A New Approach to Abstract Syntax Involving Binders

Andrew M. Pitts

Joint work with Murdoch Gabbay

Paper: see www.cl.cam.ac.uk/users/ap/papers/ Slides: see www.cl.cam.ac.uk/users/ap/talks/

Logical frameworks for specifying/reasoning about formal languages involving binding operations

The problem:

Classical theory

abstract syntax trees, algebraic data types, initial algebra semantics, structural recursion/induction, etc

applied to signatures involving binders yields overly concrete representations—lots of essentially routine constructions/proofs to do with renaming bound variables & capture avoiding substitution get done and re-done for each object-language on a case-by-case basis. Logical frameworks for specifying/reasoning about formal languages involving binding operations

Desiderata:

- 1. <u>Alpha-conversion</u> part of the meta-logic, hence no need to develop it for each object logic separately.
- 2. Ditto for substitution.
- 3. Useful forms of structural recursion and induction.
- 4. Familiarity!-formalise existing practice, e.g.
 - support reasoning with names of bound variables
 - encompass usual, 'no-binder' theory of algebraic datatypes.

Logical frameworks for specifying/reasoning about formal languages involving binding operations

Conventional wisdom:

Use typed lambda calculi— the higher order abstract syntax (HOAS) approach. Satisfies desiderata 1 & 2. Makes 3 & 4 very difficult.

Proposal:

Use ideas from Fraenkel-Mostowski permutation model of set theory with atoms to fulfil desideratum 1, <u>but not 2</u>. Makes 3 & 4 possible in a really simple way.

Permutation actions

- $S_{\mathbb{A}}$ = group of permutations of c'tbly infinite set \mathbb{A} (of 'atoms').
- An action of $S_{\mathbb{A}}$ on a class ${\mathcal X}$ is a function

$$egin{array}{ccccc} S_{\mathbb{A}} imes \mathcal{X} & o & \mathcal{X} \ (\pi, x) & \mapsto & \pi \cdot x \end{array}$$

satisfying $id \cdot x = x$ and $\pi' \cdot (\pi \cdot x) = (\pi' \pi) \cdot x$.

•
$$S_{\mathbb{A}}$$
-class = class + action.

- 1. A itself, with action $\pi \cdot a = \pi(a)$.
- 2. Set of (abstract syntax trees for) lambda terms

 $\Lambda = \mu X \operatorname{.} \operatorname{Var}(\mathbb{A}) \mid \operatorname{App}(X \times X) \mid \operatorname{Lam}(\mathbb{A} \times X)$

with action $\begin{cases} \pi \cdot \operatorname{Var}(a) = \operatorname{Var}(\pi(a)) \\ \pi \cdot \operatorname{App}(M, M') = \operatorname{App}(\pi \cdot M, \pi \cdot M') \\ \pi \cdot \operatorname{Lam}(a, M) = \operatorname{Lam}(\pi(a), \pi \cdot M). \end{cases}$

3. $pow(\mathcal{X})$ = subsets of $S_{\mathbb{A}}$ -class \mathcal{X} , with action $\pi \cdot S = \{\pi \cdot x \mid x \in S\}.$

Let \mathcal{X} be an $S_{\mathbb{A}}$ -class.

 $S \subseteq \mathbb{A}$ supports $x \in \mathcal{X}$ if for all $\pi \in S_{\mathbb{A}}$ that fix every element of S, we have $\pi \cdot x = x$.

x is finitely supported if exists finite $S \subseteq \mathbb{A}$ supporting x. In that case there is a least such S, the support of x, supp(x).

Write a # x to mean $a \notin supp(x)$.

Examples:

- every $t \in \Lambda$ is finitely supported and a # t iff a does not occur in t.
- $S \in pow(\mathbb{A})$ is finitely supported iff it is either finite or cofinite.

is the least $S_{\mathbb{A}}$ -class ${\mathcal X}$ satisfying

 $\mathcal{X} = \mathbb{A} + pow_{\mathrm{fs}}(\mathcal{X})$

where $pow_{fs}(\mathcal{X})$ is the sub- $S_{\mathbb{A}}$ -class of \mathcal{X} consisting of subsets with finite support.

