^{\prime}, x^{\prime}\right) \stackrel{\text { def }}{\Leftrightarrow} И a^{\prime \prime} \in \mathbb{A} \cdot\left(a^{\prime \prime} a\right) \cdot x=\left(a^{\prime \prime} a^{\prime}\right) \cdot x^{\prime}
$$

Fact: $[a] x \in \mathcal{V}_{\mathrm{FM}}(\mathbb{A})$ with $\operatorname{supp}([a] x)=\operatorname{supp}(x) \backslash\{a\}$.
Define the subclass $\mathcal{A} b s(\mathbb{A}) \subseteq \mathcal{V}_{\mathrm{FM}}(\mathbb{A})$ of \mathbb{A}-abstractions to be

$$
\mathcal{A} b s(\mathbb{A}) \stackrel{\text { def }}{=}\left\{[a] x \mid a \in \mathbb{A} \& x \in \mathcal{V}_{\mathrm{FM}}(\mathbb{A})\right\}
$$

\mathbb{A}-abstractions as functions

Fact: each $f \in \mathcal{A} b s(\mathbb{A})$ is a unary functional relation, i.e.

$$
(a, x) \in f \&\left(a, x^{\prime}\right) \in f \Rightarrow x=x^{\prime}
$$

with $\operatorname{dom}(f)=\mathbb{A} \backslash \operatorname{supp}(f)$.
Hence can apply $f \in \mathcal{A} b s(\mathbb{A})$ to any a satisfying $a \# f$ to obtain $f(a)$-a concretion of the \mathbb{A}-abstraction f.

Fact: each \mathbb{A}-abstraction is uniquely determined by some/any of its concretions: for all $f, f^{\prime} \in \mathcal{A} b s(\mathbb{A})$

$$
\left(И a \in \mathbb{A} \cdot f(a)=f^{\prime}(a)\right) \Rightarrow f=f^{\prime}
$$

Given $X \in \mathcal{V}_{\mathrm{FM}}(\mathbb{A}) \backslash \mathbb{A}$, define

$$
[\mathbb{A}] X \stackrel{\text { def }}{=}\{f \in \mathcal{A} b s(\mathbb{A}) \mid И a \in \mathbb{A} . f(a) \in X\}
$$

Fact: $[\mathbb{A}](-)$ is monotone for \subseteq and preserves unions of countable ascending chains in $\mathcal{V}_{\mathrm{FM}}(\mathbb{A})$.

Hence can use $[\mathbb{A}](-)$ in combination with \times and + to form inductively defined sets in $\mathcal{V}_{\mathrm{FM}}(\mathbb{A})$ via usual Tarski construction:

$$
\mu X . F(X)=\bigcup_{n \in \mathbb{N}} F^{n}(\emptyset) .
$$

Moreover such $F(-)$ are functors ($[\mathbb{A}]$ (-) extends to a functor), and $\mu X . F(X)$ is an initial algebra for it.

Recall: $\Lambda=\mu X . \operatorname{Var}(\mathbb{A})|\operatorname{App}(X \times X)| \operatorname{Lam}(\mathbb{A} \times X)$.
Theorem. In $\mathcal{V}_{\mathrm{FM}}(\mathbb{A})$, quotient set of lambda terms mod alphaconversion, $\Lambda /={ }_{\alpha}$, is in bijection with the inductive set

$$
\Lambda_{\alpha} \stackrel{\text { def }}{=} \mu X \cdot \operatorname{Var}_{\alpha}(\mathbb{A})\left|\operatorname{App}_{\alpha}(X \times X)\right| \operatorname{Lam}_{\alpha}([\mathbb{A}] X)
$$

Fact: Λ_{α} is initial algebra for the functor

$$
F(-)=\mathbb{A}+(-\times-)+[\mathbb{A}](-)
$$

i.e. for every $f: F(X) \rightarrow X$ there is a unique $\bar{f}: \Lambda_{\alpha} \rightarrow X$ s.t.. . .

To get useful structural recursion/induction principles from the initial algebra property, need to analyse nature of functions out of $[\mathbb{A}] X \ldots$

Lemma

Given $f: \mathbb{A} \times X \rightarrow Y$ in $\mathcal{V}_{\mathrm{FM}}(\mathbb{A})$, $\exists!f^{\prime}$ s.t. $И a \in \mathbb{A} . \forall x \in X . f^{\prime}([a] x)=f(a, x)$

$$
\begin{aligned}
& {[a] x \longleftarrow(a, x)} \\
& {[\mathbb{A}] X-\mathbb{A} \times X}
\end{aligned}
$$

iff f satisfies $И a \in \mathbb{A} . \forall x \in X . a \# f(a, x)$.

Λ_{α} structural recursion

Given $f: \mathbb{A} \rightarrow X, \quad g: X \times X \times \Lambda_{\alpha} \times \Lambda_{\alpha} \rightarrow X$, and $h: \mathbb{A} \times X \times \Lambda_{\alpha} \rightarrow X$ in $\mathcal{V}_{\mathrm{FM}}(\mathbb{A})$ with h satisfying
(†) \quad И $a \in \mathbb{A} . \forall x \in X . \forall t \in \Lambda_{\alpha} \cdot a \# h(a, x, t)$
then there is a unique $k: \Lambda_{\alpha} \rightarrow X$ such that

$$
\begin{aligned}
& \forall a \in \mathbb{A} \cdot k\left(\operatorname{Var}_{\alpha}(a)\right)=f(a) \\
& \forall t, t^{\prime} \in \Lambda_{\alpha} \cdot k\left(\operatorname{App}_{\alpha}\left(t, t^{\prime}\right)\right)=g\left(k(t), k\left(t^{\prime}\right), t, t^{\prime}\right) \\
& \text { И } a \in \mathbb{A} . \forall t \in \Lambda_{\alpha} \cdot k\left(\operatorname{Lam}_{\alpha}([a] t)\right)=h(a, k(t), t)
\end{aligned}
$$

Also, $\operatorname{supp}(k)=\operatorname{supp}(X) \cup \operatorname{supp}(f) \cup \operatorname{supp}(g) \cup \operatorname{supp}(h)$.

Example: capture-avoiding substitution

Given $a \in \mathbb{A}$ and $t \in \Lambda_{\alpha}$, can use structural recursion for Λ_{α} to define $[t / a](-)$ to be unique $k: \Lambda_{\alpha} \rightarrow \Lambda_{\alpha}$ in $\mathcal{V}_{\mathrm{FM}}(\mathbb{A})$
satisfying

$$
\begin{aligned}
& \forall a^{\prime} \in \mathbb{A} \cdot k\left(\operatorname{Var}_{\alpha}\left(a^{\prime}\right)\right)=\left(\text { if } a^{\prime}=a \text { then } t \text { else } \operatorname{Var}_{\alpha}\left(a^{\prime}\right)\right) \\
& \forall t^{\prime}, t^{\prime \prime} \in \Lambda_{\alpha} \cdot k\left(\operatorname{App}_{\alpha}\left(t^{\prime}, t^{\prime \prime}\right)\right)=\operatorname{App}_{\alpha}\left(k\left(t^{\prime}\right), k\left(t^{\prime \prime}\right)\right) \\
& И a^{\prime} \in \mathbb{A} \cdot \forall t^{\prime} \in \Lambda_{\alpha} \cdot k\left(\operatorname{Lam}_{\alpha}\left(\left[a^{\prime}\right] t^{\prime}\right)\right)=\operatorname{Lam}_{\alpha}\left(\left[a^{\prime}\right] k\left(t^{\prime}\right)\right) .
\end{aligned}
$$

N.B. condition (\dagger) satisfied in this case because $a^{\prime} \#\left[a^{\prime}\right] t^{\prime}$.

Example: set of free variables

Can use structural recursion for Λ_{α} to deduce existence of function $f v: \Lambda_{\alpha} \rightarrow \operatorname{pow}_{\text {fin }}(\mathbb{A})$ in $\mathcal{V}_{\mathrm{FM}}(\mathbb{A})$ satisfying

$$
\begin{aligned}
& \forall a \in \mathbb{A} \cdot f v\left(\operatorname{Var}_{\alpha}(a)\right)=\{a\} \\
& \forall t, t^{\prime} \in \Lambda_{\alpha} \cdot f v\left(\operatorname{App}_{\alpha}\left(t, t^{\prime}\right)\right)=f v(t) \cup f v\left(t^{\prime}\right) \\
& \forall a \in \mathbb{A} . \forall t \in \Lambda_{\alpha} \cdot f v\left(\operatorname{Lam}_{\alpha}([a] t)\right)=f v(t) \backslash\{a\}
\end{aligned}
$$

N.B. used fact that $\operatorname{supp}(f v)=\emptyset$ to replace $И$ by \forall in last clause.