Axiomatics: $\mathcal{V}_{FM}(\mathbb{A})$ is a model of ZFA satisfying $\mathbb{A} \notin pow_{fin}(\mathbb{A})$ ('cos \mathbb{A} not finite), $\forall x . \exists a \in \mathbb{A} . a \# x$ ('cos every element has finite support), and hence also $\neg AC$ ('cos $\forall S \in pow_{fin}(\mathbb{A}) . \exists a \in \mathbb{A} . a \notin S$, but no choice function has finite support). $\begin{aligned} & \text{Three versions of variable-renaming for} \\ & \Lambda = \mu X \,.\, \text{Var}(\mathbb{A}) \mid \text{App}(X \times X) \mid \text{Lam}(\mathbb{A} \times X) \end{aligned}$

[a'/a]M = capture-avoiding substitution of a' for all free occurrences of a in M ($a, a' \in \mathbb{A}$)

 $\left\{ \frac{a'/a}{M} \right\}$ = textual substitution of a' for all free occurrences of a in M

 $(a' a) \cdot M$ = interchange of *all* occurrences (be they free, bound, or binding) of a' and a in M. (Special case of $\pi \cdot M$ for $\pi \in S_{\mathbb{A}}$ the transposition (a' a).) Recall usual definition of $\underline{\alpha}$ -conversion, $=_{\alpha}$, as smallest congruence relation on Λ containing $\text{Lam}(a, M) =_{\alpha} \text{Lam}(a', [a'/a]M)$.

Theorem. =_{α} coincides with the relation $\sim \subseteq \Lambda \times \Lambda$ inductively generated by the axioms and rules

 $\mathsf{Var}(a)\sim\mathsf{Var}(a)$

$$\begin{split} & \frac{M_1 \sim M_1' \qquad M_2 \sim M_2'}{\mathsf{App}(M_1, M_2) \sim \mathsf{App}(M_1', M_2')} \\ & \frac{(a'' \, a) \cdot M \sim (a'' \, a') \cdot M'}{\mathsf{Lam}(a, M) \sim \mathsf{Lam}(a', M')} \quad \text{if } a'' \, \# \, M, M' \end{split}$$

Define $\[Ma \in \mathbb{A} . \phi \]$ to be ' $\{a \in \mathbb{A} \mid \phi\}$ is a cofinite subset of \mathbb{A} '. Fact: if $fv(\phi) \subseteq \{a, \vec{x}\}$, then $fv(\[Ma \in \mathbb{A} . \phi]) \subseteq \{\vec{x}\}$ and $\exists a \in \mathbb{A} . a \ \# \ \vec{x} \& \phi$ $\Leftrightarrow \[Ma \in \mathbb{A} . \phi \ \Leftrightarrow]$ $\forall a \in \mathbb{A} . a \ \# \ \vec{x} \Rightarrow \phi$

Here ϕ is a formula of ${
m ZFA}$ and we make use of the

equivariance property of such formulas:

 $\text{ if } fv(\phi) \subseteq \{\vec{x}\} \text{, then } \forall \pi, \vec{x} \text{ . } (\phi(\vec{x}) \iff \phi(\pi \cdot \vec{x})) \text{.}$

So can read $\mathbf{M}a \in \mathbb{A}$. ϕ as

'for some/any fresh atom a, it is the case that ϕ '.

Alpha-conversion of sets in $\mathcal{V}_{FM}(\mathbb{A})$

Write [a]x for \sim -equivalence class of $(a,x) \in \mathbb{A} \times \mathcal{V}_{\mathrm{FM}}(\mathbb{A})$, where

$$(a, x) \sim (a', x') \stackrel{\text{def}}{\Leftrightarrow} \mathsf{V}a'' \in \mathbb{A} \cdot (a'' a) \cdot x = (a'' a') \cdot x'$$

Fact: $[a]x \in \mathcal{V}_{FM}(\mathbb{A})$ with $supp([a]x) = supp(x) \setminus \{a\}$. Define the subclass $\mathcal{A}bs(\mathbb{A}) \subseteq \mathcal{V}_{FM}(\mathbb{A})$ of \mathbb{A} -abstractions to be

$$\mathcal{A}bs(\mathbb{A}) \stackrel{\text{def}}{=} \{ [a]x \mid a \in \mathbb{A} \& x \in \mathcal{V}_{\mathrm{FM}}(\mathbb{A}) \}.$$

Fact: each $f \in Abs(\mathbb{A})$ is a unary functional relation, i.e.

$$(a, x) \in f \& (a, x') \in f \implies x = x'$$

with $dom(f) = \mathbb{A} \setminus supp(f)$.

Hence can apply $f \in Abs(\mathbb{A})$ to any a satisfying a # f to obtain f(a)—a concretion of the \mathbb{A} -abstraction f.

Fact: each A-abstraction is uniquely determined by some/any of its concretions: for all $f, f' \in Abs(\mathbb{A})$

$$(\mathsf{V}a \in \mathbb{A} \, . \, f(a) = f'(a)) \ \Rightarrow \ f = f'.$$

Given $X \in \mathcal{V}_{FM}(\mathbb{A}) \setminus \mathbb{A}$, define $[\mathbb{A}]X \stackrel{\text{def}}{=} \{f \in \mathcal{A}bs(\mathbb{A}) \mid \mathsf{V}a \in \mathbb{A} . f(a) \in X\}.$

Fact: $[\mathbb{A}](-)$ is monotone for \subseteq and preserves unions of countable ascending chains in $\mathcal{V}_{FM}(\mathbb{A})$.

Hence can use $[\mathbb{A}](-)$ in combination with \times and + to form inductively defined sets in $\mathcal{V}_{FM}(\mathbb{A})$ via usual Tarski construction:

$$\mu X \cdot F(X) = \bigcup_{n \in \mathbb{N}} F^n(\emptyset).$$

Moreover such F(-) are <u>functors</u> ($[\mathbb{A}](-)$ extends to a functor), and $\mu X \cdot F(X)$ is an initial algebra for it.

Recall: $\Lambda = \mu X \cdot Var(\mathbb{A}) \mid App(X \times X) \mid Lam(\mathbb{A} \times X)$.

Theorem. In $\mathcal{V}_{FM}(\mathbb{A})$, quotient set of lambda terms mod alphaconversion, $\Lambda/=_{\alpha}$, is in bijection with the inductive set

 $\Lambda_{\alpha} \stackrel{\text{def}}{=} \mu X \cdot \mathsf{Var}_{\alpha}(\mathbb{A}) \mid \mathsf{App}_{\alpha}(X \times X) \mid \mathsf{Lam}_{\alpha}([\mathbb{A}]X).$

Fact: Λ_{α} is initial algebra for the functor

$$F(-) = \mathbb{A} + (- \times -) + [\mathbb{A}](-)$$

i.e. for every $f:F(X) \to X$ there is a unique $\overline{f}: \Lambda_{\alpha} \to X$ s.t...

To get useful structural recursion/induction principles from the initial algebra property, need to analyse nature of functions out of $[\mathbb{A}]X...$

iff f satisfies $\mathsf{V}a \in \mathbb{A} . \forall x \in X . a \ \# f(a, x)$.

Given $f : \mathbb{A} \to X$, $g : X \times X \times \Lambda_{\alpha} \times \Lambda_{\alpha} \to X$, and $h : \mathbb{A} \times X \times \Lambda_{\alpha} \to X$ in $\mathcal{V}_{\mathrm{FM}}(\mathbb{A})$ with h satisfying

(†) $\forall a \in \mathbb{A} . \forall x \in X . \forall t \in \Lambda_{\alpha} . a \ \# h(a, x, t)$

then there is a unique $k: \Lambda_{lpha} \to X$ such that

$$\forall a \in \mathbb{A} . k(\operatorname{Var}_{\alpha}(a)) = f(a)$$

$$\forall t, t' \in \Lambda_{\alpha} . k(\operatorname{App}_{\alpha}(t, t')) = g(k(t), k(t'), t, t')$$

$$\mathsf{M}a \in \mathbb{A} . \forall t \in \Lambda_{\alpha} . k(\operatorname{Lam}_{\alpha}([a]t)) = h(a, k(t), t).$$

Also, $supp(k) = supp(X) \cup supp(f) \cup supp(g) \cup supp(h)$.

Example: capture-avoiding substitution

Given $a \in \mathbb{A}$ and $t \in \Lambda_{\alpha}$, can use structural recursion for Λ_{α} to define [t/a](-) to be unique $k : \Lambda_{\alpha} \to \Lambda_{\alpha}$ in $\mathcal{V}_{FM}(\mathbb{A})$ satisfying

 $\forall a' \in \mathbb{A} . k(\operatorname{Var}_{\alpha}(a')) = (\text{if } a' = a \text{ then } t \text{ else } \operatorname{Var}_{\alpha}(a'))$ $\forall t', t'' \in \Lambda_{\alpha} . k(\operatorname{App}_{\alpha}(t', t'')) = \operatorname{App}_{\alpha}(k(t'), k(t''))$ $\mathsf{V}a' \in \mathbb{A} . \forall t' \in \Lambda_{\alpha} . k(\operatorname{Lam}_{\alpha}([a']t')) = \operatorname{Lam}_{\alpha}([a']k(t')).$

N.B. condition (†) satisfied in this case because a' # [a']t'.