Condition (\dagger) satisfied in this case because $a \# S \backslash\{a\}$ (any
$S \in \operatorname{pow}_{\text {fin }}(\mathbb{A})$).
Can prove $\forall t \in \Lambda_{\alpha} \cdot f v(t)=\operatorname{supp}(t)$
by using structural induction for $\Lambda_{\alpha} \ldots$

Λ_{α} structural induction

Given a subset $S \subseteq \Lambda_{\alpha}$ in $\mathcal{V}_{\mathrm{FM}}(\mathbb{A})$, to prove that S is the whole of Λ_{α} it suffices to show

$$
\begin{aligned}
& \forall a \in \mathbb{A} \cdot \operatorname{Var}_{\alpha}(a) \in S \\
& \forall t, t^{\prime} \in S . \operatorname{App}_{\alpha}\left(t, t^{\prime}\right) \in S \\
& И a \in \mathbb{A} . \forall t \in S . \operatorname{Lam}_{\alpha}([a] t) \in S
\end{aligned}
$$

Non-example: set of bound variables

There is no function $b v: \Lambda_{\alpha} \rightarrow \operatorname{pow}_{\text {fin }}(\mathbb{A})$ in $\mathcal{V}_{\mathrm{FM}}(\mathbb{A})$ satisfying

$$
\begin{aligned}
& \forall a \in \mathbb{A} \cdot b v\left(\operatorname{Var}_{\alpha}(a)\right)=\emptyset \\
& \forall t, t^{\prime} \in \Lambda_{\alpha} \cdot b v\left(\operatorname{App}_{\alpha}\left(t, t^{\prime}\right)\right)=b v(t) \cup b v\left(t^{\prime}\right) \\
& \forall a \in \mathbb{A} . \forall t \in \Lambda_{\alpha} \cdot b v\left(\operatorname{Lam}_{\alpha}([a] t)\right)=\{a\} \cup b v(t) .
\end{aligned}
$$

(Can't use structural recursion to define $b v$, because condition (\dagger) not satisfied- $a \#(\{a\} \cup S)$ fails.)
Proof. If such a $b v$ existed, choose $a \neq a^{\prime}$ not in its support. Then for $t=\operatorname{Lam}_{\alpha}\left([a] \operatorname{Var}_{\alpha}(a)\right)$ have $a, a^{\prime} \# b v(t)$, so

$$
\left\{a^{\prime}\right\}=\left(a^{\prime} a\right) \cdot a=\left(a^{\prime} a\right) \cdot b v(t)=b v(t)=\{a\}
$$

contradicting $a \neq a^{\prime}$.

Summary

Can extend initial algebra semantics of algebraic (no-binders) signatures to Plotkin's 'binding signatures' using inductive sets in $\mathcal{V}_{\mathrm{FM}}(\mathbb{A})$.
\exists other ways of achieving this (cf. recent use of presheaf categories by Fiore-Plotkin-Turi, and by Hofmann), but $\mathcal{V}_{\text {FM }}(\mathbb{A})$ has some advantages:

- Our notion of abstraction co-exists with classical logic.
- Notion of finite support supports logical forms (\#-relation and И-quantifier) that seem to capture common informal reasoning about bound names.
- Straightforward principles of structural recursion/induction.

Further directions

'Equivariant' structural operational semantics: use of $И$-quantifier in inductively defined relations.

FM type theory: $И a \in \mathbb{A} .(-)$ corresponds to dependently typed \mathbb{A}-abstraction under Curry-Howard.

$$
[a \in \mathbb{A}] X(a)=\{f \in \mathcal{A} b s(\mathbb{A}) \mid И a \in \mathbb{A} . f(a) \in X(a)\}
$$

Metaprogramming: user-declared data types involving $[\mathbb{A}](-)$; inference about support via type system; pattern-matching with 'binding patterns' $[a] p$.