Can use structural recursion for Λ_{α} to deduce existence of function $fv: \Lambda_{\alpha} \to pow_{\text{fin}}(\mathbb{A})$ in $\mathcal{V}_{\text{FM}}(\mathbb{A})$ satisfying

 $\forall a \in \mathbb{A} . fv(\operatorname{Var}_{\alpha}(a)) = \{a\}$ $\forall t, t' \in \Lambda_{\alpha} . fv(\operatorname{App}_{\alpha}(t, t')) = fv(t) \cup fv(t')$ $\forall a \in \mathbb{A} . \forall t \in \Lambda_{\alpha} . fv(\operatorname{Lam}_{\alpha}([a]t)) = fv(t) \setminus \{a\}$

N.B. used fact that $supp(fv) = \emptyset$ to replace I by \forall in last clause.

Condition (†) satisfied in this case because $a \# S \setminus \{a\}$ (any $S \in pow_{fin}(\mathbb{A})$).

Can prove
$$\forall t \in \Lambda_{\alpha} . fv(t) = supp(t)$$

by using structural induction for Λ_{α} ...

Λ_{α} structural induction

Given a subset $S \subseteq \Lambda_{\alpha}$ in $\mathcal{V}_{FM}(\mathbb{A})$, to prove that S is the whole of Λ_{α} it suffices to show

 $\forall a \in \mathbb{A} . \operatorname{Var}_{\alpha}(a) \in S$ $\forall t, t' \in S . \operatorname{App}_{\alpha}(t, t') \in S$ $\mathsf{M}a \in \mathbb{A} . \forall t \in S . \operatorname{Lam}_{\alpha}([a]t) \in S.$ There is <u>no</u> function $bv: \Lambda_{\alpha} \to pow_{fin}(\mathbb{A})$ in $\mathcal{V}_{FM}(\mathbb{A})$ satisfying

$$\forall a \in \mathbb{A} . bv(\mathsf{Var}_{\alpha}(a)) = \emptyset$$

$$\forall t, t' \in \Lambda_{\alpha} . bv(\mathsf{App}_{\alpha}(t, t')) = bv(t) \cup bv(t')$$

$$\forall a \in \mathbb{A} . \forall t \in \Lambda_{\alpha} . bv(\mathsf{Lam}_{\alpha}([a]t)) = \{a\} \cup bv(t).$$

(Can't use structural recursion to define bv, because condition (†) not satisfied— $a \# (\{a\} \cup S)$ fails.)

Proof. If such a bv existed, choose $a \neq a'$ not in its support. Then for $t = \text{Lam}_{\alpha}([a]\text{Var}_{\alpha}(a))$ have a, a' # bv(t), so

$$\{a'\} = (a'a) \cdot a = (a'a) \cdot bv(t) = bv(t) = \{a\}$$

contradicting $a \neq a'$.

Can extend initial algebra semantics of algebraic (no-binders) signatures to Plotkin's 'binding signatures' using inductive sets in $\mathcal{V}_{FM}(\mathbb{A})$.

 \exists other ways of achieving this (cf. recent use of presheaf categories by Fiore-Plotkin-Turi, and by Hofmann), but $\mathcal{V}_{FM}(\mathbb{A})$ has some advantages:

- Our notion of abstraction co-exists with <u>classical</u> logic.
- Notion of finite support supports logical forms (#-relation and I/-quantifier) that seem to capture common informal reasoning about bound names.
- Straightforward principles of structural recursion/induction.

'Equivariant' structural operational semantics: use of

I-quantifier in inductively defined relations.

 $[a \in \mathbb{A}]X(a) = \{ f \in \mathcal{A}bs(\mathbb{A}) \mid \mathsf{V}a \in \mathbb{A} \, . \, f(a) \in X(a) \}$

Metaprogramming: user-declared data types involving $[\mathbb{A}](-)$; inference about support via type system; pattern-matching with 'binding patterns' [a]p.